
Best-So-Far vs. Where-You-Are:

New Perspectives on Simulated Annealing for CAD�

Kenneth D. Boese, Andrew B. Kahng and Chung-Wen Albert Tsao

UCLA Computer Science Dept., Los Angeles, CA 90024-1596 USA

Abstract
The simulated annealing (SA) algorithm [14] [5]

has been applied to every di�cult optimization prob-
lem in VLSI CAD. Existing SA implementations use
monotone decreasing, or cooling, temperature sched-
ules motivated by the algorithm's proof of optimality as
well as by an analogy with statistical thermodynamics.
This paper gives strong evidence that challenges the
correctness of using such schedules. Speci�cally, the
theoretical framework under which monotone cooling
schedules is proved optimal fails to capture the practi-
cal application of simulated annealing; in practice, the
algorithm runs for a �nite rather than in�nite amount
of time; and the algorithm returns the best solution vis-
ited during the entire run (\best-so-far") rather than
the last solution visited (\where-you-are"). For small
instances of classic VLSI CAD problems, we deter-
mine annealing schedules that are optimal in terms of
the expected quality of the best-so-far solution. These
optimal schedules do not decrease monotonically, but
are in fact either periodic or warming. (When the
goal is to optimize the cost of the where-you-are so-
lution, we con�rm the traditional wisdom of cooling.)
Our results open up many new research directions, par-
ticularly how to choose annealing temperatures dynam-
ically to optimize the quality of the �nite time, best-so-
far solution.

Keywords: Simulated annealing, global optimiza-
tion, module placement, graph bisection.

1 Overview
The simulated annealing (SA) algorithm has been

applied to every di�cult optimization problem in
VLSI CAD. Its most concentrated application has
been in the area of cell placement; studies of SA for
placement include those of Kirkpatrick et al. [14],
Sechen [23], Rose [22], and Lam and Delosme [16]. In
addition, SA has been applied to scheduling and allo-
cation, logic minimization, PLA folding, partitioning,

oorplanning, routing, compaction, and transistor siz-
ing, to name only several other areas in the literature
[1] [15] [27]. Indeed, SA is now a dominant methodol-
ogy across the spectrum of synthesis and layout tools.

�Partial support for this work was provided by a GTE Grad-
uate Fellowship and by NSF MIP-9110696 and NSF Young In-
vestigator Award MIP-9257982.

All existing implementations of SA use monotone
cooling temperature schedules, i.e., at each step, the
controlling \temperature" parameter either decreases
or remains the same. In general, the algorithm ends
with a sequence of steps with zero temperature. Over
a hundred papers in the VLSI CAD literature alone
have studied variant cooling schedules in the context
of particular CAD optimizations. Thus, it is highly
signi�cant that our work gives strong evidence to chal-
lenge the universal use of cooling schedules. We be-
lieve that two aspects of the theoretical analysis of
SA have misled practitioners into concentrating on the
cooling paradigm: 1) the analysis generally consid-
ers schedules of in�nite rather than �nite length, and
2) the quality of a schedule is almost always based
on the last solution visited (\where-you-are"), rather
than the best solution visited during the entire an-
nealing run (\best-so-far"). For the �rst time in the
CAD literature, we have solved for optimal annealing
schedules for small instances of three separate CAD
problems and found that optimal schedules are not
monotone cooling. Furthermore, our experiments in-
dicate that using best-so-far optimal schedules rather
than where-you-are optimal schedules will produce a
reduction in time of between 30% and 45% to achieve
the same expected solution quality.

2 Preliminaries
SA can be applied to almost any discrete global

optimization problem; such problems are generally of
the form:

Given a �nite solution set S and cost function
f : S ! <, �nd s 2 S such that f(s) �
f(s0) 8 s0 2 S.

Typically, jSj is very large compared to the number
of solutions that can be reasonably examined in prac-
tice. Moreover, many important formulations are in-
tractable [7], so that general-purpose heuristics are of
interest.

One of the most successful global optimization
heuristics is simulated annealing (SA), which was pro-
posed independently by Kirkpatrick et al. [14] and
Cerny [5] and is motivated by analogies between the
solution space of an optimization instance and mi-
crostates of a statistical thermodynamical ensemble.
From the solution si 2 S at the ith time step, the
SA algorithm (Figure 1) generates a \neighbor" solu-

tion s0 and decides whether to adopt it as si+1, based
on the cost di�erence f(s0) � f(si) and the value of
a temperature parameter Ti+1. For each si, the set of
possible neighbors s0 is called its neighborhood N (si);
together the neighborhoods N (s) for all s 2 S induce
a topology over S called its neighborhood structure.
Over the M steps for which the SA algorithm is ex-
ecuted, a temperature schedule T1; T2; : : : ; TM guides
the optimization process. Typical SA practice uses a
large initial temperature and a �nal temperature of
zero, with Ti monotonically decreasing according to a
�xed schedule or in order to maintain some measure
of \thermodynamic equilibration".

SA Algorithm Template

0. s0 random solution in S

1. For i = 0 to M � 1
2. Choose s0 a random element from N(si)
3. if f(s0) < f(si)
4. si+1 s0

5. else

6. si+1 s0 with probability e�[f(s0)�f(si)]=Ti+1

7. otherwise si+1 si
8. Return sM
8a. Return si, 0 � i �M , such that f(si) is minimum.

Figure 1: The simulated annealing algorithm for a given
bound of M time steps.

The SA algorithm enjoys certain theoretical attrac-
tions [15]. Using Markov chain arguments and ba-
sic properties of Gibbs-Boltzmann statistics, one can
show that for any �nite S, SA will converge to a
globally optimal solution given in�nitely large M and
a temperature schedule that converges to zero su�-
ciently slowly. In other words,

Pr(sM 2 R)! 1 as M !1 (1)

where R � S is the set of all globally optimal solu-
tions, so that SA is \optimal" in the limit of in�nite
time. Several groups have proved that speci�c tem-
perature schedules guarantee convergence of SA to a
global optimum, e.g., Hajek [9] showed the optimality
of \logarithmic cooling" with Ti =

a
log(i+1) when a is

su�ciently large (see also [8] [20]).

3 Best-So-Far vs. Where-You-Are

Theoretical analysis of annealing has always
been performed with respect to a \where-you-are"
(WYA) implementation, where the algorithm returns
whichever solution is last visited (line 8 of Figure 1).
According to the theoretical analysis, it is this single
solution sM that in the limitM !1 has probability
1 of being optimal. On the other hand, a practical
implementation will never ignore all of the solutions
s0; s1; : : : ; sM�1: certainly, one can maintain the best
solution seen so far, and return it if it is better than sM
(line 8a of Figure 1). We call this more realistic vari-
ant \best-so-far" (BSF) annealing. Traditional con-
vergence proofs for WYA annealing also apply to BSF
annealing, since optimality according to Equation (1)

trivially implies optimality of the BSF variant. How-
ever, the results of Section 5 below show that BSF-
optimal temperature schedules di�er markedly from
the traditional \cooling" that is suggested by both the
physical annealing analogy and the WYA analysis.

The extensive literature on simulated annealing
contains little mention of either non-monotone cooling
schedules or best-so-far analysis. Lasserre et al. [17]
use a BSF implementation in comparing simulated an-
nealing to other iterative optimization heuristics, but
do not explore the implications of using BSF as op-
posed to WYA. A more direct reference to BSF is con-
tained in the 1988 work of Hajek [9], which establishes
necessary and su�cient conditions for the in�nite-time
WYA optimality of monotone decreasing temperature
schedules. Hajek brie
y suggests ([9], p. 315) a simi-
lar analysis for BSF: \It would be interesting to know
the behavior of min

n�k
V (Xn) rather than the behavior

of V (Xk)."

Non-cooling schedules have been investigated by
Hajek and Sasaki in [10], which shows the existence
of a special class of optimization problems for which
monotone cooling schedules are suboptimal. An ancil-
lary result of [10] is that for neighborhood structures
where the costs of any two neighboring solutions di�er
either by zero or a constant, there exists an optimal
annealing schedule where all Ti are either 0 or +1
(cf. our results showing optimal \periodic" schedules
in Section 5.2 below). While the BSF criterion is not
mentioned in [10], the authors do suggest a similar
measure of schedule quality, speci�cally, the expected
number of time steps required to �rst encounter a so-
lution with cost less than or equal to some prescribed
constant. Finally, our study of optimal �nite-time
schedules follows in the direction established by Stren-
ski and Kirkpatrick [25].

4 Computing Optimal Schedules
Strenski and Kirkpatrick [25] use numerical meth-

ods to estimate optimal �nite-time schedules accord-
ing to an exact equation for computing expected WYA
cost. We now state their technique and then extend
it to compute optimal schedules according to the BSF
criterion.

For any given �nite schedule length M , an optimal
temperature schedule is one for which simulated an-
nealing has the lowest expected solution cost after M
steps, assuming that all initial states s0 are equally
likely. We use P (i) to denote the 1 � jSj row vector
whose jth element [P (i)]j gives the probability that
solution sj is the current solution at step i.1 Because
each sj has equal probability of being the initial state,
we have that P (0) = [1

jSj
; 1
jSj
; : : : ; 1

jSj
]. We let A(Ti)

denote the jSj� jSj transition matrix induced by tem-
perature Ti, i.e., [A(Ti)]jk equals the probability of
moving from solution sj to solution sk in one step at
temperature Ti. Thus, we can calculate each P (i) re-

1Here, we use superscripts to denote indices of particular
solutions sj 2 S. We continue to use subscripts of solutions to
denote time steps, so that si is the current solution at step i.

cursively as P (i) = P (i�1)A(Ti). Let C be the jSj�1
column vector of costs for solutions in S. Then the ex-
pected WYA cost E[f(sM)] is equal to

E[f(sM)] = P (0) �A(T1) �A(T2) � � � � �A(TM) �C: (2)

To compute the expected BSF cost of a temper-
ature schedule, we �rst sort the solutions sj 2 S in
order of increasing cost f(sj), so that s1 is the opti-
mal solution and sjSj is the solution with highest cost.
For each solution sj and temperature T , we de�ne a
new transition matrix Bj(T) such that

[Bj(T)]k` =

(
1 if k = ` and k � j
0 if k 6= ` and k � j
[A(T)]k` if k > j

In other words, transitions in Bj(T) are the same as
in A(T), except that a self-move is the only possible
transition from a solution of cost less than or equal to
f(sj). In this way, each solution with cost less than or
equal to f(sj) becomes a \sink" in transition matrix
Bj(T). We de�ne P j(i), a 1 � jSj probability vector,
such that P j(0) = P (0) and P j(i) = P j(i� 1)Bj(Ti),
8i > 0. For instance, P 1(i) contains the probability
distribution of solutions at step i if the global optimum
s1 has been converted to a sink in all steps up to i.

We use dj(i) to denote the probability of ever reach-
ing a solution with cost f(sj) or less within the �rst i
steps. The value of dj(i) is given by the summation

dj(i) =

jX
`=0

[P j(i)]`

Note that d1(M) is equal to the �rst element in
P 1(M), and so equals the probability of ever reach-
ing the global optimum. For j > 0, the probability
that sj is the BSF solution after M steps is simply
dj(M)�dj�1(M), i.e., the probability of ever reaching
a solution of cost f(sj) or lower, minus the probability
of ever reaching a solution of cost f(sj�1) or lower.2

Thus, the expected cost of the BSF solution is

d1(M)f(s1) +

jSjX
j=2

[dj(M) � dj�1(M)]f(sj)

Because the calculation of each dj(M) requires the
same number of matrix multiplications as E[f(sM)],
the calculation of BSF cost is �(jSj) times more ex-
pensive than the calculation of WYA cost. Note that
the BSF formula is linear in each A(Ti) and Bj(Ti), so
that exact derivatives may be computed for use with
numerical optimization techniques.

The experiments of Section 5 determine optimal
annealing schedules with respect to a discrete set of
possible values of Ti: in addition to Ti = 0, we

2In the case where f(sj) = f(sj�1), we arbitrarily force the
algorithm to return sj�1 as the BSF solution whenever a run
visits both sj and sj�1 during its execution.

also choose from among 100 evenly-spaced tempera-
ture values > 0, such that the overall range [0;+1]
is e�ectively represented.3 For larger values of M , it
is impossible to exhaustively enumerate all possible
temperature schedules, and we therefore use an itera-
tive method to generate locally optimal schedules. At
each iteration, we test all possible perturbations of a
single temperature Ti (i = 1; : : : ;M) to an adjacent
temperature value above or below Ti, then determin-
istically adopt the single perturbation which yields the
greatest improvement in expected solution cost. The
search terminates when a locally optimal schedule is
found.4 For each estimation, we begin from several
di�erent initial schedules and report the best locally
optimal schedule; we have observed very few distinct
local optima, with almost all being qualitatively very
similar.

5 Experimental Results: BSF-Optimal
Schedules

In this section, we study small instances of classic
combinatorial optimization problems { graph place-
ment and graph bisection { which are prominent in the
CAD literature. For each of these problem instances,
we compute locally BSF- and WYA-optimal temper-
ature schedules as described above. Recall that the
methods of Section 4 require iterative optimization of
chain products involvingM matrices of size jSj � jSj.
Thus, our experiments have been performed for the
largest instances and time bounds that are consistent
with our available hardware and the objective of de-
termining optimal schedules.

5.1 Graph Placement

Given an edge-weighted graph G with n nodes, and

given a set L of n locations with all n(n�1)
2 inter-

location distances, the graph placement problem is
to �nd a one-to-one mapping from the nodes of G
onto L so that the weighted sum of edge lengths of
G is minimized. This formulation captures minimum-
wirelength module placement as in the original SA
work of [14] and the well-known Timberwolf package
[23].

We consider the six-node graph placement instance
shown in Figure 2. Because of symmetries, there are
only 17 distinct classes of solutions for this instance.
We choose the neighborhood operator to be a swap of
node pairs that are adjacent vertically, horizontally, or
diagonally in the current solution. Figure 2 shows the
global optimum and the unique local optimum con�g-
urations when the edge weight � = 5.

3Our experiments have used Ti 2 f1;2; : : : ;100g, as well a
range of values chosen such that the transition probabilities for
an \average" disimproving move are 0:01;0:02;0:03; : : : ; 0:99;�
1:00. We found that results are qualitatively the same with
either range of Ti values.

4Strenski and Kirkpatrick [25] also �nd locally optimal,
rather than globally optimal, (WYA) schedules. Their method
uses the partial derivatives of the expectedWYA cost E[f(sM)]
with respect to each Ti to a�ord a gradient-descent method.
Note that our WYA-optimal schedules in Section 5.2 are essen-

(b) locations

2

1

2

(c) global optimum

BA

C D

E F

(d) local optimum

BA

C D

E F

(a) graph G

A B

DC

FE

α

1
1 1

1

1
1 1

1

α

α

Figure 2: Six-node graph placement instance with edge
weights as shown in (a); thick edges have weight � = 5. Avail-
able locations are in the Manhattan plane, as shown in (b).
The global optimum and the local optimum solutions are re-
spectively given in (c) and (d).

0

2

4

6

8

10

0 20 40

T
e
m
p
e
r
a
t
u
r
e

0 20 40 60 80 100 120 140 160

0

2

4

6

8

10

0 20 40

T
e
m
p
e
r
a
t
u
r
e

0 20 40 60 80 100 120 140 160

Figure 3: Locally WYA-optimal (top) and BSF-optimal
(bottom) temperature schedules of lengths 40 and 160 steps
for the 6-node graph placement instance.

For this problem instance, the contrast between
WYA- and BSF-optimal temperature schedules is
quite dramatic (Figure 3). The WYA-optimal sched-
ules are monotone decreasing, as would be expected
from the traditional intuition. In contrast, the BSF-
optimal schedules are monotone increasing, and are
clearly superior to the optimal WYA schedules when
judged by the practical BSF criterion (see Table 1 and
Figure 4). For example, the BSF quality of the 80-step
WYA-optimal schedule can be achieved by a BSF-
optimal schedule that is approximately 30% shorter
(about 57 time steps). It is also interesting to note
the poor WYA quality of BSF-optimal schedules, par-
ticularly for larger values of M ; this might indicate
the irrelevance, in practice, of optimizing f(sM).

tially identical to those obtained in [25] using gradient descent.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

10 20 30 40 50 60 70 80

N
o
r
m
a
l
i
z
e
d

B
S
F

Q
u
a
l
i
t
y

Time Steps

BSF-Optimal Schedule
WYA-Optimal Schedule

Figure 4: Expected BSF quality of solutions obtained by
BSF-optimal andWYA-optimal schedules for the 6-node graph
placement instance. Solution quality is normalized to the cost
of the optimal solution.

BSF-Optimal WYA-Optimal

Schedule Schedule

Number BSF WYA BSF WYA

of Steps Quality Quality Quality Quality

5 1.471 1.473 1.471 1.471

10 1.312 1.326 1.314 1.315

15 1.221 1.268 1.227 1.230

20 1.165 1.255 1.176 1.182

25 1.128 1.257 1.143 1.152

30 1.102 1.264 1.120 1.132

35 1.083 1.270 1.103 1.117

40 1.069 1.276 1.090 1.105

50 1.048 1.284 1.071 1.088

60 1.034 1.287 1.057 1.076

70 1.024 1.290 1.047 1.066

80 1.017 1.290 1.040 1.058

Table 1: Expected BSF andWYA solution quality produced
by locally optimal schedules for the 6-node graph placement in-
stance. Solution quality is normalized to the cost of the optimal
solution.

5.2 Graph Bisection

We have also studied a small instance of the graph
bisection problem. Given an edge-weighted graph
G = (V;E) with an even number of nodes, the graph
bisection problem seeks a partition of V into disjoint U
and W , with jU j = jW j, such that sum of the weights
of edges (u;w) 2 E with u 2 U , w 2 W is mini-
mized. Graph bisection is basic to recursive netlist
partitioning,
oorplanning and area estimation. Use
of annealing to solve the graph bisection problem is
less common than use of such iterative greedy methods
as the Kernighan-Lin algorithm [13] or its enhance-
ment by Fiduccia and Mattheyses [6]. Nevertheless,
SA has been well-studied in the context of graph bi-
section, notably by Johnson et al. [12]. The annealing
algorithm has also been carefully compared against it-
erative methods in [3] and [26].

We have studied the same highly-structured in-
stance treated by Strenski and Kirkpatrick in [25].
This instance consists of a complete graph of eight
nodes, with edge weights calculated as shown in Figure
5(a). Each of the eight nodes is represented by a leaf in
the height-3 binary tree shown in the �gure; the edge
between any two nodes has weight �k, where k is the
depth of the least common ancestor between the two
nodes in the binary tree. Both our experiments and
those of [25] use � = 3. The globally optimum parti-
tion is f1; 2; 3; 4gf5;6; 7; 8g, which corresponds to solu-
tion A in Figure 5(b) with cost f(A) = 16. Because of

symmetries in the edge weight construction, there are
only �ve classes of equivalent solutions, whose multi-
plicities and relative transition probabilities are given
in Figure 5(b).

(a) calculation of
edge weights

α

1 2 3 4 5 6 7 8

α2
α1

1

L=0

L=1

L=2

L=3

(b) transition
diagram

B

A

C

D

E

8 4

4

4

8

4

8

8
1

1

16

2

4

2

6

of States

16

16

32

4

2

Cost

32

16

40

44

56

Figure 5: Edge weight calculation and state transition di-
agram for the complete graph used as a bisection instance by
Strenski and Kirkpatrick (as in [25], we use � = 3).

-1

0

1

2

3

4

5

6

7

0 20 40

T
e
m
p
e
r
a
t
u
r
e

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

0 20 40

T
e
m
p
e
r
a
t
u
r
e

0 20 40 60 80 100 120 140 160

Figure 6: Locally WYA-optimal (top) and BSF-optimal
(bottom) temperature schedules of length 40 and 160 steps for
the 8-node graph bisection instance of [25].

We computed locally WYA- and BSF-optimal tem-
perature schedules for this bisection instance, again
following the experimental protocol above, and using
the discrete range of temperatures f0; 1; 2; : : : ; 100g.
Locally optimal schedules of M = 40 and 160 time
steps are shown in Figure 6. Our WYA-optimal sched-
ules almost exactly match the results of [25], and
again con�rm the traditional cooling intuition except
in the �rst four steps, which have temperature 0. On
the other hand, our locally BSF-optimal schedules are
completely di�erent, containing temperatures of only

0 and 100 (essentially +1). These schedules are very
nearly periodic, and are evocative of the \iterated de-
scent" methodologies discussed by Baum [4] and John-
son [11] and the \steepest ascent-descent" method of
Lasserre et al. [17]. Table 2 compares the expected
BSF and WYA solution costs for locally optimal sched-
ules of various lengths. Again, optimal schedules in
terms of the traditional WYA objective are clearly
suboptimal when measured by their practical, BSF
utility. The BSF-optimal schedules are considerably
more e�ective, using approximately 30% fewer steps to
achieve the same expected BSF quality as the WYA-
optimal schedules.

BSF-Optimal WYA-Optimal

Schedule Schedule

Number BSF WYA BSF WYA

of Steps Quality Quality Quality Quality

5 2.038 2.038 2.038 2.038

10 1.780 1.981 1.797 1.797

15 1.603 1.978 1.661 1.675

20 1.475 1.920 1.548 1.586

25 1.379 2.036 1.462 1.514

30 1.306 1.967 1.396 1.453

35 1.248 2.039 1.343 1.402

40 1.202 1.969 1.298 1.359

50 1.135 1.970 1.231 1.289

60 1.090 2.032 1.181 1.236

70 1.063 2.048 1.143 1.195

80 1.041 2.044 1.112 1.164

Table 2: Expected BSF andWYA solution quality produced
by locally optimal schedules for the 8-node graph bisection in-
stance of Strenski and Kirkpatrick. Solution quality is normal-
ized to the cost of the optimal solution.

Finally, we note that the 8-node graph bisection
instance is de�ned in [25] in such a way that it gener-
alizes to complete graphs with 2k nodes (Strenski and
Kirkpatrick analyze only the 8-node instance). We
have also computed locally BSF-optimal and WYA-
optimal temperature schedules for the 16-node in-
stance with � = 3, where the symmetries in the so-
lution space allow us to reduce the number of solu-
tion classes to 28. For this instance, we found that
WYA-optimal schedules are similar to those for the 8-
node instance; however, BSF-optimal schedules are no
longer periodic, but are instead nearly monotonically
increasing, similar to the BSF-optimal schedules for
the graph placement instance of Section 5.1.

A third set of experiments was performed on a small
instance of the traveling salesman problem (TSP) with
n = 6 cities [2]. The TSP is one of the most well-
studied problems in the combinatorial optimization
literature [18], and arises in mask lithography, plot-
ting, PCB drilling, daisy-chain signal routing, and
probe-testing. Our computations gave optimal sched-
ules that are qualitatively similar to those obtained for
the graph placement problem (except that the BSF-
optimal schedules decrease slightly for the last �fteen
to twenty steps). We also found a 45% time reduction
for BSF-optimal schedules compared to WYA-optimal
schedules with 80 steps.

6 Conclusions
In this paper, we have explored the implications of

(�nite-time) best-so-far analysis of the simulated an-
nealing algorithm. This BSF analysis is more consis-
tent with annealing practice than the traditional WYA

analysis, because the best solution seen can easily be
stored and returned at the the end of the algorithm
execution. The study of �nite-time annealing also re-

ects practical reality, since applications of the anneal-
ing algorithm are certainly limited to �nite amounts
of CPU time. The far-reaching consequences of BSF
analysis are apparent even at �rst glance. For exam-
ple, \in�nite-time optimality" holds for a much wider
range of schedules under the BSF criterion and yields
an immediate challenge to the traditional wisdom of
monotone cooling to zero: given in�nite time, any
schedule that is bounded away from zero will even-
tually visit a globally optimal solution, assuming that
all solutions are reachable at non-zero temperatures.

To assess the practical e�ect of the BSF criterion
on �nite-time annealing strategies, we have numeri-
cally estimated BSF- and WYA-optimal schedules for
small instances of classic VLSI CAD problem formu-
lations. Although our analysis is restricted to small
problems due to the computational complexity of �nd-
ing optimal schedules, we use instances of real CAD
problems, with realistic neighborhood structures and
solution spaces. While WYA-optimal schedules con-
�rm the traditional regime of monotone cooling, the
BSF-optimal schedules are no longer monotone cool-
ing, but are instead periodic or warming. Moreover,
the BSF criterion can yield tangible improvements in
practice: we obtain between 30% and 45% reductions
in run length versus WYA-optimal schedules, while
maintaining the same expected BSF solution quality.

Our intuition regarding BSF annealing is that
\reachability" and \mobility" are critical to success,
but are at odds with the WYA-optimal practice of re-
ducing the temperature to zero in order to minimize
f(sM). Put another way, all annealing schedules may
be viewed as trading o� between reachability among
solutions (high T) and a bias to lower-cost solutions
(low T). The WYA criterion forces the low-cost bias to
dominate at the end of the run, while the BSF criterion
may allow reachability to take precedence, particularly
when searching over a large number of local minima
is likely to return better results than cooling to a sin-
gle local minimum. Thus, it is perhaps not surprising
that BSF-optimal schedules may actually be \warm-
ing", even at the end of the annealing execution.

In conclusion, best-so-far analysis opens the door
to completely new hill-climbing regimes, as well as
new theoretical fronts (e.g., the Markov analysis of
best-so-far annealing). A major area of our current
research lies in the application of non-conventional
temperature schedules to benchmarks for larger real-
world problems. To this end, the experiments de-
scribed here point to periodic \iterated descent" meth-
ods [4] [11] [17] and adaptive construction of \non-
monotone" (warming) schedules as especially promis-
ing directions. We also believe that the tuning of BSF-
optimal annealing strategies to the statistical param-
eters of optimization cost surfaces [24] will provide an
important research direction.

References
[1] E. H. L. Aarts and J. Korst. Simulated Annealing and

Boltzmann Machines: a Stochastic Approach to Combina-

torial Optimization and Neural Computing (Wiley, Chich-
ester, 1989).

[2] K. D. Boese, A. B. Kahng andC. W. Tsao, \Best-So-Farvs.
Where-You-Are: New Directions in Simulated Annealing
for CAD", UCLA CSD TR-920050, 1992.

[3] T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser,
\Graph Bisection Algorithms with Good Average Case Be-
havior", Combinatorica 7(2):171{191, 1987.

[4] E. B. Baum, Iterated descent: a better algorithm for local
search in combinatorial optimization problems, Proc. Neu-
ral Information Processing Systems , D. Touretzky, ed.,
1987.

[5] V. Cerny, Thermodynamical approach to the traveling
salesman problem: an e�cient simulation algorithm, J.
Optimization Theory and Applications 45(1) (1985), 41-
51.

[6] C.M Fiduccia and R.M. Mattheyses, \A Linear Time
Heuristic for Improving Network Partitions", ACM/IEEE
Design Automation Conf., 1982, pp. 175-181.

[7] M. R. Garey and D. S. Johnson, Computers and In-
tractability: A Guide to the Theory of NP-Completeness
(W. H. Freeman, New York, 1979).

[8] S. Geman and D. Geman, Stochastic relaxation, Gibbs dis-
tributions, and the Bayesian restoration of images, IEEE
Trans. on Pattern Analysis and Machine Intelligence 6
(1984), 721-741.

[9] B. Hajek, Cooling schedules for optimal annealing, Math.
Oper. Res. 13(2) (1985), 311-329.

[10] B. Hajek and G. Sasaki, Simulated annealing - to cool or
not, Systems and Control Letters 12 (1989), 443-447.

[11] D. S. Johnson, Local optimization and the traveling sales-
man problem, Proc. 17th Intl. Colloquium on Automata,
Languages and Programming (1990), 446-460.

[12] D. S. Johnson, C. R. Aragon, L. A. McGeoch and C.
Schevon, Optimization by simulated annealing: an exper-
imental evaluation; part i, graph partitioning, Operations
Research 37 (1989), 865-892.

[13] B. W. Kernighan and S. Lin, \An E�cient Heuristic Proce-
dure for Partitioning Graphs", Bell System Tech. J. Feb.
1970, pp. 291-307.

[14] S. Kirkpatrick, Jr. C. D. Gelatt, and M. Vecchi, Opti-
mizationby simulatedannealing, Science 220(4598) (1983),
671-680.

[15] P. J. M. Laarhoven and E. H. L. Aarts, Simulated Anneal-
ing : Theory and Applications (D. Reidel, Boston, 1987).

[16] J. Lam and J. M. Delosme, \Performance of a New An-
nealing Schedule", Proc. ACM/IEEE Design Automation
Conf., 1988, pp. 306-311.

[17] J. B. Lasserre, P. P. Varaiya and J. Walrand, Simulated
annealing, random search, multistart or SAD?, Systems
and Control Letters 8 (1987), 297-301.

[18] E. L. Lawler, J. K. Lenstra, A. Rinnooy-Kan and D.
Shmoys,The Traveling Salesman Problem: A Guided Tour
of Combinatorial Optimization (Wiley, Chichester, 1985).

[19] T. Lengauer,Combinatorial Algorithms for Integrated Cir-
cuit Layout (Wiley-Teubner, Berlin, 1990).

[20] M. Lundy and A. Mees, Convergence of an annealing algo-
rithm, Math. Programming 34 (1986), 111-124.

[21] F. Romeo and A. Sangiovanni-Vincentelli, Probabilistichill
climbing algorithms: properties and applications, Proc.
Chapel Hill Conf. on VLSI (1985), 393-417.

[22] J. Rose and W. Klebsch, \Temperature Measurement
and Equilibrium Dynamics of Simulated Annealing Place-
ments", IEEE Trans. on CAD 9(2) (1990), pp. 253-259.

[23] C. Sechen and A. Sangiovanni-Vincentelli, \The timberwolf
placement and routing package", IEEE J. of Solid-State
Circuits 20(2) (1985), 510-522.

[24] G. B. Sorkin, \E�cient simulated annealing on fractal en-
ergy landscapes", Algorithmica 6 (1991), 367-418.

[25] P. Strenski and S. Kirkpatrick, Analysis of �nite length
annealing schedules, Algorithmica 6 (1991), 346-366.

[26] L. Tao and Y. C. Zhao, \Multi-Way Graph Partition by
Stochastic Probe", technical report CSD-91-01, Concordia
University, December 1991.

[27] D. F. Wong, H. W. Leong and C. L. Liu, Simulated Anneal-
ing for VLSI Design (Kluwer Academic, Boston, 1988).

