
23.2 

Placement Feedback: A Concept and Method for Better 
Min-Cut Placements 

Andrew B. Kahng 
CSE and ECE DeDartments 
University of CA, San Diego 

La Jolla, CA, 92093 
abkQcs.ucsd.edu 

ABSTRACT 
The advent of strong multi-level partitioners has made top- 
down min-cut placers a favored choice for modern placer 
implementations. We examine terminal propagation, an im- 
portant step in min-cut placers, because it is responsible for 
translating partitioning results into global placement wire- 
length assumptions. In this work, we identify a previously 
overlooked problem - ambiguozls terminal propagation - and 
propose a solution based on the concept of feedback from 
automatic control systems. Implementing our approach in 
Capo (version 8.7 [5, lo]) and applying it to  standard bench- 
mark circuits yields up to 14% wirelength reductions for the 
IBM benchmarks and 10% reductions for PEKO instances. 
Experiments also show consistent improvements for routed 
wirelength, yielding up to 9% wirelength reductions with 
practical increase in placement runtime. In addition, our 
method significantly improves routability without building 
congestion maps, and reduces the number of vias. 

Categories and Sub jec t  Descriptors: B.7.2 [Design Aids]: 
Placement and routing 
General Terms: Algorithms 
Keywords: min-cut placement, terminal propagation, feed- 
back 

1. INTRODUCTION 
Recently, topdown min-cut placers have become a fa- 

vored choice for modern placer implementations [5, 14, 171. 
This choice is mainly motivated by the availability of strong 
multi-level partitioners, as well as the excellent scalability 
and runtime promise of the topdown paradigm. Apart 
from multi-level partitioners, the main components that de- 
termine a min-cut placement result include (i) topdown 
paradigm, (ii) cut-sequence, and (iii) terminal propagation. 
The focus of this work is the third component, terminal 
propagation, which is responsible for translating the parti- 

Permission to make digital or hard copies of all or pm of lhis work far 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation an the fint page. To copy othenvise, to 
republish, to post on semen or to redimibute to lists, requires prior specific 
permission and/or a fee. 
DAC2004. lune 7-11.2004, San Diego, California, USA. 
Copyright 2004 ACM 1-581 13-828-8/0410006 ... $5.00. 

Sherief Reda 
CSE Department 

University of CA, San Diego 
La Jolla, CA, 92093 
sreda @ cs. ucsd.edu 

tioner results into global placement wirelength assumptions. 
Few works address terminal propagation [9, 13, 11, 5, 6, 
141, and mostly follow the initial approach of Dunlop and 
Kernighan [9]. Other approaches try to omit terminal prop- 
agation altogether and opt for global or exact wirelength 
objectives [ll, 18, 171. Accurate terminal propagation is 
the subject of this work. 

We define ambiguous terminal propagations as propaga- 
tions arising from terminals that lie equally proximate from 
two snbblocks of a block being partitioned, so that their des- 
tination propagation is ambiguous. To solve this ambiguity, 
we propose a solution based on the feedback concept from 
feedback control systems. We use future cell locations to  
determine present terminal propagation results. Since these 
terminal propagations produce new results that  change the 
future output result, we iterate the feedback a number of 
times in order to  attain stable and consistent improvements. 
We propose and investigate variant "feedback controllers" to  
fine-tune the placement iesponse and optimize wirelength. 
We summarize our contributions as follows: 

We re-examine the repartitioning problem in the con- 
text of topdown placement and quantify its effect on 
the number of ambiguous propagations. 

e We show that the problem is similar t o  feedback sys- 
tems. 
We propose to  iterate the number of repartitions ac- 
cording to a number of different objectives, i.e., con- 
trollers. 
We develop efficient implementations. 

The organization of this paper is as follows. In Section 
2 we examine the top-down min-cut placement methodol- 
ogy and its essential component of terminal propagation. In 
Section 3 we present our feedback methodology for accurate 
terminal propagation control. Section 4 gives experimental 
results on various standard benchmarks. Finally, Section 
5 summarizes our work and presents directions for future 
work. 

2. BACKGROUND 
In this section we give a brief overview of top-down min- 

cut placement as well as the necessary background for ter- 
minal propagation. 

2.1 Top-Down Min-Cut Placement 
In min-cut placement, :a placement region is a collection 

of blocks. Each block corresponds to a fixed rectangle into 
which nodes of a hypergraph should be placed. Initially, the 
chip's core region is comprised of one block. The min-cut 

357 

http://abkQcs.ucsd.edu
http://ucsd.edu


Figure  1: A snapshot of a min-cut placement. Solid 
horizontal lines represent first level cuts,  a n d  solid 
vertical lines represent second level cuts. Dashed  
horizontal lines represent th i rd  level cuts, and 
dashed vertical lines represent four th  level cuts.  

placement methodology proceeds by recursively partition- 
ing each block and its associated hypergraph, and assigning 
the partitioned subhypergraphs to subblocks. All nodes (or 
cells) that are assigned to a subblock are considered, for 
wirelength estimation and terminal propagation purposes, 
to be placed at the geometric center of the block. Parti- 
tioning usually alternates between vertical and horizontal 
cuts, or as determined by the block aspect ratio 15, 161. The 
product of the partitioning process is a slicing Hoorplan as 
shown in Figure 1. The partitioning process continues un- 
til a certain block threshold size is reached, beyond which 
end-case placers 141 are used to assign actual locations of 
hypergraph nodes within their corresponding blocks. Given 
a set of disjoint blocks whose union is the entire placement 
region, we use the term placement level partitioning to in- 
dicate the process of partitioning each block exactly once. 
Hence, the whole min-cut topdown placement methodol- 
ogy can be considered as the progression of placement levels 
from a coarse top level down to a fine bottom level. 

2.2 Terminal Propagation 
Given a block being partitioned, terminal propagation [9] 

is the process through which nodes external to the block 
being partitioned are propagated as fixed terminals (nodes) 
to it. These terminals bias the partitioner toward placing 
movable nodes close to their terminals, hence reducing place 
ment wirelength. Given a block being partitioned to two 
subblocks and a node externally connected to this block, 
the subblock to which this node is propagated as a terminal 
is typically determined by (1) calculating the distances be- 
tween the node's position and the centers of the two new 
subhlocks, and (2) with some tolerance, propagating the 
node to the closer center as a fixed terminal. The follow- 
ing example illustrates terminal propagation. 

Example  1: If a block B is being partitioned into subblocks 
BI and Bz as shown in Figure 2 ,  then any nodes in block C 
that are connected to nodes in B will he propagated as fixed 
nodes to B,. There is no ambiguity about this propagation, 
and terminal propagations from any future bisections within 
block C will continue to be propagated to block BI .  How- 
ever, for some nodes this cannot he decided accurately. For 
example, all nodes in block A are equally proximate to both 
subblock centers of block B. These nodes lead to ambiguous 
terminal propagation, The traditional solution is to propa- 
gate such nodes to both subblock centers [6, 51, or not to 
propagate at all 19, 11. The likely intuition behind these 
propagation approaches is that  it is better to make no deci- 
sion rather than a bad decision. 

'. + 

Figure  2: Example  of t e rmina l  propagation. 

We notice that ambiguous terminal propagations lead to 
indeterminism of the final outcome of a placement level since 
this depends on the block partitioning order. As mentioned 
earlier, the proximity of a node to a subblock center is cal- 
culated with some tolerance recently referred to as partition 
fuzziness [l]. In Capo [5] ,  this partition fuzziness was orig- 
inally set to lo%, then later revised t o  33% [l]. This latter 
tolerance matches the value suggested by 191. The increased 
fuzziness helps to decrease the chance of ambiguous terminal 
propagations from making bad decisions. 

To eliminate the dependency of the placement problem 
on terminal propagation, Huang and Kahng [ll] introduced 
exact objectives (e.g., minimum spanning tree) to drive the 
partitioning process. In particular, net vectors are used as 
means to quantify the global contribution of each cut and 
to eliminate the need for propagation. [11] also introduces 
cycling of the partitioning process, which entails going over 
the blocks and repartitioning them since the results of par- 
titioning introduce new terminal locations and hence differ- 
ent minimum spanning tree costs. Also, Zhong and Dutt [18] 
and Yildiz and Madden [17] used global half-perimeter wire- 
length objectives to drive the partitioner. [18] gives exper- 
imental results showing improvements versus propagation- 
based approaches at the expense of increased runtime; [17] 
concludes that wirelength improvements using their approach 
are modest. 

A topdown placement How using terminal propagation 
can be conceptually summarized as in Figure 3(a). The 
input to the placement is the set of nodes iuitially placed 
at the center of the core placement region. Each placement 
level is divided into two steps: terminal propagation and 
block partitioning. 

3. ACCURATE TERMINAL PROPAGATION 
3.1 The Ambiguous Terminal Propagation 

Problem 
We define the ambiguous terminal propagation problem as 

follows. 

Ambiguous Terminal Propagation Problem: Given 
a current placement level, bisect all blocks with the most 
accurate possible terminal propagation, i.e., minimize the 
number of ambiguously propagated terminals. 

While one may revert to, e.g., block ordering techniques in 
an  attempt to minimize such ambiguity, our experimental 
investigation indicates that  reordering block partitioning 
does not yield the desired impact. We now examine how 
t o  solve the ambiguous terminal propagation problenl using 
the concept of placement feedback. 

358 



(a) Traditional placement flow 
.......... .................................................. ............................................... 

, ,yvHTy 
~ropagac,on Panilionins 

......................................... 

(b) Proposed placement flow with feedback loops for accurate control of terminal propagation 

-b. 

(a) Actual values of am- 
biguous terms before and 
after feedback for each 
nlacement level. 

F igure  3: A view of the placement  process. 

(b) Percentage reduction (c) Percentage reduction (d) Cumulative percent- 
in ambiguous terminals for in wirelength for each age reduction in wire- 
each placement level. placement level. length after each place- 

ment level. 
F igure  4: Relat ion be tween wirelength and ambiguous te rmina l  reduct ion a n d  placement  level. 

3.2 Placement Feedback 
In this work, we define placement undoing as merging two 

subblocks that were originally partitioned to be one block. 
Using placement undoing we can realize accurate terminal 
propagation. At each level of placement, all blocks are parti- 
tioned. After such partitioning, we undo all the partitioned 
blocks but we keep the node locations as assigned by the 
partitioning. That is, we uncouple the placement of a node 
for use in terminal propagation from its block location. We 
then use the new accurate node locations to re-do block par- 
titioning and update the node locations as necessary, i.e., the 
output of the placement level is taken hack as its input. This 
can be conceptually regarded as a feedback loop within each 
placement level as shown in Figure 3(b): this feedback takes 
the current result of a placement level and feeds it back to 
the input while undoing the placement. The following ex- 
ample provides an illustration. 

Example  2: If block B is being partitioned into two sub- 
blocks BI and Bz as shown in Figure 2 then we partition 
block B, propagating nodes in block A to both BI and Bz 
(ambiguous propagation). We then partition block A (into 
two subblocks AI and A z ) ,  as well as blocks C and D. Now 
that the whole placement level is partitioned, we undo all 
block partitionings, restoring the original structure. Despite 
our having undone the partitioning, we keep the node loca- 
tions as given by the partitioning results. We use these new 
locations as input to redo  the partitioning, where in this 
case no ambiguous terminal propagation occurs. The final 
node locations are adjusted according to the redone parti- 
tioning results. 

We stress that feedback only alters the terminal propa- 

gation results of ambiguous propagations'. We now empir- 
ically examine the relation between reductions in ambigu- 
ous terminal propagations and wirelength reduction as me& 
sured by half-perimeter wirelength (HPWL). We implement 
placement feedback in a.well-established top-down mip-cut 
placer, Capo (Version 8.7 [5, lo]). Our changes take 130 
lines of code. We report two metrics: (i) the percentage 
reduction in ambiguous terms per placement level, i.e., we 
calculate the number of ambiguous terminals before and af- 
ter feedback, and (ii) thc percentage reduction of HPWL 
per placement level, i.e.;we calculate the percentage reduc- 
tion in the HPWL estimate of each level (assuming, as is 
standard, pin locations at block centers). 

For the ibm0l benchdark [lo], we report the actual num- 
ber of ambiguous terminal propagations before and after 
feedback in Figure 4(a), the percentage reduction in ambigu- 
ous terminals in Figure 4(b), and the percentage reduction 
in HPWL in Figure 4(c). We can clearly see that two per- 
centage reductions in Figures 4(b) and 4(c) well-correlate 
with each other supporting our intuition. The total num- 
ber of ambiguous propagations across all placement levels 
drops from 82947 terminals to 22435 terminals, a reduction 
of around 73%. In another experiment, we quantify the con- 
tribution of each level feedback loop to the final HPWL. To 
do this, given a level i ,  we enable the feedback loops for all 
levels up to level i and disable all remaining m - i loops, 
where m is the total number of placement levels, and calcu- 
late the final HPWL. Our results are given in Figure 4(d) for 
all levels of the ibm0l benchmark. These results are aver- 

'For example, the propagation locations of nodes propa- 
gated from block C to B will not change by using feedback. 
It is only ambiguous propagations from block A to B that 
benefit from such feedback, and we use feedback to elimi- 
nate the indeterminism associated with ambiguous terminal 
propagations. 

359 



................... ........................... ....................... 
TIminal Laud0 TImUOd L l U d  I TC""i".l b*dn 

I i "" 

RopagniOn Pmllianing Roprgn"an PUtitiOWS +=HZi]Q+ ........................ ................. ........ I?+ . H ............. : ...... P 
U, U 

Figure 5 :  A feedback sys tem wi th  controllers. 

Table 1: Iterative feedback example. 

ages of 6 runs with different random seeds. We observe that 

....... 

1 4 - 4 7  

..... ... 

except for the very few last placement levels, reductions in 
HPWL increase almost linearly with each placement level. 
We next examine how to fine-tune the placement feedback 
via the concept of feedback controllers. 

1 1 2 8 4 ,  ..... 

,rennans 

Figure  6: Effect of i terative feedback with various 

mark. The horizontal ax is  represents t h e  number  of 
allowable feedback i terations,  while the vertical axis 
represents the final placement HPWL. 

3.3 Iterative Controlled Placement Feedback controllers on the final HPWL of t h e  ibmO2 bench- 
Since the feedback loop produces new outputs, it is nat- 

ural to iterate over the feedback loop a number of times 
until one attains the most accurate terminal propagation 
and hence the best overall reduction in HPWL. The prob  
lem with feedback systems is that the output might not 
be nredictable. i.e.. the svstem can IOOD indefinitelv or in measured by HPWL estimate) for the ibmO2 benchmark. ~" ~. ~~ r~~~~~~~~ , ~~ ~~~ 

the best Case converge rapidly to the final stable butput 
[8]. Typically, if the feedback response is not desirable then 
some feedback controller is inserted to enhance the response 
as shown in Figure 5. we now how variant ''con. 

We tabulate the results in Table 1. Iteration 0 indicates no 
feedback loop traversal. For Placement level 2: the man- 
tonic improvement controller stops after 1 feedback loop, 
passing the placement result of 0.188 HPWL; the best im- 

trollers" can be-used to attain the best overall reduction in 
HPWL. 

provement controller stops after 6 feedback looPS but Passes 
the placement of the best result seen which is 0.188; and 

~ 

If we that we loop each feedback for at k 
times, then to control the response from iterating over the 
feedback loops, we propose and investigate three variant 
controllers. 

'. Monotonic Improvement Control1er. In this scheme, 
the controller On iterating Over the feedback loop 
until there is no further improvement, i.e., as long as 
the placement's HPWL estimate continues to decrease. 
The controller stops iterating if an increase in HPWL 
is Observed, and then passes the previous partitioning 

the unconstrained controller passes the last placement with 
HPWL Of 0.209. For placement level 3: the monotonic 
improvement controller stops after 1 feedback loop passing 
the placement result of 0.533 HPWL; the best improvement 
(unconstrained) controller stops after 6 feedback loops and 
passes the best (last) placement of 0.526. At level 10, the 
three controllers exhibit the same behavior and report the 
exact of ~PWL=1.364 of the last feedback iteration. 

The last example shows the effect of iterative feedback and 
controller behavior on individual levels. The relationshin b e  

results to the next placement level. 
2. Best Improvement Controllec In this scheme, the con- 

troller allows k iterations over the feedback loop, then 
passes to the next placement level the results of the 
best iteration seen (in terms of HPWL). Notice that the 
controller does not feedback its best results; it always 
feeds the current output back to the input. Rather, it 
passes the best results seen in k iterations to the next 
placement level. 

3. Unconstrained Controller In this scheme, the con- 
troller allows feedback to follow its natural course over 
the k iterations and then passes the last result to the 
next placement level. From the perspective of an indi- 
vidual level's HPWL, this approach may not give the 
best HPWL estimate result. 

We illtistrate the behavior of iterative feedback and the 

~~~~ ~ ~ ~~~ 

tween individual placement level HPWL estimate and the 
number of feedback iterations does not appear to follow any 
obvious pattern. We now examine the final HPWL after 
all placement levels, i.e., we study the aggregate effect of 
all feedback loops and controllers on the final HPWL of the 
placement. We study the impact of both the allowable feed- 
back iterations and the controller type on the quality of the 
final placement as measured by HPWL. 

We plot our results for the same benchmark, ibm02, in 
Figure 6 .  In this figure, the horizontal axis represents the 
nuniber of feedback iterations, where iteration 0 represents 
Capo's results with no feedback. All our results are an av- 
erage of 4 seeds. From the results, we notice that the un- 
constrained controller produces the best final results. The 
monotonic improvement controller seems to he poorly per- 
forminn: on the other hand. the best immovement controller ~. ~ ~~~~~ ~ ~~ 

operation of various controllers in the next example. 

Example  3: We set the number of allowable iterations to 
k = 5, and observe a number of placement levels' output (as 

gives HPWL improvements over Capo but is not as good as 
unconstrained feedback. After a mere 3 iterations, the un- 
constrained controller reduces Capo's final HPWL by about 
8%. We have found that the controllers exhibit similar be- 

360 



haviors on other benchmarks. We believe that the good per- 
formance of the unconstrained controller is attributed to the 
passing of its results of the last feedback iteration to  the next 
placement level. While these results might not be the best 
in terms of one level's HPWL estimate, they represent an 
overall more accurate terminal location which translates to  
global consistent reduction of HPWL. We conclude that the 
unconstrained controller succeeds in eliminating the indeter- 
minism associated with ambiguous terminal propagations by 
transforming the individual placement-level response into an 
aggregate overall stable performance yielding 8.9% HPWL 
improvement. 

3.4 Accelerated Feedback 
Typically for each block partitioning, placers execute calls 

to  the multi-level partitioning a number of times and use 
the best reported results. For instance, Capo calls MLPart 
[3] twice to construct two cluster trees and only utilize the 
best cluster-tree partitioning results. We notice that in iter- 
ated feedback, it is only the last feedback loop that actually 
determines the partitioning results; other loops determine 
accurate locations for ambiguous terminals. Hence, in order 
to speed up our feedback implementation, we call MLPart 
once for each feedback loop while restoring to default Capo 
settings for the last feedback iteration. As the experimen- 
tal results demonstrate in Section 4, this improves runtime 
considerably. 

4. EXPERIMENTAL RESULTS 
Our heuristic is easy to  implement and only linearly in- 

creases runtime by the number of feedback iterations exe- 
cuted. While there are a number of academic top-down min- 
cut placers such as Capo [5], Dragon [14], and Feng-Shui [li], 
we decide to implement our technique in Capo due its code 
availability, excellent scalability, fast runtimes, and modular 
code design. We implement our technique in Capo, version 
8 r2. Our implementation efforts require 130 lines of C++ 
code3. We report experimental results on four benchmark 
sets: IBM Version 1 (2% whitespace) [lo], PEKO [7] (Suite 
l), and IBM Version 2 [15] (easy and hard instances). We 
run our experiments on a 2.4 GHz Xeon Linux workstation 
with 2 GB memory. 

In the first series of experiments we evaluate our technique 
on the IBM Version 1 benchmarks [lo] (2% whitespace) and 
give the results in Table 2. We report results of original Capo 
as indicated by Mode Capo, Capo with accelerated place- 
ment feedback as indicated by Mode AFB, and normal 
feedback as indicated by Mode FB. For all experiments, 
IC = 3 iterations of unconstrained feedback are used. All 
runtimes are reported in seconds as indicated by the label 
CPU (s). We give the best and average of 6 runs each with 
a different random seed, and report the percentage improve- 
ment in HPWL for both the best and average results. From 
the table, the average improvements for accelerated feedback 
and normal feedback are 4.70% and 5.43% respectively. We 
also observe that HPWL improvements peak at  nearly 14% 
for ibm05. Comparing runtimes, we find that accelerated 
feedback increases runtime to 2 . 0 2 ~  Capo and feedback in- 

2We found a bug that had disabled overlap removal; Capo's 
authors pointed out how to fix this with a trivial amount of 
coding 1121. 
3 0 ~ r  code modifications are incorporated in the March 2004 
release of Capo. 

creases runtime to  3 . 1 3 ~  Capo. We conclude that acceler- 
ated feedback significantly improves runtime with a small 
impact on solution quality as measured by HPWL. 

In a second series of experiments, we evaluate our tech- 
nique on the PEKO benchmarks [7]. For space limitations, 
we omit the detailed results. Results similar to  the IBM 
benchmarks are obtained with an average HPWL improve- 
ment of about 5%, and the PEKOl2 benchmark attaining 
up to  10% HPWL improvement. 

Our third series of experiments evaluate the impact of 
our heuristic on both routability and final routed wirelength 
of the IBM version 2 [15] benchmarks by using Cadence's 
WRoute Version 2.4. We report the experimental results 
in Table 3 for both IBM version 2 easy and hard instances. 
We also report our run results of both Dragon and Cadence's 
QPlace4 for sake of comparison; Capo and Dragon are the 
only two academic placers for which routing results have 
been reported. Due to  the unavailability of Dragon's source 
code, we are unable to  incorporate our techniques into it 
to  estimate the effect of our heuristic on its performance. 
Other placers like Feng Shui 2.0 121 produce packed place- 
ments by excluding whitespace distribution. The likely out- 
come of these packed placements is reduced wirelength at 
the expense of routability [15] 

ity as measured by the number of violations for all instances. 
For example, WRoute smoothly routes the feedback place- 
ment of the ibmOl easy instance with 0 violations. Routabil- 
ity of ibm07 and ibm08 is also dramatically enhanced. We 
stress that  routing of the feedback placements takes much 
less time than Capo's placements. Hence the total place- 
ment and routing runtime for Capo is larger than that with 
feedback. We conclude that the savings in routing time off- 
set any runtime increase in placement due t o  feedback. As 
for wirelength, we can see that improvements reach 9% for 
ibm0i. The average improvement for routed wirelength of 
all benchmarks is 5.81% with the best results for the ibmOle 
and ibm07h testcases. These reductions in wirelength im- 
prove total congestion and power consumption. Comparing 
the number of vias, we find that feedback produces the least 
number of vias in most cases. The total number of vias 
for Capo is 3416 x lo3, and 3362 x lo3 vias with feedback 
(3371 x lo3 vias for Dragon and 3470 x lo3 for QPlace). 
These reductions in number of vias may improve both the 
manufacturing yield and total delay. 

From Table 3, our proposed heuristic improves the routabil- 

5. CONCLUSIONS 
In this paper we study the problem of ambiguous ter- 

minal propagations which introduces indeterminism in the 
placer performance. We diminish this indeterminism using 
the concept of feedback. In feedback, future node locations 
control present terminal propagation. This is realized by 
undoing a placement level after its partitioning and feeding 
back the resultant node locations to the placement level as 
input for partitioning. This feedback scheme is iterated, as is 
typically done in feedback control systems. We also propose 
and compare a number of variant controllers t o  fine-tune the 
feedback response. Implementing our approach in Capo and 
applying it to  standard benchmark yields up to 14% HPWL 
reductions for the IBM general instances, 10% HPWL re- 
ductions for the PEKO (Suite 1) instances, and 9% actual 

40nly QPlace placement runtimes are reported on a Sun 
Ultra 10 running Solaris 8. 



Table 2: Results for the IBM instances (2% whites- 
pace) for 6 random seeds. Mode indicates whether 
results are for original Capo (version 8.7), Capo 
with accelerated feedback (AFB), or normal feed- 
back (FB). For all instances, we use the uncon- 
strained feedback controller with 3 feedback iter- 
ations. We report the average HPWL results of 6 
seeds. CPU(s) represents the total CPU time in 
seconds. 
wirelength reductions for the hard and easy instances. In 
addition, the proposed approach improves routability, the 
routing runtime, and the number of vias. 
Acknowledgments: The authors would like to  thank Igor 
L. Markov from the University of Michigan for the useful dis- 
cussions and for suggesting a number of ideas for improving 
feedback runtime. 

6. REFERENCES 
[I]  S. Adye, I. L. Markov and P. Villarrubia, "On Whitespace 

and Stability in Mixed-Size Placement," in P m c .  IEEE 
International Canfwence o n  Computer Aided Design, 2003, 
pp. 311-317. 

[2] A. Agnihotri, M. Yildiz, A. Khatkhate, A. Mathur, S. Ono and 
P. Madden, "Fractional Cut: Improved Recursive Bisection 
Placement," in Pmc. IEEE International Conference on 
Computer Aided Design, 2003, pp. 307-310. 

[3] C. J .  Alpert, J .  H. Huang and A. B. Kahng, "Multilevel 
Circuit Partitioning," in Proc. ACM/IEEE Design 
Automation Conference, 1997, pp. 530-533. 

Standard-Cell Layout," in Proc. ACM/IEEE International 
Symposium an Physical Design, 1999, pp. 90-96. 

[5] A. E. Caldwell, A. B. Kahng and I. L. Markov, "Can Recursive 
Bisection Alone Produce Routable Placements?" i n  Pmc. 
ACM/IEEE Design Automation Conference, 2000, pp. 
477-482. 

Partitionem and End-cse  Placers for Standard-cell Layout," 
IEEE Tronsactians on Computer-Aided Design 01 Integrated 
Circuits and Systems, vol. 19(11), 2000, pp. 1304-1313. 

[7] C. Chang, J.  Cong and M. Xie, "Optimality and Scalability 
Study of Existing Placement Algorithms," in Proc. IEEE Asia 
and Soath Pacific Design Automation Conference, 2003, pp. 
621-627. 

[8] R. Dorf and R. Bishop, Modern Contml Systems, 9th ed., 
Prentice ~ d l ,  2000. 

[4] A. Caldwell, A. Kahng and 1. Markov, "End-Case Placers for 

[6] A. E. Caldwell, A. B. Kahng and 1. L. Markov, "Optimal 

Circui t  Mode C P U  Rou t ing  Resui ts  
10 Imp= 

(easy and hard). Mode indicates whether the re- 
sults represents original Capo's results or Capo with 
accelerated feedback (AFB). CPU represents the to- 
tal (placement + routing) CPU time in seconds. For 
routability results, we report the number of routing 
violations, vias and routed wirelength (WL). Impr 
indicates the improvement percentage in wirelength 
for feedback over Capo. All placements were routed 
using the Linux version of Cadence WRoute 2.4. 

191 A. E. Dunlop and B. W. Kernighan, " A  Procedure for 
Placement of Standard-Cell VLSI Circuits," IEEE 
Pansactions on Computer-Aided Design of Integmted 
Circuits and Systems, vol. 4(1),  1985, pp. 92-98. 

1101 h t t p : / / v l ~ i ~ ~ d . u ~ ~ d . e d u / G S R C / b ~ ~ k ~ h ~ l f / S l ~ ~ ~ / C ~ p ~ ,  GSRC 
Bookshelf. 

[ll] D. JLH. H u n g  and A. E. Kahng, "Partitioning-Based 
Standard-Cell Global Placement With an Exact Objective," in 
Pmc. ACM/IEEE International Symposium on Physical 
Design, 1997, pp. 18-25. 

[12] I. L. Markov, Private communication, November 2003. 
1131 P. R. Suaris and G. Kedem, "A Quadrisoction-Based 

Combined Place and Route Scheme for Standard Cells," IEEE 
Transactions on Computer-Aided Design of Integmted 
Circuits and Systems. vol. 8(3), 1989, pp. 234-244. 

(141 M. Wang, X. Yang and M. Sarrafzadeh, "DRAGON2000: 
Standard-Cell Placement Tool for Large Industry Circuits," in 
IEEE Proc. Interrrotionol Conference on Computer Aided 
Design, 2001, pp. 260-263. 

[I51 X. Yang, B. Choi and M. Sarrafzadeh, "Routability Driven 
White Space Allocation for Fixed-Die Standard-Cell 
Placement," in Prac. ACM/IEEE Intemational Symposium 
on Physical Design, 2002, pp. 4247. 

[16] M. Yildiz and P. Madden, "Improved Cut Sequences for 
Partitioning Based Placement," in Pmc. ACM/IEEE Design 
Automation Conference, 2001, pp. 776-779. 

[I71 M. Yildir and P. Madden, "Global Objectives for 
Standard-Cell Placement," in Proc. IEEE Great Lakes 
symposium on VLSI, 2001, pp. 68-72. 

1181 K. Zhang and S. Dutt, "Effective Partition-Driven Placement 
With Simultaneous Level Processing and Global Net Views,'' 
in Pmc. IEEE International Conference on Computer Aided 
Design, 2000, pp. 171-176. 

362 


