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Abstract—3D integrated circuits (3DICs) with through-silicon vias
(TSVs) are an important direction for semiconductor-based products
and “More than Moore” scaling. However, 3DICs bring simultaneous
challenges of reliability (power and temperature in stacks of thinned die)
as well as variability (performance and power) in advanced technology
nodes. In this paper, we study variability-reliability interactions and
optimizations in 3DICs. Initial motivating studies show that in the
presence of manufacturing variability, different die stacking orders
can lead to as much as 2 years (∼44%) difference in MTTF of a
3DIC stack. We study MTTF-driven die-stacking optimization with
consideration of variability, and propose a “rule-of-thumb” guideline
for stacking optimization to improve peak temperature as well as
reliability in 3DICs. We also propose integer-linear programming (ILP)
methods for reliability-driven die-stacking optimization. Our methods
can achieve ∼7% and ∼28% improvement in average and minimum
MTTF, respectively, of 3DICs; we also achieve ∼3% improvement
in performance under fixed reliability constraints. Our stacking
optimizations can help improve 3DIC product yields under reliability
requirements. Our research also yields the notable observation that a
limited amount of manufacturing variation can “help” improve 3DIC
product reliability when die-stacking optimization is applied.

I. INTRODUCTION

Stacked-die 3D integrated circuits (3DICs) using through-
silicon via (TSV) technology are an emerging architecture for
heterogeneous integration and More-than-Moore scaling in late-
CMOS technologies. A 3DIC die stack, or simply stack, offers
increased transistor density in a given form factor, as well as
potential cost and yield benefits (multiple smaller dies versus
a single larger die). However, the stacking of multiple thinned
die (also referred to as tiers) increases power density, creating
temperature management and reliability challenges. Puttaswamy et
al. [19] show that 3DICs with two tiers and four tiers increase
peak temperature by 17◦C and 33◦C, respectively, compared to
planar implementations. Since current density and temperature have
a significant impact on IC reliability, reliability issues are especially
important in the 3DIC context [22], [23].

With technology scaling, additional challenges arise from process
variability, with variation sources spanning dopant fluctuation,
mask data preparation and OPC, line-edge roughness, misalignment
in double-patterning, and a variety of across-field and across-
wafer variability mechanisms [11], [12]. These process variations
are present (and, uncorrelated) within a 3DIC stack; because of
higher temperatures due to die stacking, the process variations can
heavily affect performance as well as leakage power of the 3DIC
product [7]. So that a given product can meet its performance
requirements, process variations in each manufactured die are
typically characterized at manufacturing time (e.g., for product
binning, or to set one-time programmable tables for adaptive voltage
scaling [10], [26]).

In this paper, we study reliability-variability interactions and
optimizations in the context of 3DIC die stacking. Specifically,
we focus on the stacking of multiple copies of logic dies (e.g.,
as envisioned for many-core processor die in high-performance
computing architectures) [4], [20]. We use the term stacking style to
indicate both the selection of dies which exhibit particular process
variations (e.g., fast, typical, or slow dies) as well as the ordering of
dies within a given 3DIC product stack. Because of inter-die process

variation, the choice of stacking styles will impact performance,
power consumption and reliability of 3DICs. In our studies, the
required performance for each die is predefined, and the adaptive
voltage scaling (AVS) [6] is assumed.

There are three methods to bond dies in 3DIC fabrication: die-
to-die, die-to-wafer and wafer-to-wafer. Applying different methods
results in different flexibility, yield, and cost. Among these three
methods, die-to-die bonding offers the highest flexibility and yield,
but also incurs high cost. On the other hand, although wafer-to-
wafer bonding offers the highest throughput in production, bad dies
cannot be scrapped before bonding, which results in the lowest yield.
Die-to-wafer bonding, which is easy to implement while offering
flexibility and yield that are similar to the die-to-die method, is
promising for 3DIC fabrication. Our paper applies primarily to the
die-to-die and die-to-wafer bonding contexts.

We assume that all logic dies are identical (a similar assumption
can be applied to memory-logic integration, where all memory
dies are identical). Such a case may arise if applying the identical
design to all the tiers in a stack reduces design efforts as well as
manufacturing cost [8]. Based on such an assumption, dies can be
used interchangeably in different tiers. Hence, we are able to change
the stacking order during optimization.

Our discussion below will assume face-to-back stacking of the
multiple logic-die tiers, with a heat sink (or other heat removal
mechanism) adjacent to the top tier as illustrated in Figure 1. The
figure shows a “STF” stacking order for a 3-tier stack, i.e., a slow-
corner die on bottom, typical-corner die in the middle, and fast-
corner die on top.
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Fig. 1. “STF” stack in which a slow-corner die is located on the bottom
tier, a typical-corner die in the middle, and a fast-corner die on the top tier
(adjacent to the heat sink).

To motivate our present work, Figure 2 shows the mean time
to failure (MTTF) of 3-tier stacks with different stacking styles
(orders). The maximum difference in MTTF resulting from different
stacking styles can be up to 2 years (44%). The study is conducted
by estimating temperature using Hotspot [32] and calculating MTTF
based on Black’s equation [2], with the assumption that the supply
voltage of each tier in a stack is adjusted using adaptive voltage
scaling (AVS) to meet a given fixed performance requirement.
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(Details of this experiment are given in Section V below.)

0

1

2

3

4

5

6

7

8

SSS SST SSF STS STT STF TSS TST TSF SFS SFT SFF TTS TTT TTF FSS FST FSF TFS TFT TFF FTS FTT FTF FFS FFT FFF

M
TT

F 
(y

ea
r)

 

Stack 

Fig. 2. MTTF of 3-tier stacks with different stacking styles. Letters S, T
and F indicate the (slow, typical, fast) process corners to which individual
dies belong. Strings over {S, T, F} indicate stacking styles (left-to-right in
the string corresponds to bottom-to-top in the stack). We assume that the
same performance requirement and AVS are applied to all dies in a stack.
From the results we can observe that the maximum difference in MTTF
caused by different stacking orders can be up to 44%.

A. Related Works
Relatively few previous works study the issue of stacking styles

(and, stacking of multiple logic dies is not yet the focus of current
3DIC products). Ferri et al. [7] examine the impact of process
variation on 3DICs, and propose optimization strategies for stacking
to increase parametric yield (performance and leakage power) of
3DICs. However, their studies only focus on 3DICs with two
tiers, integrating one memory die and one logic die. Ferri et al.
use reduction from 3D matching to show that stacking dies to
optimize parametric yield (“as measured by performance, leakage,
or revenue”) is NP-hard; such a problem is tractable only when
the number of tiers is ≤2. Cho et al. [3] propose efficient models
to predict geo-spatial thermal characteristics within and across
different dies without detailed cycle-level simulation. Based on these
models, optimal stacking methods are given to improve temperature
in 3DICs. However, the work of [3] does not consider the issues of
process variation and reliability that are our motivation here.

In general, TSV-based 3DIC integration offers a variety of value
propositions. Beyond the integration of heterogeneous technologies
(memory, logic, RF, analog, microfluidic, etc. components - e.g.,
[7]), previous works mainly focus on logic-memory stacking
[7], [14], [16] to increase performance and reduce memory
bottlenecks. Logic-logic stacking shortens global wiring and thus
decreases signaling latency between blocks, potentially yielding
higher performance and smaller power consumption [1]. As noted
above, our present study performs experiments with logic-logic
stacking; however, we believe that insights from our studies can
also be applied to memory-logic integration, particular in scenarios
where multiple commodity memory dies are stacked with logic [15],
[18].

B. Scope and Organization of Paper
Based on modeling of power consumption and temperature

gradients, and their impacts on chip-level power consumption and
reliability, we study the variability and reliability implications
of various alternative stacking styles for several distinct product
objectives. Our main contributions are as follows.

1) We identify a simple rule-of-thumb (namely, that slower dies
should be located closer to the heat sink in 3DICs to achieve
better reliability and reduce temperature) for 3DIC stack
ordering.

2) We propose an O(n log n) heuristic method (based on the
simple rule-of-thumb) and an integer linear programming
(ILP) method to determine stacking styles for large
populations of manufactured dies to optimize 3DIC product
yield or reliability.

3) Experiments using 5-tier die stacks demonstrate that the
methods we propose achieve ∼7%, ∼28% and ∼3%

improvements in average MTTF, minimum MTTF and
performance (under a reliability constraint), respectively, of
the die stacks.

4) Interestingly, our results show that when high-quality stacking
optimizations are applied, a limited amount of manufacturing
variation can be helpful in improving 3DIC product reliability
metrics.

The remainder of this paper is organized as follows. Section II
describes how we model reliability of 3DICs as well as process
variation. The simple rule-of-thumb for stacking is also introduced
in this section. Section III formulates several stacking optimization
problems to improve reliability, yield and performance (under
a reliability constraint) of 3DICs. Section IV proposes heuristic
and ILP-based methods for reliability-driven stacking optimization.
Experiments and results are described in Section V and Section VI,
respectively. The paper concludes in Section VII.

II. MODELING

A. Reliability

Narrower line widths and larger current densities make
interconnect reliability of increasing concern for overall IC
reliability. In particular, signal and power-delivery electromigration
(EM) is now a dominant reliability constraint in current IC designs
[22], [25]. Especially given the exponential dependence of EM
lifetime on temperature, we will focus our discussion on EM
reliability; however, in principle our methodology can apply to any
(power- and temperature-dependent) IC reliability mechanism. We
use the well-known empirical estimate given by Black’s equation
[2] to estimate the EM mean time to failure (MTTF) of each given
die:

MTTF =
A

Jn
· exp(

Ea

k · T ) (1)

where A is a process parameter based on the cross-sectional area
of the wire, J is the current density, n is a scaling factor, Ea is
the activation energy, k is the Boltzmann constant, and T is the
temperature. Our work uses Ea = 0.7eV , n = 2 [2], [13]. To
evaluate the MTTF of 3DIC stacks, we must establish necessary
definitions of failure rate and reliability, as follows.

Definition: The failure rate (λ) is defined as the number of units
failing per unit time.

Figure 3 illustrates the familiar reliability “bathtub curve” that
models the change of failure rate during the lifetime of an electronic
device [24]. Such lifetime can be divided into three periods. The
first, early-lifetime or “infant mortality” period is characterized by
decreasing failure rate. Dominant reliability concerns during this
period include oxide defects, masking defects and contamination.
Techniques such as burn-in and power- and thermal-cycling are
applied during this period to filter out bad devices. During the
second period, random failures appear, and the failure rate is
modeled as a constant. This period indicates the typical lifetime
for usage (useful lifetime) of a device. Thus, our studies mainly
focus on this period. The third period is the wear-out period, failure
rate increases during this period till the end of a device’s lifetime.
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Fig. 3. Reliability “bathtub curve”.



Definition: The reliability (R(t)) is defined as the probability that a
device (or a die) operating under specified conditions shall perform
satisfactorily for a given period of time (t).

The reliability can be calculated as [27]

R(t) = e−λ·t (2)

Based on (2) and a constant λ during the useful lifetime, the MTTF
of a die (i.e., expectation of the time to failure) can be calculated
as

MTTF =

Z ∞

0

R(x) · dx =

Z ∞

0

e−λ·x · dx =
1

λ
(3)

Note that according to (3), the value of λ can be calculated using
Black’s equation (1).

Furthermore, since any failure of any die in a 3DIC can cause
the 3DIC to fail, the failure rate of a 3DIC can be evaluated as

λstack =

LY
i=1

λdiei (4)

where λstack is the failure rate of the 3DIC, and λdiei (i =
1, 2, . . . , L) is the failure rate of the ith die in the stack. Based
on (3) and (4), the MTTF of a 3DIC is

MTTFstack =
1QL

i=1

1

MTTFdiei

(5)

where MTTFstack is the MTTF of the 3DIC, and MTTFdiei

(i = 1, 2, . . . , L) is the MTTF of the ith die in the stack.
In our MTTF calculations reported below, we use Black’s

equation (1) to estimate the MTTF for each die in a 3DIC based
on temperature and current density information. We then apply (5)
to calculate the MTTF of a given 3DIC.

B. Process Variation

Given an arbitrary number of dies, each exhibiting different
process variation (e.g., characterized during manufacturing test [10],
[26]), the number of possible stacking styles in 3DICs composed of
these dies can be quite large. For example, if there are 2000 distinct
(in terms of process variation) manufactured dies, and the 3DIC to
be produced has 5 tiers, then the number of distinct stacking styles
is P (2000, 5) = 2000 ·1999 · . . . ·1996. Stacking the 2000 dies into
400 5-tier stacks would have an even more unmanageable solution
space, wherein figuring out the optimal (set of) stacking styles is
intractable. (As noted above, the previous work of [7] shows that the
stacking optimization problem for certain objectives is NP-hard.)

In our work, we classify dies into a constant number of (i.e.,
O(1)) process bins according to the speed of dies. Dies are classified
into the same bin if they have similar process variations, and to make
the stacking optimization tractable, we assume the same process
variation characteristics for all dies that are classified into a given
bin. This bin-based model assumption greatly reduces the number
of distinct stacking styles as well as the solution space for stacking
optimization. (E.g., for the same example of 2000 manufactured
input dies and a 5-tier stack, if we classify the dies into 3 process
bins, the number of feasible stacking styles is reduced to 35.)

Taking advantage of such a bin-based model, we are able to
explore the reduced solution space and determine optimal stacking
styles when given a small number of bins. When instantiating each
distinct 3DIC stack (e.g., each of the 400 5-tier stacks to be made
out of 2000 manufactured dies), we randomly select dies from
corresponding bins to make up the stack.1 As discussed below, when

1For example, in a “FTTTS” 5-tier stack, we would successively pick one
random die from the Fast bin, three random dies from the Typical bin, and
one random die from the Slow bin, and stack them bottom-up in this order.

the number of process bins is sufficiently large, results from stack
optimization flows that apply the bin-based models can be near-
optimal.

C. A Rule-of-Thumb
For EM reliability, peak temperature is the main determinant

of a given die’s reliability. Additionally, the die with the weakest
reliability in a stack determines the reliability of the entire stack.
Thus, to optimize reliability of a 3DIC, we seek to minimize the
peak temperature among all stacked dies in a 3DIC. It is not
difficult to realize that two factors have significant impacts on the
temperature of dies in a 3DIC stack: process variation and stacking
order.

As previewed in Section I above, we assume that the same
performance requirement is applied to all dies in a 3DIC, and that
to compensate for interdie process variation, AVS is deployed.2 In
this context, individual dies will have different supply voltages,
corresponding to process variation. Slow dies require higher
supply voltages than fast dies in order to satisfy the performance
requirements. Such high supply voltages can lead to high power
consumption on slow dies, which increases temperature. Hence, as
a consequence of process variation and deployment of AVS, slow
dies will have higher temperature than fast dies.

Heat Sink 
Top – low temp. 

Bottom – high temp. 

Fig. 4. Temperature gradient. The top-tier die is directly contacted to the
heat sink, and thus has the lowest temperature. Due to intervening dies that
block thermal conduction to the heat sink, dies in bottom tiers have higher
temperature.

The stacking order can also affect the temperature distribution of
dies. We assume that a vertical temperature gradient always exists in
the 3DIC stack, because only the top-layer die is directly contacted
to the heat sink (a cartoon is shown in Figure 4). For dies in lower
tiers, the thermal dissipation through the heat sink, which is the
primary mechanism for thermal dissipation in 3DICs, is blocked
by dies in the upper tiers. Hence, higher temperatures are observed
in bottom-tier dies. Moreover, heat generated from dies in adjacent
tiers exacerbates thermal issues for any individual die in the stack.
Figure 5 shows a simulated 5-tier 3DIC, where all dies in the stack
are assumed to exhibit the same process variation. In this example,
the maximum temperature difference between the bottom-layer die
and the top-layer die is 35◦C.3

Based on the above analysis, considering effects of process
variation as well as stacking order on temperature distribution, we
expect that if the same performance is required from dies which
exhibit different process variations, the worst-case peak temperature
among feasible stacking styles will occur when we locate slower
dies in lower tiers (e.g., the slowest die is located in the bottom
tier, the second-slowest die is located in the next-to-bottom tier, and
so on). Furthermore, such worst-case peak temperature will likely
correspond to the minimum MTTF among all stacking styles, that
is, the worst-case of reliability of the 3DIC. On the other hand,
if we locate slow dies on top, by taking advantage of thermal

2Indeed, for nearly all low-power consumer SOCs in advanced nodes
today, sensor-based AVS is the norm; it is the only available mechanism to
recover power from a chip that has been overdesigned due to large model
guardbanding.

3In the simulation, we assume that the thermal resistivity for silicon is
100mK/W, die thickness is 50µm, ambient temperature is 45◦C, and that
there is a heat sink on top of the stack.
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Fig. 5. Example simulated temperature gradient in a 5-tier 3DIC stack.
The difference between the peak temperatures in the bottom-tier die and the
top-tier die can reach 35◦C.
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Fig. 6. QoR metrics (MTTF, power) of stacks with different stacking orders.
Placing slow dies close to the heat sink helps achieve large MTTF of stacks.

dissipation through the heat sink, high temperature caused by high
supply voltages can be relieved. Hence, the peak temperature will
decrease, and the MTTF of the stack will increase. Note that even
when the thermal gradient is small, the vertical thermal distribution
is still monotonic, so that placing slow dies on top still results in
improved MTTF.

The experimental results shown in Figure 6 confirm our
expectation. Figure 6 shows QoR metrics (MTTF and power) of 5-
tier stacks implemented with different stacking orders. We observe
in the experimental results that placing slow dies close to the heat
sink helps improve the MTTF of the stack. We conclude this part
of our discussion with the following rule-of-thumb.
Rule-of-thumb: To optimize reliability of a 3DIC, the slowest dies
should be located closest to the heat sink in the stack.

The rule-of-thumb can further reduce the complexity of the
stacking optimization problem, since for a stack with fixed
composition, the reliability-aware optimal stacking order can be
fixed according to the rule-of-thumb. In other words, for a stack
whose input dies are given, instead of enumerating all permutations
(stacking orders), the optimal stacking style is defined by the rule-
of-thumb. Therefore, in a case where input dies are classified into
K bins and output stacks are assumed to have L tiers, the number
of stacking styles that need to be considered for reliability-driven
stacking optimization can be reduced from KL to

`
K+L−1

L

´
.

III. PROBLEM FORMULATION

Given N dies which are classified into K bins, we want
to determine the optimal stacking style for each output stack
that contains L tiers. Our experimental results show that power
consumption mainly depends on composition of the stack. We
observe that for a particular number of given input dies, the power
consumption of output stacks exhibits only slight differences (<1%)
across different stacking orders, while the difference in MTTF
can be up to 16% for 5-die implementations. Therefore, we only
focus on optimization for reliability in our studies. Three exemplary

reliability-driven stacking optimization problems are formulated as
follows.
Formulation 1: OPT MTTF.

One objective of reliability-driven 3D stacking optimization is to
maximize the sum of MTTFs of output stacks (MTTFsum), where
a required frequency (freq) is predefined as a constraint for dies
in a stack. AVS is applied to achieve the same performance across
dies. In other words, in a 3DIC, due to interdie process variation,
each die has a particular supply voltage corresponding to its process
variation. The problem that searches for the optimal stacking style
of each stack can be formulated as follows.
OPT MTTF: Given N dies, each of which is classified into one of
the K process bins
Maximize MTTFsum

such that frequency of each die in a stack = freq

Formulation 2: OPT YIELD.
We may also optimize the minimum MTTF (MTTFmin) among

all output stacks to improve the yield of 3DICs with respect to a
particular reliability (MTTF) requirement. In this scenario, MTTF
constraints are predefined for 3DICs, and when constraints are
not satisfied, the failed 3DICs are scrapped. The objective for
optimization is to maximize the number of good stacks.
OPT YIELD: Given N dies, each of which is classified into one of
the K process bins
Maximize Number of good stacks
such that frequency of each die in a stack = freq

MTTF of each good stack ≥ MTTFreq

Note that we can maximize the minimum MTTF over all stacks
by performing binary search over MTTFreq , until the number of
good stacks equals to the number of all stacks (i.e., N/L).
Formulation 3: OPT PERFORMANCE.

We also formulate a reliability-driven stacking optimization
problem to improve the performance (fstack) of 3DICs where
reliability constraints are applied, e.g., by setting a lower bound
MTTF (MTTFreq) on 3DICs.
OPT PERFORMANCE: Given N dies, each of which is classified
into one of the K process bins
Maximize fstack

such that MTTF of each stack ≥ MTTFreq

IV. METHODOLOGY

A. ILP-Based Method
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Fig. 7. Allowed assignments in ILP-based stacking optimization method.

We propose an ILP-based method for reliability-driven stacking
optimization. As mentioned in Section III, inputs of such
optimization are N dies that are classified into K bins, while
outputs are stacks such that each stack has L tiers. We create
matching relationships between input dies and feasible stacking
styles of output stacks. This is conceptually shown in Figure 7.



Vertices on the left part of the bipartite graph indicate the available
pools/populations of input dies which are classified into process
bins. Feasible stacking styles are enumerated on the right part of
the bipartite graph. In the graph, all input dies classified into a
particular process bin are connected to the stacking styles containing
dies belonging to that bin. The relationships between input dies
and stacking styles define the assignment constraints in the ILP
formulation. Such constraints indicate that each die can be used
exactly once. During the assignments, the process bins should be
consistent between the composition of stacking styles and the dies
used (e.g., a die belonging to the Slow bin cannot be assigned to the
stacking style “FFT”). Each stacking style corresponds to a MTTF
estimated from simulation. In the ILP-based method, we optimally
assign input dies to stacking styles to maximize the sum of MTTFs
of output stacks. We give the notations and formulate the ILP as
follows.
Notations:

1) Diei (i = 1, 2, . . . , N): input dies
2) Stylej (j = 1, 2, . . . , M): feasible stacking styles (based on

the rule-of-thumb, M =
`

K+L−1
L

´
)

3) Binq (q = 1, 2, . . . , K): process bins
4) Xq (q = 1, 2, . . . , K): number of input dies that are classified

into Binq , such that
P

1≤q≤K Xq = N
5) Yq,j (q = 1, 2, . . . , K; j = 1, 2, . . . , M): number of dies

that are classified to Binq contained in Stylej , such that
∀j

P
1≤q≤K Yq,j = L

6) MTTFj (j = 1, 2, . . . , M): MTTF of the stack implemented
with Stylej

7) Cj (j = 1, 2, . . . , M): number of output stacks implemented
with Stylej , where L ·

P
1≤j≤K Cj = N .

ILP formulation (OPT MTTF , OPT PERFORMANCE):

Maximize
X

1≤j≤M

MTTFj · Cj (6a)

Such that
X

1≤j≤M

Cj · Yq,j = Xq, ∀q (6b)

Cj ≥ 0, ∀j (6c)

This formulation is used to solve the OPT MTTF and
OPT PERFORMANCE problems. In the formulation, (6a) gives
the objective of maximizing the sum of MTTFs of output stacks;
(6b) are the assignment constraints, which indicate that each input
die should be used exactly once in the stacking implementation,
consistent with its process bin; and (6c) are the non-negativity
constraints which indicate that the number of output stacks
implemented with stacking style Stylej cannot be negative. An
additional loop, which searches for the maximum frequency, is
applied to solve the OPT PERFORMANCE problem.

To solve the OPT YIELD problem, we set up the following ILP.
ILP formulation (OPT Y IELD):

Maximize
X

1≤j≤M

Cj (7a)

Such that
X

1≤j≤M

Cj · Yq,j = Xq, ∀q (7b)

Cj ≥ 0, ∀j (7c)

Cj ·MTTFj ≥ Cj ·MTTFmin (7d)

where (7a) is the objective function which maximizes the number
of good dies; (7b) are the assignment constraints; (7c) are the non-
negativity constraints; and (7d) are the lower-bound constraints on
MTTF, in which MTTFmin indicates the lower bound. Note that

the factor Cj in (7d) eliminates the constraints on the MTTF for
stacking styles which are not implemented (i.e., when Cj = 0, the
MTTF of Stylej does not affect MTTFmin). We determine the
maximum value of MTTFmin by doing binary search. The binary
search terminates when the change in MTTFmin is less than 0.01
year.

B. Greedy Method

We also study a greedy method, based on process binning, for
reliability-driven stacking optimization. We evaluate MTTFs of all
stacking styles. Then, we select the stacking style with maximum
MTTF for each stack, one at a time. A stacking style is valid only
if the numbers of dies required by the stacking style are less than
or equal to the remaining dies in process bins.

C. “Zig-zag” Heuristic Method

The rule-of-thumb proposed in Section II suggests that slower
dies should be located closer to the heat sink. Based on the rule-
of-thumb, we propose a heuristic method which stacks dies in a
“zig-zag” manner as shown in Figure 8.

top tier 
(nearest to  
 heat sink) 

bottom tier 
Fig. 8. Zig-zag method: stack dies from slow to fast, from top tiers to
bottom tiers.

Given the input dies, we sort them according to their performance
(as measured at manufacturing test). Then, we assign the sorted dies
(starting from the slowest die) one at a time, from top tiers to bottom
tiers. For die assignment in each tier, we record the sequence of die
assignment. The sequence is reversed when we start the assignment
for the next tier. In this way, all output stacks satisfy the rule-of-
thumb proposed in Section II. The time complexity of this method
is O(n · log n) (n indicates the number of input dies), which is
required for die sorting. As we will discuss in Section V, the zig-
zag stacking method offers similar or even better QoR compared to
the ILP-based method.

V. EXPERIMENTS

A. Implementation Tools

Our experiments use RTL design JPEG obtained from the
OpenCores website [28] as the logic die. The design is implemented
using 65nm NVT, LVT and HVT libraries. The RTL is synthesized
using Synopsys Design Compiler vC-2009.06-SP2 [29] and then
placed and routed using Cadence SoC Encounter vEDI10.1 [31].
We characterize all libraries at different corners (SS, TT and
FF), for a range of voltages (0.8V-1.2V) and temperatures (45◦C-
165◦C) using Cadence Library Characterizer vEDI9.1 [31]. Timing
analyses and power estimation are performed using Synopsys
PrimeTime C2009.6 [30]. We estimate the temperature of stacks
using Hotspot 5.02 [32] and solve ILPs using lp solve 5.5 [33].

B. Hotspot Configuration

In Hotspot, we set the chip thickness as 50µm, convection
capacitance as 140.4J/K, convection resistance as 0.7K/W, ambient
temperature as 60◦C, the thickness of heat spreader and heat sink
as 1mm and 6.9mm respectively [21], [32]. Based on number of
I/O pins (∼100 per die), we set the spreader side and the heat
sink side as 15mm and 30mm, respectively, for 5-tier stacks. We
model TSVs by changing the thermal resistivity of thermal interface
material layers [17]. The thermal resistivity of such a layer is set
as 0.2mK/W.



C. Estimation of Stacks’ MTTF

We implement a flow deploying voltage-temperature feedback
loops to estimate the MTTF of an output stack or a stacking
style. A change in temperature will change performance. Thus,
voltages are altered to retain the required performance. This in turn
results in a change in the temperature, and again affects frequencies.
Taking such a “chicken-egg” chain into consideration, an accurate
estimation of MTTF requires a feedback loop in the analysis flow, as
illustrated in Figure 9. The inputs to the flow are stacking styles, the
required frequency and an initial temperature (ambient temperature).
Then, a voltage-temperature feedback loop is applied to each tier.
To avoid large execution time resulting from running simulation for
power and timing analysis in each loop, we build lookup tables
and apply interpolation to estimate the supply voltage and power
consumption.
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Fig. 9. The flow of MTTF estimation.

First, based on the required frequency and temperature either from
input (for the first loop) or from the Hotspot simulation, we estimate
the required supply voltage.

Second, based on the supply voltage we estimate the power
consumption of each die. According to the estimated power and
area of each die, Hotspot is used to estimate each die’s temperature.
Then, we check the temperature change with respect to the
previous loop. If the change in temperature is less than 0.1◦C,
the loop converges. Otherwise, the impact of temperature change
on frequencies is estimated, and another loop is applied. Based on
the output temperature from the voltage-temperature feedback loop,
together with the current density, we use Black’s equation (1) to
evaluate the MTTF of each die. We calculate the MTTF of the
entire stack using the model proposed in Section II.

D. Design of Experiments

We implement experiments on the JPEG circuit [28] in TSMC
65nm technology. We assume that the process variation distributions
of input dies are Gaussian, where the SS corner and FF corner of
TSMC 65nm technology are at ±3σ. For the bin-based model of
process variation, we implement 30 trials of picking dies randomly
from process bins to stack 3DICs. We observe that the variation in
results are small (< 1%), so we only show the average results of
the 30 trials in the following discussion.

In the experiments, we compare QoR of four different stacking
methods including the ILP-based method (ILP), the zig-zag heuristic
method (Zig-zag), the Greedy method (Greedy) and a reference
case where no stacking optimization is applied (Random). Three
problems formulated in Section III are studied.

OPT MTTF: We implement four methods to optimize the sum of
MTTFs of output stacks (Cases 1-6 in Table I). The average MTTF
of stacks resulting from four methods are compared.
OPT YIELD: We implement four methods to optimize the minimum
MTTF of output stacks. We apply different MTTF limitations on
output stacks and compare the number of good stacks resulting from
different optimization methods. Such experiments are implemented
on Case 5 shown in Table I.
OPT PERFORMANCE: We implement stacking optimization to
improve performance of stacks under the reliability constraints. For
3-tier cases (Case 1 in Table I), the lower bound on MTTF is set
as 12 years; for 4-tier and 5-tier cases (Cases 2-6 in Table I), such
constraints are set as 10 years.

TABLE I
EXPERIMENT DESIGN FOR RELIABILITY-DRIVEN STACKING

OPTIMIZATION.
Case # of dies # of tiers σ µ # of bins
1 1200 3 1.0 0.0 9
2 1600 4 1.0 0.0 9
3 2000 5 0.2 0.0 9
4 2000 5 0.6 0.0 9
5 2000 5 1.0 0.0 9
6 2000 5 1.4 0.0 9

VI. RESULTS

A. Results for Optimization Problems
Results for OPT MTTF. We study the impacts of bin-based
modeling and the number of input dies on QoR of the ILP-based
method to solve the OPT MTTF problem.

Figure 10 shows the average MTTF of output stacks resulting
from the ILP-based method modeled with different number of bins.
We observe that as the number of bins increases, better MTTF is
achieved. With certain number of bins (e.g., 13 in this case), the
solution approaches optimality and noise occurs afterwards (e.g.,
number of bins ≥13 in this case).
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Fig. 10. As the number of process bins increases, MTTF of stacks increases.
The results approach optimality when the number of bins is equal to 13,
noise appears after that.

Table II shows the QoR of the ILP-based method with different
numbers of input dies and the number of process bins equal to 9.
We observe that as the number of dies increases, the average MTTF
of output stacks increases. This is because the degradation induced
by discretization in bin-based modeling reduces as number of dies
increases. We also use the zig-zag heuristic method as reference
and observe that (for this experiment, where the number of bins
is 9) the zig-zag heuristic method always performs better than the
ILP-based method.

From the results in Table III we observe that the ILP-based
and the zig-zag heuristic methods offer ∼7% improvement in the
average MTTF (MTTFavg) compared to the random method where
no optimization is applied.
Results for OPT YIELD. Table III shows that the ILP-based and
the zig-zag heuristic methods achieve ∼28% improvement in the
minimum MTTF (MTTFmin). In addition, the ILP-based and zig-
zag heuristic methods also reduce the variation in MTTFs of stacks,



TABLE II
IMPACT OF NUMBER OF DIES ON QOR OF THE ILP-BASED METHOD.

# of dies QoR ILP Zig-zag

200
MTTF (year) 7.57 7.58
Power (mW) 533.6 533.6

Execution time 86min <1sec

500
MTTF (year) 7.58 7.59
Power (mW) 533.4 533.4

Execution time 86min <1sec

2000
MTTF (year) 7.61 7.63
Power (mW) 530.9 531.0

Execution time 86min <1sec

10000
MTTF (year) 7.63 7.65
Power (mW) 530.6 530.6

Execution time 86min <1sec

100000
MTTF (year) 7.63 7.65
Power (mW) 530.8 530.8

Execution time 86min <1sec

TABLE III
QOR OF OUTPUT STACKS FROM DIFFERENT METHODS.

Case ILP Zig-zag Greedy Random

1
MTTFavg (year) 11.20 11.20 10.37 10.31
MTTFmin (year) 10.42 10.78 6.02 7.20

Power (mW) 319.4 319.4 318.8 318.8
fmax (MHz) 975.0 975.4 943.4 943.4

Execution time 11min <1sec 11min –

2
MTTFavg (year) 9.85 9.88 9.29 9.23
MTTFmin (year) 9.47 9.66 5.91 7.11

Power (mW) 424.8 424.9 424.2 424.2
fmax (MHz) 993.7 995.4 966.4 966.5

Execution time 33min <1sec 33min –

3
MTTFavg (year) 7.30 7.30 7.22 7.22
MTTFmin (year) 7.23 7.27 6.71 6.98

Power (mW) 527.7 527.7 527.4 527.4
fmax (MHz) 860.3 862.3 857.1 856.0

Execution time 86min <1sec 86min –

4
MTTFavg (year) 7.47 7.47 7.22 7.20
MTTFmin (year) 7.30 7.39 5.72 6.40

Power (mW) 528.9 528.9 528.1 528.2
fmax (MHz) 867.3 869.7 854.7 853.1

Execution time 86min <1sec 86min –

5
MTTFavg (year) 7.61 7.63 7.21 7.16
MTTFmin (year) 7.34 7.51 4.61 5.88

Power (mW) 530.9 531.0 530.1 530.2
fmax 875.1 876.7 851.8 849.2

Execution time 86min <1sec 86min –

6
MTTFavg (year) 7.78 7.80 7.21 7.12
MTTFmin (year) 7.29 7.62 3.16 5.05

Power (mW) 533.3 533.4 532.5 532.7
fmax (MHz) 884.0 886.0 849.1 844.3

Execution time 86min <1sec 86min –

which is illustrated in Figure 11. Among the four methods, the
greedy method leads to large variation in MTTFs of output stacks.
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Fig. 11. Stacking optimization using the ILP-based method and the zig-zag
method helps increase the minimum MTTF of output stacks, while reducing
the variation in MTTFs.

Figure 12 shows the yield of stacks constrained by different
MTTFreq using the four methods. We observe that the
improvement in yield can be up to 300% (when MTTF limitation
= 7.5 years) by using the zig-zag heuristic method, compared to
the random case.
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Fig. 12. Yield decreases with MTTF limitation. The ILP-based and the
zig-zag heuristic methods help increase the yield of 3DICs compared to the
random case.

Results for OPT PERFORMANCE. Table III shows that the ILP-
based and the zig-zag heuristic methods offer ∼3% improvement
in performance compared to the random case.

B. Suboptimality of the Zig-zag Heuristic Method
Although experimental results show that the zig-zag heuristic

method performs better than other methods, it is still suboptimal
for an adversarial example. Given 6 input dies (die{1...6}), and
each output stack has 3 tiers. Without loss of generality, we assume
that diei is faster than diej , when i > j. Further, we assume large
performance difference between die5 and die6. In this example, the
output stacks resulting from the zig-zag heuristic method are “die6

die3 die2” and “die5 die4 die1”. Due to the large performance
difference between die5 and die6, the bottom two tiers of stack
“die5 die4 die1” generate more heat than the bottom two tiers of
stack “die6 die3 die2”. If we swap die1 and die2, the MTTFmin

of output stacks is higher. On the other hand, due to the nonlinear
relationship between temperature and MTTF, the stacks “die5 die3

die1” and “die6 die4 die2” can achieve better MTTFavg compared
to stacks resulting from the zig-zag heuristic method, at the cost of
having larger MTTF variation for output stacks.

C. Variability Helps
The experimental results show that when no stacking optimization

is applied, the MTTF of output stacks decreases as process
variation increases. However, when stacking optimization is applied,
MTTF increases with process variation. This trend is illustrated in
Figure 13, in which the solid lines indicate the average MTTF and
the dotted lines indicate the minimum MTTF of output stacks with
different process variation distributions. When the σ of process
variation distribution changes from 0.2 to 0.6, the improvement
in the average MTTF changes from 1.1% to 9.6%, while the
improvement in the minimum MTTF changes from 4.2% to 50.9%,
where the zig-zag heuristic method is applied. A similar benefit from
process variation is observed in [9], where process variation with a
proposed matching solution helps to reduce clock skew in 3DICs.
The benefit from process variation disappears when the variation
exceeds a certain amount. This is because supply voltages of slow
dies can exceed the maximum voltage allowed by the package as
the process variation keeps increasing. Figure 14 shows the increase
(decrease) of the maximum (minimum) supply voltage with process
variation. If the package can only tolerate up to 1.3V supply voltage,
the help of variability in stacking optimization will stop when σ
is close to 1.7. Therefore, we conclude that a limited amount of
manufacturing variation can “help” improve reliability of die stacks
when stacking optimization is applied. In other words, the reliability
benefit of stacking optimization depends on the magnitude of die-
to-die process variation.
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VII. CONCLUSIONS

In this paper, we study variability-reliability interactions and
optimizations in 3DIC. We propose a “rule-of-thumb” guideline for
stacking optimization to reduce the peak temperature and increase
the MTTF of 3DICs. An ILP-based method and an O(n log n)
zig-zag heuristic method for reliability-driven stacking optimization
achieve ∼7%, ∼28% and ∼3% improvement in average MTTF,
minimum MTTF and performance (under reliability constraints) of
3DICs, respectively, compared to the case where no optimization
is applied. Optimization of yield of 3DICs under reliability
requirements is also implemented. Interestingly, our studies show
that a limited amount of variability can “help” to improve reliability
of stacks when stacking optimization is applied.
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