Smart Non-Default Routing for Clock Power Reduction

Andrew B. Kahng, Seokhyeong Kang, <u>Hyein Lee</u>

VLSI CAD LABORATORY, UC San Diego 50th Design Automation Conference June 5, 2013

UC San Diego / VLSI CAD Laboratory

Outline

- Motivation
- Our Wire Sizing Algorithm
- Experimental Results
- Conclusions and Future Works

Non-Default Routing Rule

- Non-Default Routing Rules (NDRs) are used to increase wire widths and spacings
 - Reduce wire parasitic and delay variability
 - Reduce coupling capacitance
 - Avoid Electromigration (EM) violation

Default Rule

Electromigration

EM causes unwanted opens or shorts in wires

■ EM reliability ↔ reduced current density
– Widen wires (use NDR)

Can NDRs always cure the EM problems?

Smart NDR (SNDR)

Related Works

Wire sizing in clock trees

- [Tsai04] buffer insertion and wire sizing to optimize delay and power using dynamic programming
- [Guthaus06] clock buffer/wire sizing to minimize skew using sequential linear programming
- Related to timing; EM reliability not considered

EM-constrained wire sizing

- [Pullela95] low-power clock tree with EM constraints
- Inserts buffers to reduce wire width

Our work considers EM reliability without buffer insertion

Outline

- Motivation
- Our Wire Sizing Algorithm
- Experimental Results
- Conclusions and Future Works

SNDR Wire Sizing Algorithm

- Objective: Minimize the total capacitance of clock network
- While maintaining
 - Clock latency
 - Maximum transition time
 - Clock skew
 - Without EM violations
- Solution: NDR for each wire segment of a given clock network

Wire Delay, Slew, RC and EM Limit Models

Wire delay and slew model

 Wire delay: Elmore delay model [Elmore48]
 Wire slew: PERI model [HuAHK07]

Wire RC and EM limits: f(w) w: wire width

 $\begin{array}{c} R \propto 1/w \\ C \propto w \\ \underline{EM} \propto w \end{array}$

R, C, EM_{limit} = linear functions of log(w)

SNDR for a Clock Subnet Problem formulation Minimize total capacitance Subject to $Delay_i < MaxDelay$ Skew_{i,i} < MaxClockSkew I_c < MaxEMCurrentLimit_c $W_e \ge W_{desc(e)}$ $(desc(e) \equiv edges downstream from e)$

<subnet>

NDR solutions are obtained for wire segments

SNDR for Entire Clock Tree

- Solve SNDR subnet problems from the bottom to top of clock tree
- Skew propagation : Maximum/minimum clock latencies of downstream subnets are propagated to upstream subnets

<Entire Clock Tree>

Iterative Linear Programming

 Sizing problem is a <u>quadratic program</u> due to RC delay
Separate sizing problem into <u>two linear programs</u> and solve them iteratively

Elmore delay = $R \cdot C$

Iteratively solve the problems until the solution (x_e) converges

$$f_R(x_e) \cdot f_C(x_e) \longrightarrow f_R(x_e) \cdot f_C(x_e)$$

 $f_{R}(\overline{x_{e}}) \cdot f_{C}(\overline{K})$ $f_{R}(\overline{K}) \cdot f_{C}(\overline{x_{e}})$

Quadratic program Two linear programs Iterative linear program

 \Rightarrow 5X-30X runtime reduction by avoiding quadratic formulation

 \Rightarrow 170 minutes vs. 30 minutes for *dma* testcase

Outline

- Motivation
- Our Wire Sizing Algorithm
- Experimental Results
- Conclusions and Future Works

Implementation Flow

Practical and <u>automated</u> flow

Experimental Environments

Cadence SOC Encounter, Matlab, Synopsys 32/28nm
PDK

Various NDRs are tried

NDR	Width	Space	Norm. Cap.
1W2S	1	2	1.21
1W5S	1	5	0.73
2W4S	2	4	0.89
1W8S	1	8	0.66
2W7S	2	7	0.76
3W6S	3	6	0.88
4W5S	4	5	1.00

Iso area : W+S is fixed

- Experiments
 - Iso area NDRs
 - Non-iso (less) area NDRs
- Results essentially satisfy all timing and EM constraints
 - Runtime: 10 seconds ~100 minutes per subnet

Matlab R2012b and 2.5GHz Intel Xeon processor

Results: Proportion of NDRs

■ Smaller-width NDRs replace ≥ 80% of the wiring

Results: Less Capacitance

Clock switching power and wire capacitance reduction

Results: Less Area

50% track cost reduction can be achieved by non-iso area NDRs

Track cost : total amount of track length occupied

Conclusion and Future Works

- Smart NDRs for clock networks ⇒ reduce the clock tree wire capacitance under timing and EM constraints
- Less capacitance: 9% reduction of wire cap, 5% reduction of clock switching power
- Less area: 50% track cost reduction by using non-iso area NDRs

Future work

- Control local skews for improved chip timing and robustness
- Use better delay models for problem formulation
- Noise and variability consideration

Thank You!

References

- [Elmore48] W. C. Elmore, "The Transient Response of Damped Linear Networks with Particular Regard to Wideband Amplifiers", J. Applied Physics 19(1) (1948), pp. 55-63
- [HuAHK07] S. Hu, C. J. Alpert, J. Hu, S. Karandikar, Z. Li, W. Shi and C. N. Sze, "Fast Algorithms For Slew Constrained Minimum Cost Buffering", IEEE TCAD 26(11) (2007), pp. 2009-2022.
- [PullelaMP95] S. Pullela, N. Menezes and L. T. Pillage, "Low Power IC Clock Tree Design", Proc. CICC, 1995, pp. 263-266.