Toward Effective Utilization of Timing Exceptions in Design Optimization

Kwangok Jeong, Andrew B. Kahng, Seokhyeong Kang

University of California. San Diego

Abstract— Timing exceptions in IC implementation processes, es-
pecially timing verification, help reduce pessimism that arises from
unnecessary timing constraints by masking non-functional critical paths.
Ideally, timing exceptions should always be helpful for quality of results
(QOR) metrics such as area or number of timing violations, and for
design turnaround time (TAT) metrics such as tool runtime and number
of design iterations. We expect this positive impact since timing exceptions
reduce the number of constraints that the design optimization must
satisfy.

In this work, we evaluate the impact of timing exceptions on design
QOR and TAT, with respect to (1) the forms in which timing exception
are declared, (2) the timing criticality of the target paths, (3) the number
of applicable exceptions, and (4) the design stages at which timing
exceptions are extracted and applied. From our experimental analyses,
we observe that applying more exceptions in commercial tool flows does
not consistently lead to better QOR, and often only increases runtime
unnecessarily. We analyze potential causes of unwanted impacts of timing
exceptions, and examine various methods to filter out ineffective timing
exceptions.

Implications of our study give preliminary guidelines for designers
and EDA vendors regarding the use of timing exceptions in design
optimization processes. Our work hopefully lays a foundation for novel
design methodologies that can maximize the benefits of timing exceptions.

I. INTRODUCTION

As the complexity and size of IC designs increase, exhaustive
functional verification using event-based dynamic logic simulations
has reached its limits. Generation of vectors considering all feasible
operating scenarios is difficult, and requires excessive simulation
runtime for large designs. As a result, the static timing analysis
(STA) verification methodology has become ubiquitous for design
signoff. STA considers all possible signal transitions in a design,
but in a static way. Since STA does not fully consider whether a
given signal transition can occur in actual operation of the design,
the STA verification methodology can report timing failures on
timing paths that are not exercised during actual operations. Thus,
timing optimization based on (incremental) STA results will expend
unnecessary effort to meet timing requirements for non-functional
paths.

To avoid such unnecessary pessimism in STA, timing exceptions
are used in the design verification stage to filter out violations that
correspond to non-functional timing paths. There are two major
types of timing exceptions: (1) false paths that cannot be sensitized
by any input vectors, and (2) multicycle paths along which signal
propagation does not have to complete within one clock cycle.
The former completely ignores timing requirements, while the latter
relaxes timing requirements for the specified paths.

False paths in logic circuits have been studied in previous works
[11, [2], [3] and [4]. Multicycle paths have also been investigated in
the literature [5], [6], [7]. Liou et al. [8] present a false-path-aware
statistical timing analysis framework. Higuchi et al. [9] investigate
on a multicycle path analysis and detecting method. Yang et al. [10]
propose an algorithm to identify multicycle and false paths. However,
most of the previous works present methods to identify false paths or
multicycle paths, and focus on the use of timing exceptions at timing
analysis and verification stages.

Separately from academic investigations, designers have long
analyzed timing paths and specified timing exceptions manually.
Such manual works are time-consuming and always error-prone.
Furthermore, with the increase of system-on-chip (SOC) design size
and complexity, timing exceptions can easily take up many thousands

978-1-4244-6455-5/10/$26.00 ©2010 IEEE

of lines in the ‘golden’ constraint file at signoff. Hence, manual
identification and specification of valid timing exceptions is often
infeasible. Recent commercial tools such as Cobalt [20], FishTail [21]
and SpyGlass [17] exemplify the drive for more effective automatic
generation and verification of timing exceptions with minimum
designer effort. It is expected that such tools will be very helpful
in improving designer productivity.

Ideally, adding timing exceptions on the critical path of a design
will reduce constraints and optimization effort, so that runtime and
area will also be reduced. However, adding more exceptions does
not always result in better QOR and TAT, since too many exceptions
requiring special care in design optimization can give rise to negative
side effects on optimization runtime and quality. Figure 1 shows the
rapid runtime increase with increasing number of timing exceptions —
without improving design area, and with small improvement in total
negative slack (TNS). The test case is the AES cipher circuit in Table
V.

35 1.1
~#- Normalized TNS
—& - Normalized area

30 A

: 1.05
25 —4—Normalized runtime

20

0.95

Normalized runtime
Normalized area & TNS

0.9

0 2819 7048

14096 28193

Number of timing exceptions

Fig. 1. Normalized runtime, area and TNS for the AES cipher testcase after
placement and routing, versus the number of timing exceptions applied.

Given the above, it is necessary to analyze the benefits of intro-
ducing timing exceptions in design optimization processes, and to
develop a new design methodology that effectively utilizes timing
exceptions. In this paper, we explore the impact of timing exceptions
in the design implementation flow through experiments that address
three fundamental driving questions:

1) Do timing exceptions help or hurt in design optimization?

2) Which exceptions give net benefit when applied?

3) When can such helpful exceptions be identified with sufficient

accuracy?

Our contributions are summarized as follows.

¢ We evaluate the impacts of timing exceptions on design QOR
and TAT, and show that not all timing exceptions are beneficial
in design optimization processes.

o We analyze the characteristics of timing exceptions and classify
effective vs. ineffective timing exceptions.

e We examine various potential metrics to quantify the effective-
ness of timing exceptions.

'In SpyGlass[17], timing exceptions are generated from a list of timing
critical paths reported from STA tools, and each critical path is then tested
whether true or false. Hence, auto-generated exceptions from commercial tools
resemble the timing reports format which defines one startpoint, one endpoint,
and several intermediate points along a timing path. However, designers
define timing exceptions based on the knowledge of functionality, and use
simplest forms, omitting detailed points in timing paths, to reduce the effort
of describing many timing exceptions manually.

11th Int'l Symposium on Quality Electronic Design

¢ We give guidelines and a design methodology to utilize timing
exceptions in design optimization.

The remainder of our paper is organized as follows. Section II
presents motivational hypotheses on the insertion of timing excep-
tions in design optimization processes. The hypotheses are analyzed
experimentally in Sections III, IV and V. Based on observations from
our experiments, in Section VI we propose useful tips and a potential
design methodology to use timing exceptions more effectively in de-
sign optimization. Finally, Section VII summarizes our conclusions.

II. BACKGROUND AND DRIVING QUESTIONS

Timing exceptions are described in Synopsys Design Constraints
(SDC) format which defines detailed timing requirements for the
design, e.g., clock cycle time and waveforms, I/O delays, and timing
exceptions. The information can be passed to synthesis, timing-driven
placement and routing tools, and final signoff static timing analysis
(STA). Synopsys also provides a guideline [12] for using the SDC
format.

Designers usually describe timing exceptions considering func-
tional or architectural attributes of the design. Automatically gen-
erated timing exceptions can be added from commercial tools, such
as those noted above, which support a path-validation function.

In the SDC, timing exceptions for false paths and multicy-
cle paths are defined using the keywords ‘set_false_path’ and
‘set_multicycle_path’, respectively. Timing exception definitions can
be categorized as shown in Figure 2.

| Class | | Type | | Form ‘ | Point
[user defined { false Path ~from clock
-to
input / output
automatically multi-Cycle Path | -through p. P
generated -from -to register

-from -through -to

Fig. 2. Categorization of timing exceptions.

In the description of exceptions, paths are lists of “-from”,
“-through” and “-to” points. Each point can be a clock or input/output
port, or a pin of a cell instance including registers (flip-flops) and any
combinational cells.?

Figure 3 shows an example of timing exceptions in SDC. In
this example, we declare three forms of exception — false paths
with “-through” points, false paths without “-through” points, and
multicycle paths between two registers. Multicycle paths are usually
defined between two registers, between input/output points, or be-
tween different clock domains. In general, “-through” points are not
used with multicycle path definitions.

Timing exceptions between different clock domains and false paths
using only start (-from) or end (-fo) points are usually specified
by users; these are often called user-defined false paths. Timing
exceptions between registers or input/output ports can be additionally
extracted and applied using commercial CAD tools. In this work,
we focus on whether the generated timing exception is beneficial.
We perform experiments on the timing exceptions which are defined
between two registers or between a register and an input/output pin.

Our work is motivated by three driving questions.

1) Do timing exceptions help or hurt? On the one hand, added
exceptions help because constraints are removed from optimization.
That is, exceptions reduce the number of timing problems that

2A port of hierarchical modules can also be a point for timing exception
declaration. However, placement and routing tools are in general based on
the assumption of flattened designs, so that hierarchical module ports can
disappear during placement and routing. Therefore, it is preferred to use
physically meaningful points, such as input/output pins of cells or primary
input/output ports, to specify timing exceptions.

REG B w7

SDC File

set_false_path -from REG_A.Q -through U2.Y -through U3.Y -to REG_C.D
set_false path -from REG_B.Q -to REG_D.D
set_multicycle_path -setup 2 -from REG_B.Q -to REG_D.D

Fig. 3. Descriptions of exceptions according to the format.

designers must be concerned with. And, false or multicycle paths
reduce the number of negative-slack paths, so that timing closure
is more easily achieved. In addition, reduced constraints prevent
excessive optimization such as upsizing of cells on non-functional
timing paths; this leads to reduction of design area.

On the other hand, added exceptions hurt because they add com-
plexity in optimization and extra care-abouts in timing analysis and
optimization processes. Moreover, from our experiments it appears
that the EDA industry, by convention, preserves exceptions on nodes
in a circuit throughout the optimization process. This preservation
of exceptions on nodes prevents restructuring and reduces the design
solution space: feasible solutions with restructuring are excluded from
consideration.

Intuitively, there must be a tradeoff between setting timing excep-
tions and discarding timing exceptions. In Section III, we examine
the impact of timing exceptions on the design optimization process
in detail.

2) Which exceptions give net benefit when inserted? Timing
exceptions can be classified not only by their format but also by the
timing criticality of the associated paths. Timing criticality implies
negative timing slack on paths specified by the exceptions before the
timing exceptions are applied. Hence, the ‘exception space’ has two
dimensions as shown in Figure 4. Within this exception space, we
examine which exceptions are effective versus ineffective for timing
optimization. In Section IV, we seek to identify beneficial exceptions
in this exception space.

Timing Slack 0
v

\/

Critical exceptions Non-critical exceptions
w/o ‘through’ points w/o ‘through’ point

Critical exceptions Non-critical exceptions
with ‘through’ points with ‘through’ point
A

suondooxa Jo adA,

Effective exceptions

Ineffective exceptions

Exceptions space according to the format and criticality.

Fig. 4.

3) When should exceptions be identified and applied? There are
several stages in the implementation flow — synthesis, placement,
clock tree synthesis (CTS), and routing stages. Between stages,
or within each stage, timing optimization can be executed several

times. Our initial intuition regarding this question is that (i) higher
benefit can be obtained when timing exceptions are extracted as late
as possible, since more accurate timing information is available in
later design stages with the convergence of spatial embedding and
parasitics; on the other hand, (ii) higher benefit can be obtained
when timing exceptions are applied as early as possible, since we
can maximize the benefit of timing exceptions as much as possible
before performing excessive timing optimizations.

Figure 5 illustrates feasible scenarios to extract and apply excep-
tions. DC, PLACE, PLACE — OPT, CTS, CTS— OPT, and ROUTE
respectively denote synthesis (using Synopsys Design Compiler),
placement, timing optimization after placement, clock tree synthesis,
timing optimization after clock tree synthesis, and routing. Exceptions
extracted after the DC stage can be applied before the PLACE,
PLACE-OPT, CTS and CTS-OPT stages. Exceptions extracted after
the PLACE-OPT stage can be applied in advance to the following
stages. However, if we apply exceptions at a stage which is far
from the stage at which the exceptions were extracted, most of the
exceptions with “through” points would not be feasible since the
name or structure of a given point (in the exception specification)
can be changed during optimization. In Section V, we experimen-
tally determine when exceptions should be extracted and applied
to achieve the best QOR results. Our experiments extract timing
exceptions from each stage — after placement (PLACE), placement
optimization (PLACE-OPT), CTS, CTS optimization (C7S-OPT) and
routing (ROUTE) — and apply the exceptions to the next stage so
as to identify the most beneficial design stages for extraction and
application of exceptions.

Extractd” APPI);"~ o g ~.-'"’,. g ‘
-/ A\ / /
DC PLACE PLACE-OPT CTS CTS-0oPT ROUTE

Fig. 5. Experiment design for extraction stage and application stage of timing
exceptions.

I11. IMPACT OF TIMING EXCEPTIONS IN OPTIMIZATION

The first driving question above elicits the hypothesis that added
timing exceptions help remove overconstraints, but can increase
optimization complexity. To prove this hypothesis, we perform exper-
iments with the two types (false and multicycle paths) of exceptions.
In addition, we study the impact of “through” points, which may
prevent circuit restructuring and degrade timing results.

A. Difference of Timing Exceptions

We compare the impact of different types of timing exceptions.
We use a 4-bit ripple carry adder (RCA) as shown in Figure 6 to
analyze the impact of timing exception types. A full adder circuit is
shown in Figure 7.

A[0] B[0] All] B[] A2l B[2] A[3] B[3]
| | | 1 | 1 1 |

Cin — Fulladder-0 |~ Full adder-1 |~ Fulladder-2 [~ Fulladder-3 |— Cou

T T T T
S[0] S[1] S[2] S[3]

Fig. 6. 4-bit ripple carry adder.

We choose three timing paths arbitrarily, i.e., from 4[0] to Cyyy,
from B[0] to Cpy, and from Cjy, to Cpy, and define timing exceptions

Fig. 7. Full-adder circuit in RCA.

on these paths in different ways: (1) false paths (FP) with “through”
points, (2) false paths without “through” points, (3) multicycle paths
(MCP) with “through” points, and (4) multicycle paths without
“through” points.

Applying these different types of exceptions, we analyze quality
of optimization in three different commercial tools, i.c., Synopsys
DesignCompiler (DC) [14], Cadence SOC Encounter (SOCE) [18],
and Synopsys Astro (ASTRO) [16]. Table I shows the timing and area
results from each tool. For DC, we measure timing and area after
performing incremental timing optimization. For SOCE and ASTRO,
we measure timing and area after performing placement and routing
with timing optimizations.

TABLE I
WORST NEGATIVE SLACK (n15) AND AREA (um?) OF 4-BIT RIPPLE CARRY
ADDER. FP AND MCP DENOTE FALSE PATH AND MULTICYCLE PATH,

RESPECTIVELY.

Without FP w/ FP w/o MCP w/ MCP w/o

exceptions | ‘through’ ‘through’ | ‘through’ ‘through’
DC WNS -0.040 -0.540 0.000 -0.540 0.000
Area 244.8 166.3 196.9 166.3 196.9
SOCE | WNS -0.059 -0.337 -0.035 -0.337 -0.035
Area 226.4 201.6 2333 201.6 233.3
Astro WNS -0.253 -0.290 -0.136 -0.290 -0.136
Area 212.4 192.6 209.2 192.6 209.2

We also compare two different forms of timing exceptions —
compact and equivalent complex form. Figure 8 shows three compact
forms and their equivalent forms of exceptions (upper) with complex
forms of equivalent exceptions (lower). We use AES cipher circuit
(Table V) as a testcase. We take 20 start (“~from”) points from k-top
critical paths, and we make equivalent complex form exceptions by
specifying all corresponding end (“-t0”) points. We define compact
and complex form exceptions for “-t0” and “-through” cases in the
same way.

-from -to -through
@ ® - - @
N t m
-from -to

-from s; @,

5 @
s B

5, @

(a) (b) (©)

Fig. 8. Three compact forms and their equivalent forms in timing exceptions.

Table II shows optimization results after applying exceptions. In
the results, compact forms of timing exceptions show better timing
and TAT results than complex forms. And, TNS is degraded with
“through” point in case (c).

TABLE 11
TIMING SLACK AND AREA RESULTS AFTER APPLYING COMPACT AND
EQUIVALENT COMPLEX FORM OF TIMING EXCEPTIONS.

| Form | # FP | Before optimization | After optimization |
[WNS T TNS | WNS | TNS T Runtime |
w/o FP 0 -0.401 -71.966 -0.242 | -53.359 0:16:14
(a) compact 20 -0.356 -69.268 -0.234 | -49.911 0:18:38
(a) complex 390 -0.356 -69.268 -0.235 | -53.145 0:24:45
(b) compact 20 -0.319 -65.019 -0.238 | -48.905 0:15:06
(b) complex 818 -0.319 -65.019 -0.236 | -53.191 0:24:07
(c) compact 20 -0.383 -70.861 -0.257 | -54.357 0:14:32
(c) complex 476 -0.383 -70.861 -0.240 | -55.111 0:19:27

From the experimental results, we observe the following.

1) Comparison of the results between “Without exceptions” and
“FP w/o through” or “MCP w/o through”: timing is improved
and area is reduced. This is because three critical paths are
removed due to timing exceptions.

2) Comparison of the results between FP and MCP: FP and
MCP have the same impacts on timing and area for all three
optimization tools, DC, SOCE and ASTRO.

3) Comparison of the results between “w/ through” and “w/o
through” we observe that, in both FP and MCP cases,
“w/ through” cases show significant degradation of timing,
compared to “w/o through” cases.

4) Comparison of the results between compact form and equiv-
alent complex form, we observe that compact form is more
beneficial than complex form considering timing slack and
runtime.

29

The first and second observations are intuitive. However, the
third and fourth observations need further analysis. In the following
subsection, we analyze the third observation in detail.

B. Experiments on ‘through’ Points

From Table I, we also observe that the area from “w/ through” is
significantly smaller than that from “w/o through”. We can conclude
that “through” points prevent aggressive optimization. The reason
for timing degradation and smaller area due to “through’ points may
stem from the fact that optimization tools try to preserve the points
given by timing exceptions. Hence, aggressive timing optimizations
while sacrificing area, such as logic restructuring, are prevented for
the points specified by timing exceptions. Figure 9 compares the
resulting circuits after optimization with “through” points in (A)
and without “through” points in (B). During optimizations without
“through” points, cells in a critical path (from C;, to C,,) have
been changed from AND2 — OR3 to AOI21 — INV. However, with
“through” points, original circuit topology is maintained.

Fig. 9. Full-adder circuit after optimization with “through” points in (A) and
without “through” points in (B).

It is difficult to analyze the impact of timing exceptions in large real
designs due to the complexity and uncontrollability of the number of

false paths. Thus, we design a scalable artificial circuit as shown in
Figure 10.

STAGE -1 STAGE-2,3,4...

Q OUT_3

Q—OUT_2
false path 1

Q OUT_1

false path2

Q; OouT_0

|\;3
|\'z
|.\|
|\0

SEL

f

UNIT circuit

Fig. 10. Artificial circuit which is scalable by cascading a unit circuit.

The circuit consists of cascaded unit circuits, with the unit circuit
having one select port and four input-output pairs. The unit circuit
contains two false paths, so that we can control the number of false
paths easily by cascading the unit circuit.

To calculate the total number of paths, we count all incoming paths
at the four output nodes of each stage. Initially, for 1-stage circuit,
the numbers of incoming paths for output nodes are Nj pyrs = 5,
Niour2 =5, Ny our_1 =5, and Nj oyr_o = 5, respectively. Summing
up the number of incoming paths of each output node gives total
number of paths in the 1-stage circuit. The number of paths in n-
stage circuits can be calculated recursively as:

Nugotal = 8Nu—1,00T_3 +4Nu—1,0UT2 +4Nu—1,0UT_1 +4Nn—1,0UT0

where the number of incoming paths at the output nodes of n—1
(Nn—1,0UT 35--Nn—1,0UT_0) 1 also calculated recursively. The coeffi-
cients, i.e., 8 and 4, in the equation indicate the number of branches
from the output nodes of n— 1-stage circuit.

The number of true paths in the circuit is then calculated using the
same method after removing false paths in the circuit, and finally,
the number of false paths is calculated by subtracting the number of
true paths from the total number of paths.

We apply different clock periods for each circuit, since the length
of combinational paths is different and proportional to the number of
stages. Table III summarizes the number of all paths and false paths
in each artificial circuit with different stages.

TABLE III
THE NUMBER OF PATHS AND TARGET FREQUENCY IN THE ARTIFICIAL
CIRCUIT.
[[stage—1 [stage—2 | stage4 | stage8 |
of all paths 20 100 2,500 1,562,500
of false paths 2 20 916 941,636
clock period (ns) 0.4 0.8 1.6 3.2

We perform placement and routing (P&R) for five cases, i.c.,
without false paths, with 25% of all false paths, with 50% of all
false paths, with all false paths, and with multicycle path (MCP)
exceptions only. 25% and 50% false paths are selected according
to the ascending order of timing slack values, i.e., top 25% and
50% of critical paths are selected. For P&R, we use a traditional
timing-driven implementation flow with Cadence SOC Encounter,
and a signoff timing analysis flow with Synopsys PrimeTime vB-
2008.12-SP2 [15]. In the artificial circuits, real multicycle paths do
not exist. So, we define four multicycle paths arbitrarily, i.e., from
IN_2 and IN3 to OUT-2 and OUT_3 among 16 register-to-register
paths. After placement and routing (P&R), we measure worst negative
slack (WNS), total negative slack (TNS), area, and runtime (TAT).

Table IV summarizes timing, area, and runtime with respect to the
number of timing exceptions applied.

TABLE IV
QOR RESULTS AFTER P&R WITH SOC ENCOUNTER. FP DENOTES FALSE
PATH TIMING EXCEPTIONS ARE APPLIED.

[SOCE] QOR | 0%FP | 25% FP [50% FP [100% FP | MCP |

WNS (ns) -0.314 -0.311 -0.311 -0.305 -0.262

stage-1 TNS (ns) -1.100 -1.111 -1.111 -1.094 -0.948
Area 254.7 268.1 268.1 252.6 280.8

WNS (ns) -0.233 -0.226 -0.189 -0.219 -0.182

stage-2 TNS (ns) -0.786 -0.838 -0.721 -0.761 -0.676
Area 352.8 293.5 311.2 288.6 320.3

WNS (ns) -0.042 -0.138 -0.132 -0.094 0.000

stage-4 TNS (ns) -0.089 -0.449 -0.466 -0.288 0.000
Area 460.8 360.6 3704 378.9 4523

WNS (ns) 0.002 -0.459 -0.325 -0.310 0.000

stage-8 TNS (ns) 0.000 -1.729 -1.241 -1.185 0.000
Area 581.4 503.1 505.9 5123 601.9

TAT 0:03:37 | 0:24:38 1:09:25 6:53:33 0:02:51

From the results, we observe that timing exceptions help reduce
timing violations for small numbers of stages, stage-1 and stage-2,
compared to the results for no exceptions; however, the improvement
is quite small and not consistent. For large numbers of stages, stage-
4 and stage-8, the timing violations with false paths are worse than
those without false paths. In addition, for the stage-8 case, runtime
increases excessively without improving timing compared to the case
of no exceptions. When we apply MCP exceptions, QOR is improved.

Analysis of the circuit topology after optimization gives the same
conclusion as with the RCA example: when many false paths are
used, so that many “through” points are specified, restructuring is
limited and timing is degraded. SOCE performs restructuring when
timing exceptions without “through” points are applied, as shown in
Column 3 (0% FP), and Column 7 (MCP) cases. Figure 11 shows
the unit circuit as restructured by SOCE.

 DnS
IN_3 OUT_3
® Lo 0

ND2D1

INVDI AORID1

IN_2 OUT_2

AOI21D2

OUT_I

ND2D1
INVD1

OUT_0
AOI21D4

ND2D0

Fig. 11. Restructured unit circuit

In summary, timing exceptions without “through” points reduce
timing slack and do not hurt optimization processes. By contrast,
timing exceptions with “through” points may help reduce timing
slack, but they limit the optimization (restructuring) solution space,
so that overall optimization quality is degraded for the paths specified
by such timing exceptions.

IV. BENEFICIAL TIMING EXCEPTIONS

Since a larger number of timing exceptions with “through” points
degrade the optimization quality, we wish to reduce the number of
exceptions with “through” points. In other words, we have to audit
exceptions to obtain beneficial timing exceptions.

A. Critical Timing Exceptions

First, we examine the impact of critical exceptions (on negative
timing slack paths) and non-critical exceptions (on positive slack
paths) in the exception space (Figure 4). To compare the impact
of critical and non-critical exceptions, we perform experiments with
four different kinds of exceptions — critical false paths, critical
multicycle paths, non-critical false paths and non-critical multicycle
paths. We select 10,000 exceptions and apply them in the incremental

optimization stage of Synopsys DesignCompiler (DC) Y-2006.06-
SP5 [14] We use multicycle paths without “through” points and false
paths with “through” points. Figure 12 shows experimental results
when we apply top-10%, 25%, 50% and 100% of exceptions in
descending order of criticality (timing slack). Figure 12 shows the
worst negative slack after the incremental optimization with different
number of timing exceptions. From the figure, we observe that WNS
is not improved by non-critical exceptions, and in fact remains the
same as when no exceptions are applied (0% cases in Figure 12).
However, critical false paths and multicycle paths improve timing
slack. Critical timing exceptions without “through” points (Critical
MCP) effectively reduce the worst timing slack, but critical timing
exceptions with “through” points (Critical FP) do not significantly
improve timing slack.

-0.25

»=Non-critical FP

+« @+ Non-critical MCP

2 Critical FP

~&— Critical MCP

Worst negative slack (ns)

0% 10% 25% 50% 100%

Number of timing exceptions

Fig. 12.
exceptions.

Timing results (WNS) after applying critical and non-critical

B. Effective Timing Exceptions

We can use critical exceptions rather than non-critical excep-
tions. However, not all critical exceptions are beneficial: the critical
exceptions can be either effective or ineffective for design timing
optimization. Ineffective exceptions need to be avoided in design
optimization.

Effective timing exceptions. To be beneficial in design optimization,
timing exceptions need to (1) turn negative slack to positive, (2)
improve large negative slack to the point where it can be turned
to positive with a simple sizing optimization, or (3) improve timing
slack of non-critical paths which may have either positive or negative
slack values. The first condition enables direct improvement of timing
quality without any extra optimization cost. The second condition
allows improvement of timing quality without using aggressive
optimization, so that the limitation on restructuring due to timing
exceptions may not affect the final timing quality. The third condition
is expected to reduce design area.

Ineffective timing exceptions. Some timing exceptions do not help
to reduce timing slack. In Figure 13, whether or not we define path A
as a false path, the timing slack for each timing point (all input/output
pins of cells, or primary ports) of the path will not change if the
path B is a true path and has tighter timing requirement (worse
timing slack) than path A. Therefore, adding a timing exception
for path A will only prevent restructuring that may be required for
path B to be optimized. Even if timing exceptions improve timing
slack, they can be regarded as ineffective if their timing improvement
is small and the timing slack is still critical, so that aggressive
timing optimization is required. In this case, timing degradation from
restrictions on optimization due to timing exceptions can outweigh
any timing improvement from the timing exceptions themselves.

To filter out ineffective timing exceptions from the generated
timing exceptions, we propose the following metrics — MaxImp,
SumImp, Avglmp and EndImp — to quantify the effectiveness of
timing exceptions. Formally,

MaxImp = Maxccp(si, — Sc) > Omax M

L False path A
Sl N
iy S e
o True path B i 7
>

Fig. 13. Timing exception on Path A is an ineffective false path due to the
presence of true path B.

Sumlmp = 2 (Sé —S¢) 2 Olgym @)
cep
sl —s,
Avglimp = M > Olayg (3)
Neep
EndImp = Sée" ;2 Oend Q)

where p is a path that is specified by a false path, ¢ is a timing
point belonging to the path p, and ¢,y is an endpoint of the path p.
sc and s, respectively denote the timing slack of the timing point
¢ before and after defining path p as a false path. Qmax, Olsum,
Ogvg and Oy are threshold values for each metric. It is difficult
to quantify the timing benefit from restructuring until we evaluate
all possible technology mappings during timing optimization. Hence,
we introduce a threshold value that tradeoff the effectiveness of false
paths and the benefit which may be obtained if restructuring occurs.

o MaxImp prunes ineffective paths which do not give a slack
improvement more than alpha,,, at any cells in the path. The
underlying assumption of MaxImp filter is that if no cells in
a path have improvements larger than a given small threshold,
all timing arcs in the path may be overlapped with true critical
paths as shown in Figure 13.

o SumlImp (Avglmp) checks the sum (average) of slack improve-
ments of all timing arcs in a timing path. Underlying assump-
tions of these filters are that if the total slack improvement
along a path is less than a given small threshold, the path may
be still critical after specified as a false path. Hence, the path
still requires aggressive optimization but the optimization will
be limited if specified as a false path.

e EndImp checks the timing slack improvement at the endpoint of
a path. If an endpoint slack of an exception is too small or not
improved, the path can be considered as an ineffective exception
due to the similar reason of SumImp or Avglmp.

We apply selected false paths from the above four metrics to our
testcases. Table V summarizes the area and timing information of our
testcases, implemented without using timing exceptions.

TABLE V
TESTCASES FOR EXPERIMENTS.

[Module | Description [Cell count | Area um®) | TNS |
AES AES Cipher 26,000 75,000 -53.36
JPEG JPEG Encoder 70,000 180,000 -93.54
LSU Load Store Unit 26,000 112,000 -44.97
EXU Integer Execution Unit 22,000 76,000 -36.16

We extract 10,000 false paths from our testcase with SpyGlass-
TXV v4.2 [17]. From the 10,000 false paths, we obtain the various
number of effective exceptions with the proposed metrics using Tcl-
script applicable to Synopsys PrimeTime [15]. We apply the selected
exceptions at the placement optimization stage of Cadence SOC
Encounter (SOCE) [18], and we observe timing improvements after
timing optimization.

Table VI summarizes worst negative slack (WNS), total negative
slack (TNS), and optimization runtime of our testcases after applying

different number of exceptions. From the results, we observe that
runtime increases according to the number of exceptions. Runtime
with 10,000 false paths is up to 16 times larger than that without false
paths. Even though the optimization runtime increases, the timing
slack does not change accordingly in any of our metrics and testcases.
In addition, even though there is a improvement, it is difficult to
distinguish the benefits of timing exceptions from the ‘inherent noise’
in IC implementation tools [11], since the improvement is quite small
(e.g., maximum WNS and TNS improvements of AES testcase against
the “0” exceptions are only 12ps and 2.05ns, respectively).

V. DESIGN STAGES TO EXTRACT AND APPLY TIMING
EXCEPTIONS

We find which design stages are most beneficial to extract and
to apply timing exceptions. To maximize the benefit from timing
exceptions, we may extract exceptions in very early design stages,
e.g., right after synthesis, and use the exceptions in the later design
stages. However, there is a problem with timing mismatch between
design stages. Figures 14, 15, 16 and 17 compare timing slack of
topmost critical paths (specified between registers) between different
design stages. Figure 14 shows timing correlation between synthesis
and placement, and Figure 15 shows timing correlation between
placement and CTS. Figures 16 and 17 show timing correlation
between placement and CTS and between CTS and routing, re-
spectively. We observe that timing between synthesis and placement
stages is not well correlated, so that the timing exceptions based on
the synthesized netlists may no longer be valid for the later design
stages. However, after placement, the timing correlation between
stages is improved to more than 0.7.

400 4

CORR: 0421
350 4 - oo
. . 2 v” Soee
.
. e R oY
300 58 . .
300 G Sodide L iseTe 0
. . 8% o 0 gl e
. R A N
‘. X Sl RS s P
F e GBI
< e o . 0%
2 gt SR
200 O AR . .o .
3 Slind O BRI o
< . * .
& o o Od .
S o “ > “ oe O oo
3 o
150 b > CIER
& .o (3 .
% . o s %6
3 .
e & Soo il le o o M i
] . & e
100 {o , o RIS B e
. .. .
&S R R -
@ %o LR B .

e

0 50 100 150 200 250 300 350 400

synthesis
Fig. 14. Timing correlation between synthesis and placement.
400
350 {| CORR:0.718
s e "’ 3%
300 4 % M0 AR R
o e%iar? o‘?‘. 3
i it eoet ey tote,
250 - s M “wo o oF
SRR s ."o:" e v o &,
D RN S G .
150 - 0% R A x
] . LR LR 5
o %.ose $ oo e .
10 Semg? %0 M o A
s Clp et Sy o .
$e ¢ o % ite s W ** .
0 {om .o:xo.'. e e
‘0:';“ . L0 o ¥
o 1% as .o .
0 50 100 150 200 250 300 350 400
placement
Fig. 15. Timing correlation between placement and CTS.

We select 1,000 false paths which have largest improvements
with respect to the MaxImp metric at each stage. We apply these
exceptions to the next stages, and examine QOR (WNS, TNS and
Area) after placement and routing.

TABLE VI
QOR RESULTS OF TEST MODULES AFTER APPLYING DIFFERENT NUMBER OF EFFECTIVE EXCEPTIONS.

Filter | # of FP AES JPEG LSU EXU
WNS TNS Runtime WNS TNS Runtime WNS TNS Runtime WNS TNS Runtime
10,000 | -0244 | -5256 | 1:2729 | -0.207 | -111.89 | 1:53:56 | -0.091 | -37.99 | 0:25:30 | -0.147 | -41.61 | 0:54:15
2,000 | -0245 | -5333 | 0:16:12 | -0.171 | -93.70 | 0:37:28 | -0.098 | -43.49 | 0:06:00 | -0.133 | -40.14 | 0:09:21
1,000 | -0268 | -53.62 | 0:11:30 | -0.174 | -94.07 | 0:23:23 | -0.094 | -39.96 | 0:05:57 | -0.169 | -42.30 | 0:04:32
MAX 500 -0.251 -52.91 0:10:31 -0.185 -95.35 0:20:59 -0.088 | -42.19 0:04:24 -0.128 | -37.35 0:03:39
100 -0.251 -53.09 0:11:01 -0.181 -94.08 0:19:02 -0.088 | -40.99 0:03:27 -0.159 | -35.48 0:02:49
50 0247 | -5329 | 0:09:05 | -0.184 | -93.53 | 0:1839 | -0.097 | -44.78 | 0:02:50 | -0.148 | -39.90 | 0:02:38
0 0242 | -5336 | 0:09:32 | -0.174 | -93.54 | 0:17:39 | -0.095 | -44.97 | 0:02:46 | -0.127 | -36.16 | 0:03:24
10,000 | -0244 | -52.56 | 1:27:29 | -0.207 | -111.89 | 1:53:56 | -0.091 | -37.99 | 0:25:30 | -0.147 | -41.61 | 0:54:15
2,000 | -0231 | -52.62 | 0:22:14 | -0.170 | -93.62 | 0:26:27 | -0.112 | -4532 | 0:05:26 | -0.141 [-3821 | 0:07:41
1,000 -0.230 | -51.31 0:19:29 -0.178 -96.16 0:22:33 -0.101 -41.50 0:03:54 -0.142 | -41.09 0:05:28
SUM 500 -0.244 | -52.22 0:17:41 -0.191 -96.37 0:19:51 -0.094 | -43.31 0:03:43 -0.123 | -36.74 0:04:54
100 -0.245 | -52.94 0:09:33 -0.175 -94.73 0:18:37 -0.093 | -44.68 0:03:04 -0.164 | -37.04 0:03:04
50 0247 | -54.56 | 0:09:32 | -0.175 | -94.73 | 0:1831 | -0.093 | -44.68 | 0:02:54 | -0.121 | -38.42 | 0:02:56
0 -0.242 | -53.36 0:09:32 -0.174 -93.54 0:17:39 -0.095 | -44.97 0:02:46 -0.127 | -36.16 0:03:24
10,000 -0.244 | -52.56 1:27:29 -0.207 | -111.89 1:53:56 -0.091 -37.99 0:25:30 -0.147 | -41.61 0:54:15
2,000 -0.251 -53.28 0:15:20 -0.170 -90.63 0:28:53 -0.104 | -44.33 0:05:11 -0.127 | -37.65 0:07:35
1,000 | -0255 | -5422 | 0:12:58 | -0.177 | 96.78 | 0:23:03 | -0.094 | -4433 | 0:03:37 | -0.127 | -38.59 | 0:05:20
AVG 500 0237 | -52.08 | 0:16:40 | -0.191 | -99.00 | 0:20:09 | -0.089 | -44.60 | 0:03:18 | -0.161 | -3837 | 0:04:31
100 -0.236 | -53.17 0:14:28 -0.175 -94.73 0:18:36 -0.092 | -46.35 0:03:01 -0.142 | -42.00 0:03:25
50 -0.241 -52.88 0:10:11 -0.175 -94.73 0:18:30 -0.095 | -43.88 0:03:01 -0.144 | -38.84 0:02:48
0 0242 | -5336 | 0:09:32 | -0.174 | -93.54 | 0:17:39 | -0.095 | -44.97 | 0:02:46 | -0.127 | -36.16 | 0:03:24
10,000 -0.244 | -52.56 1:27:29 -0.207 | -111.89 1:53:56 -0.091 -37.99 0:25:30 -0.147 | -41.61 0:54:15
2,000 | -0246 | -54.46 | 0:14:45 | -0.178 | -94.13 | 0:22:28 | -0.094 | -43.83 | 0:06:02 | -0.139 | -40.64 | 0:06:24
1,000 | -0257 | -52.16 | 0:18:42 | -0.184 | 9825 | 0:14:41 | -0.103 | -41.26 | 0:03:52 [-0.150 | -37.46 | 0:04:21
END 500 0237 | -51.44 | 0:11:225 | -0.164 | -92.65 | 0:19:57 | -0.090 | -43.72 | 0:03:13 | -0.134 | -36.59 | 0:04:03
100 -0.240 | -53.67 0:10:39 -0.184 -98.57 0:13:14 -0.097 | -44.42 0:03:01 -0.118 | -29.83 0:05:20
50 -0.251 -52.46 0:09:24 -0.176 -94.00 0:13:07 -0.091 -41.38 0:02:58 -0.142 | -39.50 0:03:37
0 0242 | -5336 | 0:09:32 | -0.174 | -93.54 | 0:17:39 | -0.095 | -44.97 | 0:02:46 | -0.127 | -36.16 | 0:03:24
400 TABLE VII
i CORR : 0.701 QOR RESULTS AFTER APPLYING FALSE-PATH EXCEPTIONS IN EACH
= . & N0
300 . % “.’o.::‘. a“.::"."t‘ STAGE.
. e PAGIR TR Module Stage Area WNS TNS
ep 2005 5 e e e g0 At 080 Y300 3 Placement 74,090 -0.208 | -41.75
=i St SEitnae s o Place-opt | 75287 | -0.208 | -40.09
2 i PSR T M AES CTS 75,494 | 0204 | -40.84
150 {0 et B ogs WSN e Se e CTS-opt 76,199 | -0.197 | -40.05
% .§ R RN) S Routing 76,245 | -0.200 | -40.12
100 p o Kdeoety, 5 .. Placement | 224,418 | -0.148 | -70.59
50 oR4° e o0t .".‘ ol Place-opt | 220,105 | -0.157 | -83.49
%00y :‘ o b g Seottiie JPEG CTS 221,615 | -0.166 | -83.22
04+ s - CTS-opt | 221,520 | -0.162 | -83.73
0 50 100 150 200 250 300 350 400 ROthing 221,537 _0156 _8383
placement Placement 118,361 -0.183 -75.38
Place-opt | 118395 | -0.153 | -69.78
Fig. 16. Timing correlation between placement and routing. LSU CTS 118,877 | -0.179 | -73.23
CTS-opt 118,784 | -0.171 -69.06
Routing 118,774 | -0.160 | -69.95
400 Placement 76,263 -0.295 | -36.06
350 4 CORR : 0.897 Place-opt 76,491 -0.292 -48.21
é,{ EXU CTS 77,041 | 0273 | -39.05
300 ,&. e CTS-opt | 76,589 | -0.323 | -41.10
] x."::’f'.' Routing | 76,611 | -0314 | -41.93
e R i o
S 200 4 o2 .3 337 o L4
H R i
= 150 4 SRS TS -,
ot t (0% :.’ 2 timing exceptions at every stage requires large runtime and effort.
I 900 ¢ sunsShi o . Based on timing correlation results between stages and optimization
50 fe. .‘;’.:':.'4:’ T . results in Table VII, we can conclude that timing exceptions need to
VhESee S . ; be extracted after placement or the first post-placement optimization
0 50 100 150 200 250 300 350 400 stages, when most of timing critical paths are discovered.
CTS
Fig. 17. Timing correlation between CTS and routing. VI. GUIDELINES TO TIMING EXCEPTIONS IN DESIGN

Table VII summarizes the QOR improvements when timing ex-
ceptions are extracted and applied at different design stages. We
observe that total negative slack (TNS) is improved, when exceptions
are extracted after placement or the first post-placement optimization
(Place-opt) stages.

To improve the results further, it may better to extract exceptions
at each stage and apply them in the next stage. However, extracting

OPTIMIZATION

We show the impact of timing exceptions in design optimization
and when timing exceptions need to be extracted and applied. Based
on the observations from our experiments, we provide the following
guidelines for the use of timing exceptions in design optimization.

o Optimization runtime increases rapidly with increasing number
of applied timing exceptions. However, such large runtime over-
head does not lead to better QOR. Hence, in design optimization,
designers need to use only clearly effective timing exceptions.

o First-order timing exceptions that are always beneficial are
those without “through” points. With “through” points, the
optimization quality is not improved significantly, and can even
be degraded.

o When specifying timing exceptions, the declaration form must
be as compact as possible.

o Timing exceptions should be extracted after placement or the
first post-placement optimization stages, when most of the
design’s critical paths have been revealed, and most of the
required restructuring has already been performed.

o It is better to not use timing exceptions with “through” points
in design optimization, unless the timing slack improvement is
clear and sufficient.

Our observations imply the following requirements: (1) new design
optimization tools or flows, such as timing exception-aware timing
optimization that maintains timing exceptions throughout the flow
without preserving the detailed points in the netlist specified by
timing exceptions, and (2) high-quality constraints compaction tools
to compress the number of exception points.

For now, in the context of the traditional timing-driven design
methodology, we suggest a design flow to more effectively use timing
exceptions in design optimization. Figure 18 illustrates the proposed
design flow.

User defined timing exceptions
RTL
Pre-STA

‘ result (Generate timing exceptions
Synthesis ”__ Wo “through” points
: B Muliicycle paths |
‘ netlist | | SDC |‘ False paths w/o “through” points
STA result (Generate timing exceptions
Rlacementetissmly ... “ e
w/ “through™ points
I I All false paths w/
‘ netlist | | SDC |q . Effective false “through” points
i paths
(] v ;
e R Check effectiveness
CTS and Routing
| | All exceptions
‘ netlist | | SDC !:
¥]
Static Timing Analysis

Fig. 18. Our recommended flow for timing exceptions.

According to the proposed flow, when synthesizing RTL codes into
gate-level netlists, user-defined timing exceptions which give clear
benefits, such as exceptions between different clock domains, can
be added to the SDC (Synopsys Design Constraints). After synthesis,
false paths and multicycle paths that do not have “through” points can
be generated and appended into the SDC. We use Atrenta SpyGlass-
TXV [17] flow for automatic generation of timing exceptions. After
placement (or placement optimization), we extract exceptions with
“through” points. However, additional ‘auditing’ of exceptions may
be required to find effective ones, since applying too many exceptions
with “through” points is harmful to TAT and QOR. Finally, at the
static timing analysis (STA) stage, all exceptions can be used, so as
to reduce the number of timing violations.

VII. CONCLUSION

Adding timing exceptions is traditionally regarded as helpful for
design optimization because overconstraints are removed by the
exceptions. However, timing exceptions are not always beneficial and
can even degrade design quality of results.

In this work, we evaluate the impact of timing exceptions with
respect to timing violations, area and optimization runtime. We also
explore filtering methods to identify beneficial timing exceptions.
And, we identify a ‘sweet spot’ in the design flow when exceptions
should be extracted and applied for maximum benefit. We have
furthermore proposed a design methodology for beneficial insertion
of timing exceptions: (1) critical and effective timing exceptions
should be extracted and applied after the placement stage, and (2)
ineffective false paths should be pruned for better QOR. We believe
that our motivating questions, experimental framework, and initial
results can serve as a foundation for the development of novel
methodologies that maximally leverage timing exceptions in the IC
implementation flow.

Our ongoing work studies several other facets of timing exceptions.
First, we seek improved ways of extracting and auditing consistently
beneficial exceptions, to improve design QOR and TAT. Second,
we seek quantified metrics of both user- and automatically-defined
exceptions, to better predict their impact on final design outcomes.
Finally, we continue to pursue production-quality timing exception
methodologies for general SOC implementation flows.

VIII. ACKNOWLEDGMENTS

The authors acknowledge useful discussions with N. Kumar in
coming up with the artificial scalable circuit of Section IIL.B, and
and thank Atrenta Inc. for support of a timing exception flow.

REFERENCES

[1] D. Brand and V. S. lyengar, “Timing Analysis Using Functional Re-
lationships”, Proc. ACM/IEEE International Conference on Computer-
Aided Design, 1986, pp. 126-129.

[2] H.-C. Chen and D. H.-C. Du, “Path Sensitization in Critical Path
Problem”, IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, 12(2), 1993, pp. 196-207.

[3] P. C. McGeer, A. Saldanha, R. K. Brayton and A. Sangiovanni-
Vincentelli, “Delay Models and Exact Timing Analysis”, in T. Sasao
(ed.), Logic Synthesis and Optimization, Kluwer Academic Publishers,
1993, pp. 167-189.

[4] S. Devadas, K. Keutzer, S. Malik and A. Wang, “Certified Timing
Verification and the Transition Delay of a Logic Circuit”, IEEE Trans.
on VLSI Systems, 2(3), 1994, pp. 333-342.

[5] A. P. Gupta and D. P. Siewiorek, “Automated Multi-Cycle Symbolic
Timing Verification of Microprocessor-based Designs”, Proc. IEEE/ACM
Design Automation Conference, 1994, pp. 113-119.

[6] K. Nakamura, K. Takagi, S. Kimura and K. Watanabe, “Waiting False
Path Analysis of Sequential Logic Circuits for Performance Optimiza-
tion”, Proc. ACM/IEEE International Conference on Computer-Aided
Design, 1997, pp. 388-393.

[7] W.-C. Lai, A. Krstic and K.-T. Cheng, “Functionally Testable Path Delay
Faults on a Microprocessor”, IEEE Design & Test of Computers, 2000,
pp. 6-14.

[8] J.-J. Liou, A. Krstic, L.-C. Wang and K.-T. Cheng, “False-Path-Aware
Statistical Timing Analysis and Efficient Path Selection for Delay
Testing and Timing Validation”, Proc. IEEE/ACM Design Automation
Conference, 2002, pp. 566-569.

[9] H. Higuchi, “An Implication-Based Method to Detect Multi-Cycle Paths
in Large Sequential Circuits”, Proc. IEEE/ACM Design Automation
Conference, 2002, pp. 164-169.

[10] K. Yang and K.-T. Cheng, “Efficient Identification of Multi-Cycle False
Path”, Proc. IEEE/ACM Design Automation Conference, 2006, pp. 360-
365.

[11] A. B. Kahng and S. Mantik, “Measurement of Inherent Noise in EDA
Tools”, Proc. International Symposium on Quality in Electronic Design,
2002, pp. 206-211.

[12] Using the Synopsys Design Constraints Format Application Note,
http://solvnet.synopsys.comy/ .

[13] Sun OpenSPARC Project., http://www.sun.com/processors/opensparc/ .

[14] Synopsys DesignCompiler User’s Manual. http://www.synopsys.cony/ .

[15] Synopsys PrimeTime User’s Manual. http://www.synopsys.com/ .

[16] Synopsys Astro User’s Manual. http://www.synopsys.com/ .

[17] Atrenta SpyGlass User’s Manual. http://www.atrenta.comy/ .

[18] Cadence SOC Encounter User’s Manual. http://www.cadence.com/ .

[19] Magma Blast Fusion User’s Manual. http://www.magma-da.com/ .

[20] Blue Pearl Software, Cobalt. http://www.bluepearlsoftware.com/ .

[21] FishTail Design Automation. http://www.fishtail-da.com/ .

