
A New Approach to E�ective Circuit Clustering�

Lars Hagen and Andrew B. Kahng

UCLA CS Dept., Los Angeles CA 90024-1596

Abstract
The complexity of next-generation VLSI systems

will exceed the capabilities of top-down layout synthe-
sis algorithms, particularly in netlist partitioning and
module placement. Bottom-up clustering is needed to
\condense" the netlist so that the problem size be-
comes tractable to existing optimization methods. In
this paper, we establish the DS quality measure, the
�rst general metric for evaluation of clustering algo-
rithms. The DS metric in turn motivates our RW-
ST algorithm, a new self-tuning clustering method
based on random walks in the circuit netlist. RW-
ST e�ciently captures a globally good circuit cluster-
ing. When incorporated within a two-phase iterative
Fiduccia-Mattheyses partitioning strategy, the RW-ST
clustering method improves bisection width by an av-
erage of 17% over previous matching-based methods.

1 Introduction
Top-down approaches are widely used to cope with

increasing problem complexity in layout synthesis.
Recursive calls to a partitioning algorithm generate a
circuit hierarchy which subsequently guides the place-
ment/routing phases of layout. Typical partitioning
objectives such as minimum-width bisection and min-
imum ratio cut are NP-complete and require such
heuristics as simulated annealing [12], greedy k-opt
interchange [11], or quadratic optimization (via relax-
ation [3] [13] or spectral [8] methods). However, the
partitioning algorithms used in top-down layout are
beginning to fail as designs approach millions of gates:
(i) the space/time requirements of current partition-
ing approaches become infeasible; (ii) the stability and
solution quality of iterative methods deteriorate; and
(iii) k-way partitioning formulations may force \un-
natural" solutions because of their a priori speci�ca-
tion of k.

Given these di�culties, bottom-up clustering can
enable successful top-down partitioning by condensing
the circuit netlist and reducing problem size. Clus-
tering is attractive because it avoids making the far-
reaching decisions that are inherent in a top-down
approach. Moreover, top-down partitioning solutions
can be enhanced by �rst condensing the input through
bottom-up clustering [1] [2]. Nevertheless, in practice

�This work was supported in part by NSF MIP-9110696,
ARO DAAK-70-92-K-0001, and ARO DAAL-03-92-G-0050. A.
B. Kahng is also supported by an NSF Young Investigator
Award and California MICRO grants from Zycad Corporation
and Cadence Design Systems.

clustering is avoided because of inherent weaknesses
in current bottom-up algorithms, namely, that group-
ing decisions are based only on local criteria such as
the number of connections to modules in an existing
cluster. While this locality is needed to maintain rea-
sonable algorithm complexity, it may lead to unfor-
tunate grouping decisions. Thus, top-down partition-
ing, while it remains tractable, remains the preferred
method of decomposing a given layout problem. The
goal of clustering is then to reduce problem size while
deferring far-reaching decisions until well-considered
top-down optimizations become feasible.

Previous work in circuit clustering ranges from
highly local to highly global approaches. Generally
speaking, local approaches are more e�cient but can
result in unnatural groupings of modules. On the
other hand, global approaches give potentially more
useful and \natural" results, but may require pro-
hibitive amounts of computation. For our discussion,
two particularly relevant approaches are respectively
due to Bui et al. [1] [2] and to Garbers et al. [7].

In [1] [2], Bui et al. proposed a two-phase matching
based compaction strategy. With this approach, the
modules pairs of a maximal random matching in the
netlist graph are used to induce a compacted parti-
tioning instance on n=2 vertices which correspond to
the matching edges. A heuristic Kernighan-Lin parti-
tioning of this compacted netlist is found and then re-
expanded into an initial \at" starting con�guration
for a second Kernighan-Lin phase. The approach may
be iterated, with matching performed recursively on
the compacted netlist until the problem size becomes
manageable [2].1

The approach of [1] [2] in e�ect performs clustering
by �nding cliques of size 2, i.e., the matching edges.
We may generalize compaction into a more global ap-
proach by �nding c-cliques for c > 2. Even more gen-
erally, we could �nd netlist subgraphs that have size c
and a prescribed density (e.g., if more than � �C(c; 2)
edges are present among c modules in the netlist, then
the c modules would be considered to form a cluster).
While density-based clustering is cited in [7] as a folk-

1The heuristic justi�cation for this approach [1] [2] is that
the Kernighan-Lin k-opt method yields signi�cantly better re-
sults when the graph topology is su�ciently dense, i.e., has large
average degree. Bui et al. claim that compacting until average
degree in the netlist is � 3 su�ces for K-L to become essentially
optimal. The authors of [1] conjecture that this is because there
are fewer local minima in the k-interchange neighborhood struc-
ture when the graph has higher average degree.

lore method, it entails checking all module subsets of
cardinality c, which is impractical. Hence, the closely
related concept of (k; l)-connectivity was recently pro-
posed by Garbers et al. [7] for use in circuit clustering.

If there are k edge-disjoint paths of length l between
modules u and v, then u and v are said to be (k; l)-
connected; [7] showed that for certain highly struc-
tured classes of random inputs, the transitive closure
of the (k; l)-connectedness relation gives an equivalent
clustering to that induced by the edge density crite-
rion. However, (k; l)-connectivity may yield nonintu-
itive results: modules vi and vj can belong to a clus-
ter even when no module on any path between vi and
vj belongs to the cluster. Moreover, the values of k
and l which lead to the \correct" clustering must be
determined experimentally for each netlist; this deter-
mination is not easy, as seen in [7].

Three other methods should be noted. The epitax-
ial growth or \direct" method [6] iteratively adds the
most closely connected unclustered module to the cur-
rent cluster. This method is highly local, and depends
on heuristic choices of cluster seeds, the number of
clusters, the tie-breaking rules, etc. The global \top-
down clustering" method of [15] is essentially equiva-
lent to top-down recursive application of the ratio cut
partitioning approach given in [14]. We do not con-
sider it to be a bona-�de clustering algorithm because
it assumes heuristic partitioning can be performed on
the at netlist, and our premise is that if such is possi-
ble, clustering is not needed. Finally, [4] gave a global
method which, like the present work, is based on a
random walk in the netlist.

2 A Proper Clustering Metric
Our primary goal is to �nd an e�cient clustering

algorithmwhich is e�ective in the sense that it loses as
little global structural information as possible. To this
end, we �rst present the DS quality measure, which
gives an objective metric for distinguishing good clus-
tering decompositions and clustering algorithms.

The DS metric is motivated by the following ques-
tion: given a graph G = (V;E), how easy is it to
separate two nodes s; t 2 V ? Observe that (i) if s
and t are hard to separate, then there must be more
s-t paths and it is more likely that s and t belong
to the same natural cluster; (ii) conversely, if s and
t are easy to separate, then there must be fewer s-t
paths and s and t probably do not belong to the same
natural cluster.

We have found that the weighted average of the
cluster degree / separation (DS) is a robust quality
measure: (i) cluster degree is the average number of
nets incident to each module of the cluster and hav-
ing at least two pins in the cluster; and (ii) cluster
separation is the average length of a shortest path be-
tween two nodes in the cluster, with separation 1 if
two nodes in the cluster are disconnected.

We calculate the DS quality of a clustering as the
weighted average of the DS quality of each cluster,
with a cluster containing a single node having DS qual-
ity equal to zero. The DS qualities of several di�erent
clusterings for the same eight-node graph are shown

in Figure 1.2 The intuition behind maximizing the DS
quality is that we wish to �nd a decomposition of the
graph such that nodes will on average have the highest
possible degree and the shortest possible separation
from the other nodes in their respective clusters.

DS = 1.24

DS = 1.00 DS = 0.00

DS = 2.14

Figure 1: DS quality of various clusterings of the
same graph.

The DS quality suggests that the goal of a cluster-
ing algorithm should entail �nding the neighborhood
structure of a node v and comparing it with the neigh-
borhood structure of other nodes to determine which
nodes should be clustered with v. This notion of rec-
ognizing a node's neighborhood structure motivates
our random walk based clustering algorithm.3

3 Random Walks for Clustering
We now present our new RW-ST methodology,

which computes a circuit clustering based on a random
walk in the netlist graph. A random walk is a discrete-
time stochastic process which iteratively moves from
the current module (vertex) to a random adjacent
module, with all adjacencies equiprobable. The cover
time of G is the maximum, over all possible starting
vertices, of the expected length of a random walk that
visits all vertices in G. The following result shows
that a random walk will with high probability man-
age to explore the netlist structure in a small number
of steps.
Fact: The cover time of a random walk in a d-
regular graph of n nodes is O(n2) and
(n log n), and
there and there exist examples which show that both
bounds are tight [10].

The O(n2) upper bound also applies to cover times for
the class of d-bounded graphs [5], which includes gate-
level netlists. Therefore, we may compute a single
random walk of length �(n2) and expect to sample
the entire netlist graph.

We propose a method for extracting clusters from
the random walk via the following concept of a cycle.
Consider the sequence of nodes encountered during

2For example, each cluster in the 2-clustering has average
node degree = 10=4, and average separation = 14=12.

3Additional motivations for the DS metric and the random-
walk methodology, based on the theory of graph spectra and
intrinsic graph structure, are discussed in [9].

the random walk. A cycle is a contiguous subsequence
fvp; vp+1; : : : ; vqg in the walk with vp = vq and all vi
distinct, i = p; p+ 1; : : : ; q � 1. The set of modules
in each cycle should correspond to (part of) a natural
cluster because if there is a more tightly coupled node
subset of the cycle, then the random walk will recur
(i.e., complete a smaller cycle) within that subset and
we would not have found the original cycle. This is
shown intuitively in Figure 2, where the y-y portion
of the walk does not delimit a natural cluster since
it contains a denser x-x cycle; the x-x cycle does not
contain any denser portion, so we say that it is a bona
�de cluster.

. . . z y x . . x y z . . .

 x y

 z

Figure 2: Progress of a random walk through areas
with di�erent edge density.

We have designed a linear-time algorithm for iden-
tifying all of the cycles in a random walk. This algo-
rithm is given in Figure 3.

Find-Cycles(RW)
Input: A sequence of nodes RW
for each node i

visited[i] := FALSE
first := 1
last := 1
visited[last] := TRUE
while last < jRW j

increment last
if visited[RW [last]] = TRUE

while RW [first] 6= RW [last]
visited[RW [first]] := FALSE
increment first

increment first
visited[RW [last]] := TRUE

Figure 3: Finding cycles in linear time.

In [4], a random walk was computed in the netlist,
maximal cycles C(vj) were determined for all modules
vj , and then the transitive closure of the relation ./,
de�ned by va ./ vb if va 2 C(vb) and vb 2 C(va), was
used to induce a heuristic clustering. However, the
experimental results of [4] fail to reect the intuitively
\correct" circuit organization. Our present work of-
fers a di�erent approach, the RW-ST algorithm, which

extracts a good heuristic clustering from the cycle in-
formation. It should be emphasized that the RW-ST
is a heuristic and that we do not yet have strong the-
oretical justi�cation for its observed success.

The RW-ST algorithm clusters node pairs based on
their sameness. The sameness of nodes u and v reects
the commonality of the sets of nodes that are visited
in cycles originating at u and at v. To calculate the
sameness, for each node v we must keep track of how
often a node u occurs in some cycle originating at v.
This number is saved in the array CC (CycleCount).

Sameness(u, v)
Input: A pair of nodes u and v
Output: The sameness value S of u, v
if (CC[u][v] = 0) or (CC[v][u] = 0)

S := 0
else

S := 2 � (CC[u][v] + CC[v][u])
for each node w in the circuit

if (w 6= u) and (w 6= v)
if CC[u][w]> CC[v][w]

S := S + 4 �CC[v][w] - CC[u][w]
else

S := S + 4 �CC[u][w] - CC[v][w]

Figure 4: Computing sameness of two nodes.

Using the CC array, the sameness value for nodes
u and v is calculated as shown in Figure 4. If both
CC[u][v] and CC[v][u] are greater than zero, i.e., each
node occurs at least once in the other's cycles, same-
ness is initialized to 2 � (CC[u][v] + CC[v][u]). For
each node w, the u-v sameness is increased if the val-
ues CC[u][w] and CC[u][v] are approximately equal;
the sameness is decreased if these quantities vary by
a signi�cant amount. To be speci�c, for each node
w in the circuit other than nodes u and v, we add
4 �min �max to the sameness value, where min and
max are respectively the smaller and larger of the two
values CC[u][w] and CC[v][w].

Note that the term 4 � min � max measures the
commonality of nodes u and v with respect to w. If
min and max are equal, sameness is increased by 3 �
min; if min is zero or if max is considerably greater
than min, sameness is decreased by max. Intuitively,
this bias toward increasing the sameness a�ords some
leeway in how close min and max must be in order
to still have a positive impact on the sameness value;
this is because the random walk cannot guarantee to
visit u and v equally often even if they look identical
to the rest of the circuit.

As shown in Figure 5, algorithm RW-ST �rst �nds
and processes all cycles in the random walk, then com-
putes sameness for all node pairs, and �nally clusters
those node pairs with sameness greater than zero. In
some sense, the sameness computation within the ran-
domwalk implicitly compares the neighborhood struc-
tures of a given node pair. The time complexity of
RW-ST is a function of the time required to process

RW-ST(G)
Input: A graph G
Output: A set of clusters C
Construct a random walk RW on G
Find-Cycles(RW)
for each node u in G

C(u) := u
for each pair of nodes u and v in G

S := Sameness(u, v)
if S > 0

C(u) := C(u) [C(v)

Figure 5: High-level description of RW-ST.

the random walk and the time required to calculate
sameness for all node pairs. As mentioned above, we
use a random walk of length O(n2) and �nd all cycles
in the random walk in O(n2) time. Processing a cycle
of length lc requires O(lc) operations, yielding worst-
case time complexity of O(n3) to process the random
walk. However, in practice the average lc value seems
to grow sublinearly in n. Calculating the sameness
of a node pair requires O(n) operations, resulting in
O(n3) time to calculate sameness values for all O(n2)
node pairs. Since processing the random walk and cal-
culating sameness values both have complexityO(n3),
the overall worst-case complexity of RW-ST is O(n3).
RW-ST is observed to be much faster since most node
pairs have no cycles in common, thus eliminating the
need to calculate their sameness. The space require-
ments of our heuristic are O(n2) because the CC ar-
ray records the cycle count for each node pair. Sparse
matrix techniques can be used to reduce the required
space at the expense of added time complexity.

4 Experimental Results
We tested the RW-ST method on two very dis-

tinct classes of inputs: (i) the random clustered in-
puts GGar(m;n; pint; pext) studied by Garbers et al.
[7], and (ii) the Primary and Test circuit netlists from
the MCNC benchmark suite. Three di�erent experi-
ments were performed: (1) discovery of known clusters
in GGar graphs; (2) DS measures of MCNC bench-
mark clusterings generated by RW-ST and the match-
ing based compaction (MBC) scheme of Bui et al. [2];
(3) two-phase Fiduccia-Mattheyses (FM) style parti-
tioning using RW-ST and MBC clusterings.

Garbers et al. [7] presented a class of random
graphs GGar(m;n; pint; pext), where m is the number
of clusters, n is the size of a cluster, and an edge (u; v)
is independently present with probability pint if u and
v are in the same cluster and probability pext other-
wise. We used this class of random examples in our
�rst set of experiments, to determine whether RW-
ST could �nd the \correct" graph clustering. Our
results are compared against the published statistics
in [7]. The RW-ST algorithm was run on walks of
length (nm)2 and 10(nm)2 in order to see how walk

length a�ected solution quality. The results of Table 1
show that RW-ST gives much more consistent results
than (k; l)-connectivity. For walks of length 10(nm)2,
RW-ST found 10 distinct clusters for each benchmark
tested. In contrast, (k; l)-connectivity found \correct"
clusterings for only two of the benchmarks, even when
we allow the best results over a range of k values.
This gives experimental con�rmation of the self-tuning
property inherent in RW-ST.

The \proper" �eld in the table indicates which of
the 10-clustering or the 1-clustering (i.e., the com-
plete circuit) has higher DS quality. Note that for
GGar(10; 100; 0:1;0:004) these two values are nearly
identical, i.e. this circuit no longer has an obvious
clustering structure by our criterion.

The second set of experiments compared the RW-
ST method with the matching based compaction
(MBC) method of Bui et al. [2] by examining the
DS quality of their respective clusterings on MCNC
benchmarks. To ensure a \fair" comparison, we re-
quired the MBC clustering to have the same number of
clusters as the RW-ST clustering. The original MBC
results in [2] were based on constructing a clustering
by �nding a random maximal matching of the nodes.
However, the number of clusters in an RW-ST cluster-
ing will normally be much less than half the original
size of the circuit. We therefore modi�ed the original
MBC code to iteratively compute maximal random
matchings, with each new matching performed on the
graph induced from the previous clustering, until the
desired reduction in problem size was obtained.

Table 2 shows the DS quality of the RW-ST and
MBC clusterings. The RW-ST clusterings uniformly
dominate the MBC clusterings in terms of DS qual-
ity. In addition, the improvement in DS quality is
greater for larger circuits, possibly indicating that the
random matching method breaks down as the prob-
lem size increases. For the two large examples Test04
and Test05, we observe improvements in DS quality of
over 30%. Finally, note that the work of [4] only an-
alyzed the Primary1 and bm1 benchmarks, obtaining
DS qualities of 0.922 and 0.852, respectively.

To further con�rm the greater utility of the RW-ST
clusterings over MBC clusterings, we ran Fiduccia-
Mattheyses (FM) partitioning on the resulting clus-
tered graphs. These results are also summarized in
Table 2, and we readily observe that the MBC clus-
terings produce very poor partitionings. This is some-
what surprising, since random matching based clus-
tering was reported to be an e�cient way of obtaining
good initial starting points for the Kernighan-Lin ap-
proach [1] [2].

Our �nal experiments tested the original conjecture
in [1], namely, that a good clustering will improve the
solution quality of FM partitioning. For each heuris-
tic clustering, we applied a two-phase FM algorithm
which in the �rst phase partitioned the graph induced
by the clustering, and then in the second phase used
the expanded partition from the �rst phase as the
starting point for FM partitioning on the \at" cir-
cuit.

The results of this experiment are summarized in
Table 3. Note that the results presented in Tables 2

proper Garbers RW-ST (nm)2 RW-ST 10(nm)2

m n pint pext (by DS) (k; l) Big/Small Big/Small Big/Small

100 10 0.1 0.0001 10 (2,2) 9/3 10/57 10/20
100 10 0.1 0.0002 10 (2,2) 3/3 10/62 10/20
100 10 0.1 0.0003 10 (2,2) 3/0 10/90 10/24
100 10 0.1 0.0004 10 (2,2) 1/0 10/88 10/27
100 10 0.1 0.001 10 (3,2) 9/49 10/264 10/61
100 10 0.1 0.002 10 (3,2) 1/45 6/881 10/242
100 10 0.1 0.003 10 (3,2) 2/40 0/1000 10/427
100 10 0.1 0.004 10/1 (3,2) 1/40 0/1000 10/527

Table 1: Comparison of random walk based clustering with (k; l)-connectivity based clustering.
Randoms walks of lengths (nm)2 and 10(nm)2 were examined. The results give the numbers \Big"
and \Small" for each clustering: following the presentation of Garbers et al., \Big" is de�ned as the
number of clusters containing more than 1

10
n nodes, while \Small" is the number of nodes that do

not belong to any \Big" cluster.

MBC RW-ST
Benchmark Size DS Areas Net cut DS Areas Net cut

19ks 2844 1.166 5619:5383 456 1.578 5501:5501 153
bm1 882 1.189 1812:1668 94 1.221 2197:1283 39

PrimGA1 833 1.258 1719:1712 82 1.325 2180:1251 37
PrimSC1 833 1.258 1377:1376 91 1.325 1701:1052 40
PrimGA2 3014 1.238 4187:4186 303 1.566 4464:3909 154
PrimSC2 3014 1.238 3877:3829 266 1.566 4079:3627 145
Test02 1663 1.231 38141:18909 75 1.593 37132:19918 42
Test03 1607 1.185 14748:7481 132 1.566 12629:9600 74
Test04 1515 1.297 21105:20935 61 1.879 21055:20985 45
Test05 2595 1.275 62437:10161 51 1.689 39067:33531 10
Test06 1752 1.331 8485:8483 381 1.367 9444:7524 89

Table 2: DS qualities and Fiduccia-Mattheyses partitioning results of RW-ST and MBC clusterings.

and 3 are the best of 20 trials. We compared the re-
sults from running the two-phase FM partitioning al-
gorithm on RW-ST and MBC clusterings against the
results from running FM partitioning on the original
circuit. Also in conformance with [2] we veri�ed that
the average degrees of the MBC clustering graphs were
all greater than three (in fact, they ranged from 8 to
15, which more than meets the criterion given by Bui
et al. [2] for the two-phase strategy to return \near-
optimal" Kernighan-Lin results). In both cases there
was a signi�cant improvement over the standard FM
solution quality, with a 12% improvement obtained us-
ing MBC clusterings and a 17% improvement obtained
using RW-ST clusterings. These results in some sense
con�rm the conclusions of [2].

An interesting observation is that the huge discrep-
ancy in FM partition quality between the RW-ST and
MBC clusterings, as shown in Table 2, are not re-
ected in the two-phase FM partitioning results, i.e.,
a large improvement in the quality of the starting par-
tition does not translate into a correspondingly large

increase in the quality of the �nal partition.

5 Extensions
There are many promising directions for future

work. We are currently pursuing a parallel imple-
mentation of the random walk methodology. In other
words, we partition the random walk computation
evenly among p available processors; the cycle-�nding
within the randomwalks is also performed on separate
processors. This is appropriate for two reasons: (i) the
hierarchical organization and sparsity of real netlist
graphs permit only very short self-avoiding walks (i.e.,
cycles), and so little information is lost by breaking the
random walk up among several processors; and (ii) re-
sults of Coppersmith et al. [5] show that the separate
walks together will reproduce a single long walk.4 This
parallel approach would achieve perfect speedup over
our current uniprocessor formulation.

4This is in the sense that two random walks will \collide"
within a very short time when the graph is of low maximum
degree and small diameter, as is the case with netlist graphs.

Standard FM MBC RW-ST
Benchmark Size Areas Net cut Areas Net cut Areas Net cut

19ks 2844 5501:5501 151 (1.000) 5501:5501 156 (1.033) 5501:5501 146 (0.967)
bm1 882 1740:1740 65 (1.000) 1740:1740 54 (0.831) 1740:1740 58 (0.892)

PrimGA1 833 1716:1715 66 (1.000) 1718:1713 48 (0.727) 1716:1715 47 (0.712)
PrimSC1 833 1377:1376 59 (1.000) 1377:1376 61 (1.034) 1377:1376 58 (0.983)
PrimGA2 3014 4187:4186 242 (1.000) 4187:4186 187 (0.773) 4187:4186 165 (0.682)
PrimSC2 3014 3853:3853 235 (1.000) 3858:3848 175 (0.745) 3853:3853 159 (0.677)
Test02 1663 37132:19918 42 (1.000) 37132:19918 42 (1.000) 37132:19918 42 (1.000)
Test03 1607 11115:11114 84 (1.000) 13729:8500 59 (0.702) 13188:9041 71 (0.845)
Test04 1515 40732:1308 12 (1.000) 40938:1102 20 (1.667) 40932:1108 14 (1.167)
Test05 2595 38753:33845 24 (1.000) 62586:10012 4 (0.167) 39089:33509 5 (0.208)
Test06 1752 8484:8484 87 (1.000) 8484:8484 83 (0.954) 8484:8484 82 (0.943)

Table 3: Comparison of two-phase Fiduccia-Mattheyses partitioning of random walk clusterings and
random matching based clusterings. Standard Fiduccia-Mattheyses partitioning results are included
as a control. RW-ST clusterings lead to a 17% improvement in net cut over standard FM.

We also hope to use the DS quality measure as the
basis of other \implicitly global" clustering methods.
Certainly, standard combinatorial methods and direct
epitaxial-growth approaches can both be modi�ed to
incorporate the DS criterion within the clustering ob-
jective. Finally, the concept of a \natural clustering"
{ one that is independent of both the number and
size of the clusters { gives rise to new and interesting
layout problems. In particular, the placement phase
of layout becomes one of placing malleable, variable-
size clusters which are of varying DS quality; this is
certainly of independent research interest. Following
the basic premise of our work, the natural clustering
will also enable use of more sophisticated optimiza-
tions such as the spectral and relaxation methods in
the context of \fast placement" for the next generation
standard-cell and sea of gates designs.

Acknowledgements
Fiduccia-Mattheyses code was provided by J. Cong

and M. Smith. We are also grateful to A. Steger for
providing access to the preliminary results of [7].

References
[1] T. N. Bui, S. Chaudhuri, F. T. Leighton and M. Sipser,

\Graph BisectionAlgorithms with Good Average Case Be-
havior", Combinatorica 7(2) (1987), pp. 171-191.

[2] T. N. Bui, \Improving the Performance of the Kernighan-
Lin and Simulated Annealing Graph Bisection Algo-
rithms", Proc. ACM/IEEE Design Automation Conf.,
1989, pp. 775-778.

[3] C. K. Cheng and E. S. Kuh, \Module Placement Based on
Resistive Network Optimization", IEEE Trans. on CAD
3(1984), pp. 218-225.

[4] J. Cong, L. Hagen and A. B. Kahng, \Random Walks for
Circuit Clustering",Proc. IEEE Intl. Conf. on ASIC, June
1991, pp. 14.2.1 - 14.2.4.

[5] D. Coppersmith, P. Tetali and P. Winkler, \Collisions
Among Random Walks on a Graph", to appear in SIAM
J. Discrete Math..

[6] W.E. Donath, \Logic Partitioning", in Physical Design
Automation of VLSI Systems, B. Preas and M. Lorenzetti,
eds., Benjamin/Cummings, 1988, pp. 65-86.

[7] J. Garbers, H. J. Promel and A. Steger, \Finding Clusters
in VLSI Circuits", (preliminary version of paper in) Proc.
IEEE Intl. Conf. on Computer-Aided Design, 1990, pp.
520-523. Also personal communication, A. Steger, April
1992.

[8] L. Hagen and A. B. Kahng, \Fast Spectral Methods for
Ratio Cut Partitioning and Clustering", Proc. IEEE Intl.
Conf. on Computer-Aided Design, 1991, pp. 10-13.

[9] L. Hagen and A. B. Kahng, \A New Approach to E�ec-
tive Circuit Clustering", technical report UCLA CSD TR-
920041, 1992.

[10] J. D. Kahn, N. Linial, N. Nisan and M. E. Saks, \On the
Cover Time of Random Walks on Graphs", J. of Theoret-
ical Probability 2(1) (1989), pp. 121-128.

[11] B. W. Kernighan and S. Lin, \An e�cient heuristic for par-
titioning graphs",Bell Syst. Tech. J. 49(2) (1970), pp.291-
307.

[12] C. Sechen and K. W. Lee, \An Improved Simulated An-
nealing Algorithm for Row-Based Placement",Proc. IEEE
Intl. Conf. on Computer-Aided Design, 1987, pp. 478-481.

[13] R. S. Tsay and E. S. Kuh, \A uni�ed approach to parti-
tioning and placement" in Proc. Princeton Conf. on Inf.
and Comp., 1986.

[14] Y. C. Wei and C. K. Cheng, \Towards e�cient hierarchi-
cal designs by ratio cut partitioning", in Proc. IEEE Intl.
Conf. on Computer-Aided Design, 1989, pp. 298-301.

[15] Y.C. Wei and C.K. Cheng, \A Two-Level Two-Way Parti-
tioning Algorithm", Proc. IEEE Intl. Conf. on Computer-
Aided Design, 1990, pp. 516-519.

