
On Legalization of Row-Based Placements

Andrew B. Kahng
CSE and ECE Departments
University of CA, San Diego

La Jolla, CA, 92093
abk@cs.ucsd.edu

Igor L. Markov
EECS Department

University of Michigan
Ann Arbor, MI, 48109

imarkov@eecs.umich.edu

Sherief Reda
CSE Department

University of CA, San Diego
La Jolla, CA, 92093
sreda@cs.ucsd.edu

ABSTRACT
Cell overlaps in the results of global placement are guaran-
teed to prevent successful routing. However, common tech-
niques for fixing these problems may endanger routing in a
different way — through increased wirelength and conges-
tion. We evaluate several such techniques with routability
of row-based placements in mind, and propose new ones
that, in conjunction with our detail placer, improve overall
routability and routed wirelength. Our generic two-phase
approach for resolving illegal placements calls for (i) bal-
ancing the numbers of cells in rows, (ii) removing overlaps
within rows through a generic dynamic programming pro-
cedure. Relevant objectives include minimum total pertur-
bation, minimum wirelength increase and minimum max-
imum movement. Additionally, we trace cell overlaps in
min-cut placement to vertical cuts and show that, if bisec-
tion cut directions are varied, overlaps anti-correlate with
improved wirelength.

Empirical validation is performed using placers Capo
and Cadence QPlace, followed by various legalizers and de-
tail placers, with subsequent routing by Cadence WarpRoute.
We use a number of IBMv2 benchmarks with routing in-
formation. Our legalizer reduces both Capo and QPlace
placements’ wirelength by up to 4% compared to results
of Capo legalized by Cadence’s QPlace in the ECO mode.

Categories and Subject Descriptors: B.7.2 [Design
Aids]: Placement and routing
General Terms: Algorithms
Keywords: Detailed placement, legalization, min-cut place-
ment

1. INTRODUCTION
With the advent of strong multi-level min-cut partition-

ers, recursive min-cut placement (e.g., [9, 22]) has emerged
as a powerful and scalable technique that quickly produces
placements with reasonable wirelength. Nevertheless, it
often produces overlaps between several percent of cells.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’04, April 26 – 28, 2004, Boston, Massachussetts, USA.
Copyright 2004 ACM 1-58113-853-9/04/0004 ...$5.00.

These overlaps must be resolved by detail placement, po-
tentially increasing wirelength and impacting routability.

The origins of cell overlap in quadratic or analytical
placements can be traced to relaxations of non-overlapping
(or slot) constraints [14, 11, 21, 13]. Resulting illegal place-
ments often have cells placed between rows, requiring a
legalizer that can assign cells to rows [15]. On the other
hand, global min-cut placers automatically assign cells to
rows through partitioning, confining overlaps to same-row
cells.

To formalize the legalization problem, we introduce the
following notation. We assume a placement area composed
of a set of r rows {ρ1, ρ2, . . . , ρr} and that for each row ρi,
ω(ρi) is the total row width and Ci = {c1, c2, . . . , cm}1 is
the set of cells that are placed in ρi, where cj is placed
to the left of ck if j < k. The horizontal cell position of
cell cj is given by x(cj), the vertical location by y(cj) and
the cell width by w(cj). A row-based placement is called
legal if and only if the placement meets the following two
constraints:

1. No row ρi is assigned more cells than its capacity,

i.e.,
� |Ci|

j=1 w(cj) ≤ ω(ρi).

2. No two distinct cells cj and ck in the same row over-
lap: x(cj) + w(cj) ≤ x(ck) if y(cj) = y(ck) and
x(cj) ≤ x(ck).

We measure cell width in terms of the number of sites
it occupies in a row. The amount of overlap in an illegal
row-based placement is quantified by counting the number
of consecutive cell pairs that overlap. Assuming that cells
are sorted in their respective rows by their horizontal posi-
tions, this takes O(n) time for n cells. On the other hand,
calculating all pairs of cells that overlap takes O(n2). Sev-
eral other metrics can be used to quantify overlaps: the
number of cells involved in overlaps, the number of sites
covered by at least two cells. Our preference is motivated
by what is reported by MetaPlacer/Capo8.7 [9, 5], espe-
cially that this metric gives a good feel of how severe cell
overlaps are in a given placement. We informally capture
the overlap removal problem as follows:

Row-Based Placement Legalization Problem: Given
a row-based cell placement, alter the cell positions to meet
constraints (1) and (2) with minimum increase in wire-
length or minimum total perturbation of cell positions.

1Ci should rather be written as {ci
1, c

i
2, . . . , c

i
m} to avoid

ambiguity in describing two different rows cells; neverthe-
less, we opt for the simpler notation in the text.

214

In this work, we (1) examine the effect of cut-sequence
choice on the amount of overlap, (2) propose site-granular
solutions to solve the legalization problem, and (3) pro-
pose an accurate legalization procedure that optimizes a
number of objectives while legalizing. These objectives
include (min) Half-Perimeter Wirelength (HPWL), (min)
total cell movement and (min) max cell location pertur-
bation. The last two metrics are proposed as means to
preserve the freespace distribution and hence routability
of the design. We apply our legalizer to placements pro-
duced by QPlace5.2 from Cadence and Capo8.7 [9, 5] to
legalize and/or improve wirelength by up to 4%.

The organization of this paper is as follows. Section 2
studies the effect of cut sequences on the amount of over-
lap and wirelength. In Section 3, we develop an overlap re-
moval procedure and compare possible optimization objec-
tives during legalization. We implement our overlap pro-
cedure and compare the various overlap objectives on the
IBM benchmarks in Section 4. Finally, Section 5 summa-
rizes the main contributions of this work and notes future
directions for research.

2. NECESSITY OF OVERLAP REMOVAL
FOR MIN-CUT PLACEMENTS

With any placement strategy, row-based global place-
ments can potentially have overlaps. Though our present
methods apply to legalization of any row placement, the
min-cut context is of particular interest. In this section, we
explain why overlaps are inherent in (wirelength-driven)
min-cut placement. We examine the relationship between
cut sequences, overlaps, freespace, and wirelength. We
start by introducing some notation. Let the placement
area be composed of r rows, and the total cell area (weight)
is equal to w, with maximum individual cell weight of
wmax. We also assume that all cells have single-row heights
and that necessary condition for a placement with no over-
laps - that the total capacity of the r rows is at least w -
is satisfied.

Consider the basic case where there exists only r = 2
rows. For this case, the following fact is known ([18], page
268).

Fact 1. If the cells of total weight w are bisected into
two halves to be placed in r = 2 rows, then a sufficient
condition for a placement with no overlaps is that one row
has area ≥ w/2 + wmax.

Fact 1 implies that in the worst case, one partition will
contain cells with total weight w/2+wmax, while the other
partition will contain cells with total weight w/2 − wmax.
Since rows are arranged in a parallel fashion within the
placement area, there is no way of simultaneously increas-
ing the size of one row and decreasing the size of the other.
This leads to the following lemma.

Lemma 1. For r = 2, a sufficient condition2 a placement
with no overlaps is to have freespace ≥ 2wmax, with each
row having ≥ wmax freespace.

On the other hand, if a single row is partitioned ver-
tically then no freespace is needed since the vertical cut
line can be shifted to adjust for the partition weights, thus

2We assume a placer that will not introduce overlaps when
it is not necessary to do so. Typically, placers will re-
partition blocks to best fit the partitioned cells [9, 1].

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30

N
um

be
r

O
f O

ve
rla

ps

FreeSpace Percentage

H-V Cut Sequence

All-H Cut Sequence

Figure 1: Relationship between available freespace
and number of overlaps for the All-H and (alter-
nating) H-V cut sequences.

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140

W
ire

le
ng

th
 (

x1
0^

4)
/N

um
be

r
of

 O
ve

rla
ps

Number of Vertical Cuts

Wirelength

Overlaps

Figure 2: Relationship between number of verti-
cal cuts, total wirelength and number of overlaps.
Wirelength is reported in units x104.

avoiding overlaps [1]. We can now generalize Lemma 1 to
the case of r > 2 rows. Without loss of generality, we as-
sume that r = 2k for some k ∈ Z+.

Lemma 2. If cells of total weights w are recursively
bisected to be placed in r = 2k rows then a sufficient
condition for a placement with no overlaps is that each
row has 2(1 − 1/r)wmax freespace, for a total freespace of
2(r − 1)wmax freespace in the layout.
Proof. The proof is by induction. For the base case
r = 2, the lemma is true from Lemma 1. Assume that
the lemma is true for some r = n; we show that it is also
true for r = 2n. If the theorem is true for r = n then
we need 2(1 − 1/n)wmax freespace for each row. Hence,
the total capacity of each row is w/n + 2(1 − 1/n)wmax.
If each row is sliced into two, then from Lemma 1, each

new row should have capacity w/n+2(1−1/n)wmax

2
+wmax =

w
2n

+ 2(1 − 1
2n

)wmax, for a total of 2(r − 1)wmax.
Lemma 2 gives the amount of freespace sufficient to pro-

duce a placement with no overlaps if the cells are recur-
sively bisected into r > 2 rows using only horizontal cuts.
Note that vertical cuts will follow the horizontal cuts once
individual rows are attained; however, in this case the ver-
tical cuts produce no overlaps as mentioned above in the
discussion of Figure 1. In practice, typical placers produce
alternating H-V cut sequences. That is, horizontal cuts
(H) are followed by vertical cuts (V), and vertical cuts are

215

followed by horizontal cuts, and so forth. Some placers
use the block aspect ratio in determining the cut direction
with the resulting cut sequence typically alternating be-
tween horizontal and vertical cuts unless the initial place-
ment area is far from being a square. The reason for such
cut sequences is minimizing wirelength [19, 9, 24].

We expect that such alternating sequences produce larger
number of overlaps since a vertical cut divides a set of n
rows into 2n disconnected subrows. This is in contrast
to a horizontal cut, which does not increase the number
of subrows. An alternating H-V cut sequence stops mak-
ing horizontal cuts after it has made r cuts, during which
time r vertical cuts are executed. Hence, the total num-
ber of disconnected subrows is r2. This larger number of
disconnected subrows leads to harder packing resulting in
increased overlap.

We empirically validate our arguments by examining the
effect of vertical cuts, cut sequences and the freespace re-
quired for a placement with no overlaps. We use Capo
[9, 5] as our min-cut placer. Given a benchmark, we
gradually increase the amount of freespace and examine
the effect of the introduced freespace on the amount of
overlap. Figure 1 plots the overlap-freespace relationship
for both the all-H and H-V cut sequences. Clearly, as
available freespace increases, overlaps decrease. Further-
more, the all-horizontal cut sequence requires less freespace
to produce non-overlapping placements than the H-V se-
quence, e.g., for ibm01 [4, 22] the all-H sequence produces
non-overlapping placement at a threshold of approximately
3.45% freespace, while the H-V sequence requires around
22% freespace to eliminate overlap. From Lemma 2 and
the benchmark characteristics, we calculate the freespace
bounds. We find that for the all-H sequence, the calculated
freespace bound using Lemma 2 is 3.7% which appears
close to the actual empirical value. We also see that H-V
cut sequences - in Capo8.7, the choice of the cut sequence
depends on the block aspect ratio - produce a dramati-
cally larger number of overlaps and that overlaps cease to
exist after larger amount of freespace than the all-H cut
sequence.

We also empirically study the relationship between cut
sequences, overlaps and total wirelength. In this exper-
iment, we control the number of vertical cuts executed
during recursive bisection before single rows are attained.
As more vertical cuts are allowed, we expect less total
wirelength but more overlaps. We introduce into Capo
a parameter that limits the number of vertical cuts taken.
As we increase the threshold of vertical cuts that are al-
lowed to be executed, we record both the total wirelength
and number of overlaps from the placer’s built-in report-
ing mechanisms. Figure 2 shows this relation for the ibm01
benchmark. The horizontal axis represents the allowable
number of vertical cuts before individual rows are attained,
while the vertical axis gives both the total wirelength (x104)
and the number of cells overlapping. The curves show that
the vertical cuts are a significant factor in producing over-
laps yet are essential for wirelength minimization. We con-
clude:
Conclusion: The cut sequences that produce minimum
overlap (all H- sequences) are exactly the cut sequences
that produce largest wirelength, and vice-versa. Further-
more, vertical cuts on multiple rows (or subrows) are the
reasons for a significant number of overlaps; nevertheless,
they are essential for wirelength minimization.

Overlaps are thus a natural consequence of min-cut place-
ment, and increasing freespace and allocating it in a uni-
form manner [8] helps reduce the amount of overlap. While
it is attractive to produce legal placements from the start,
our experiments (cf. Figure 1 and 2) indicate that this
would require cut sequences far from optimal from the
wirelength perspective. In addition, re-partitioning tech-
niques [1] may reduce overlaps resulting from vertical cuts
but typically never eliminate them especially for large bench-
marks. With this conclusion in mind, it is natural for plac-
ers like Capo [9] or Dragon [22] to apply legalization during
detailed placement (after global placement). In the next
section, we address this problem while preserving impor-
tant placement metrics such as wirelength and routability.

3. OVERLAP REMOVAL SOLUTIONS
We now develop an accurate overlap removal procedure

and study various objectives for overlap removal. Our
overlap solution is based on a two-phase approach. In
the first phase, row capacities are met, and in the second
phase, overlaps within all rows are removed.

3.1 Cell Juggling to Meet Row Capacity
Constraints

In our first phase of overlap removal, we make sure that
for each row, the sum of row cell sizes does not exceed
the total row capacity. We develop a simple heuristic to
achieve this objective with small impact on HPWL. We de-
fine cell juggling as moving cells only in the vertical direc-
tion. Since HPWL is independent for vertical and horizon-
tal directions, cell juggling conserves the total horizontal
wirelength.

Using the notation introduced in Section 1, we define the
row surplus S(·) of some row ρi as the difference between

the total row cell width
� |Ci|

j=1 w(cj), and the row capacity

ω(ρi), i.e., S(ρi) =
� |Ci|

j=1 w(cj) − ω(ρi). We measure cell
width according to the number of sites occupied in a row.
In the first step we calculate the surplus of all rows and
rank the rows according to their surplus in a non-increasing
order. Then for each row ρi with surplus S(ρi) > 0, we
try to find a cell cj ∈ Ci such that juggling cj to some
row ρk with S(ρk) < 0 and w(cj) < |S(ρk)| introduces the
minimum increase in the wirelength. We note that juggling
is possible since we assume that the total cell area of the
design is less than the total design area. We also note
that for this phase we neglect any overlap resulting from
juggling some cell cj to row ρk since the second phase
guarantees overlap removal within a row. The complete
procedure for cell juggling is given in Figure 3.

3.2 Row legalization
In this subsection, we develop an accurate procedure

that guarantees removal of cell overlaps within a row. We
consider each row as set of ordered sites S = {s1, s2, . . . , sn}.
For each row ρi, our goal is to place its set of cells Ci with
no overlap, i.e., for any two cells cj and cj+1, x(cj) +
w(cj) ≤ x(cj+1), where x(.) indicates the leftmost site oc-
cupied by a cell. To produce a placement with no overlaps,
we construct a directed acyclic graph G = (V, E) as shown
in Figure 4 with vertex set V = {0, . . . , n} × {0, . . . , m},
and edge set

216

Input: An overlapped placement where row capacitances are not met.
Output: An overlapped placement where row capacitances are met.

1. for each i = 1 to r: calculate the surplus of row ρi as follows S(ρi) = � |Ci|
j=1 w(cj) − ω(ρi).

2. Rank the rows in a non-increasing order according to the surplus.

3. for each row ρi where the S(ρi) > 0

4. while S(ρi) > 0

5. Initialize δbest = ∞.

6. for each cell cj ∈ Ci:

7. for each k = 1 to r:

8. if S(k) < 0 and |S(k)| > w(cj) then

9. measure the increase in HPWL δHPWL if cj is juggled to row ρk.

10. if δHPWL < δbest then δbest = δHPWL, ρbest = ρk, and cbest = cj .

11. Move the cell cbest to row ρbest, and update the surplus values of rows ρk and ρi.

Figure 3: The juggling procedure to meet row capacity constraints.

E = {(j, k − 1) → (j, k) | 0 ≤ j ≤ m, 1 ≤ k ≤ n} ∪ {(j −
1, k) → (j, k + w(cj)) | 0 ≤ j ≤ m, 1 ≤ k ≤ n − w(cj)}

The set of edges E is composed of the union of horizontal
edges and diagonal edges in G. We denote each edge by its
start (tail) and end (head) point. A legal non-overlapping
placement corresponds to finding a directed path from the
origin vertex (0, 0) to the final vertex (m,n). While any
such path produces a legal placement, it is highly desirable
to minimize the impact on placement metrics. We now in-
troduce and compare three objectives.

1. Minimum Perturbation (minPERB): We seek
to legalize a row using the minimum total cell dis-
placements from the original locations. In this case,
we label each diagonal edge by the difference between
its start position (j−1, k) in the graph and the actual
cell position x(cj) in the row, i.e., the cost of edge
(j − 1, k) → (j, k + w(cj)) is |x(cj) − k|.

2. Minimum HPWL (minHPWL): We seek to le-
galize a row using the minimum increase in HPWL.
In this case, we label each diagonal edge starting at
(j − 1, k) by the difference in HWPL from placing a
cell cj in position k rather than its current location
of x(cj). We note that methods as [17, 6] also min-
imize HPWL using dynamic programming but not
in the site-granular way that we do but rather using
piece-wise linear properties of HPWL.

3. Minimum Maximum Perturbation (minMAX):
We seek to legalize a row minimizing the maximum

nn−1654320

Cell 2

Cell 1

Cell 3

Cell m

1

Figure 4: Shortest path computation for legalizing
a row placement.

displacement from the original locations. We label
the diagonal edges as in the minPERB case.

We label all horizontal edges by zero for all metrics. Re-
alizing the objectives then corresponds to calculating the
shortest path in G (except minMAX which corresponds
to a path with the minimum max edge cost). Since G is
directed-acyclic graph, the shortest path can be calculated
using topological traversal of G in O(mn) steps as given
in Figure 5.

While applying one of the aforementioned objectives over
all rows in a placement will certainly legalize the place-
ment, we note that the minHPWL objective can be ap-
plied iteratively to further optimize the wirelength while
retaining the legality of the placement. We refer to this
iterative version of minHPWL by minHPWLit. Using
this objective, legalization is repeatedly iterated over the
whole chip until the improvement in wirelength drops be-
low 0.1%. In general, we have found that iterating until
there is no further improvement only enhances the solution
quality by about 0.17% with respect to the solution qual-
ity of the stopping criterion of 0.1%. This improvement
comes at the expense of additional CPU time, hence we
opt to stop iterating if the improvement between the last
two iterations is less than 0.1%.

As explained earlier, our overlap procedure is based on a
detailed site by site consideration, nevertheless, we will see
that runtimes are not of concern since legal placements are
produced in practical runtimes. On the other hand, such
detailed handling offers an advantage in optimizing met-
rics such as minMAX or minPERB. Also, it automatically
solves a number of other practical issues such as handling
of subrows in the placement area. These subrows may exist
from placement of core components. These can be auto-
matically handled by disallowing any diagonal edges in the
sites of the rows that intersect with such core blocks. For
example, if a core block occupies from sites s1 to s2 width
and rows from some row ρf to row ρh then in legalizing
any of these rows, we remove all the diagonal edges orig-
inating from any site k, where s1 ≤ k < s2 (These edges
can be removed by simply setting their weight to ∞).

3.3 Experimental Results
We implement the proposed overlap removal strategy

within Capo8.7 (the latest open-source version of Capo as
of October, 18 2003). We use a binary built in the Meta-

217

Input: Row ρi, Set of cells Ci = {c1, c2, . . . , cm} ordered from left to right.Placement objective.
Output: An non-overlapped placement of Ci attaining the input objective.

1. Initialize cost(0, 0) = 0. for j = 1 to m: cost(j, 0) = ∞. for k = 1 to n: cost(0, k) = 0

2. for j = 1 to m

3. for k = 1 to n − w(cj)

4. if objective is minPERB, minHPWL then cost(j, k) = min(cost(j, k − 1), cost(j − 1, k − w(cj)))

5. if objective is minMAX then cost(j, k) = min(cost(j, k − 1), max(cost(j − 1, k − w(cj)), |k − w(cj) − xcj
|)

5. return cost(m, n)

Figure 5: Topological shortest path calculation for achieving various objectives.

Placer package of the UCLApack distribution [5], which
is a wrapper around Capo that invokes a legalizer and
a simple detail placer.3 Capo’s detail placer RowIroning
is used in some experiments and turned off in others (-
noRowIroning) — normally it optimizes a legal placement
by selecting groups of 7-8 consecutive cells in each row and
independently re-placing them using an optimal branch-
and-bound procedure [7]. Such “optimization windows”
are systematically moved through each row with a small
step (2-3 cells). All reported HPWL values for Capo and
QPlace are produced by the HPWL evaluator in from the
GSRC bookshelf and closely agree with QPlace reports.

We run Capo on 2.4 GHz Pentium Xeon Linux work-
station with 2 GB memory, while Cadence QPlace is run
on Sun Ultra 10 machines with 1 GB memory (note that
runtimes are not directly comparable). We empirically val-
idate the results of previous sections with the following four
experiments on a proprietary industrial circuit, as well as
on “easy” versions of IBM version 2 benchmarks [23].
Experiment 1 applies the proposed overlap removal pro-
cedure to Capo’s placements of IBMv2 benchmarks. For
comparison, we legalize Capo placements using either Capo’s
legalizer or QPlace (version 5.2) in ECO mode (QP -ECO).

Results are reported in Table 1 for the easy instances.
For space limitations, we do not tabulate results for hard
instances. We observe that

• Capo’s internal legalizer sometimes fails to completely
remove overlaps, e.g., for ibm09 and ibm10 “hard”
(not tabulated due to space limitations).

• minHPWLit gives the best improvement in HPWL
but at the cost of runtime

• Both QPlace -ECO and our codes legalize all place-
ments

• Our legalization and detail placement reduces HPWL
by up to 4% compared to QPlace -ECO

Experiment 2 estimates the impact of legalization on
routability by trying to route alternate placements of the
ibm01 benchmark with Cadence’s WRoute (version 2.3).
Table 2 reports three relevant routability metrics. and sug-
gests that wirelength minimization increases routing vio-
lations by up to 7.35% compared to the minPERB and
minMAX objectives. Our experience indicates that such
routing violations do not occur when the original place-
ment was legal as we will shortly see in Experiment 4.
Experiment 3 compares our legalizers and detailed plac-
ers to existing tools: (i) QPlace in the -ECO mode, (ii)

3The internal legalizer in MetaPlacer/Capo8.7 has been
turned off by default due to a trivial coding bug, which we
fixed for our experiments.

Capo’s detail placer RowIroning [9] which optimally or-
ders small groups of cells in rows. QPlace -ECO removes
all overlaps, but our minHPWLit optimization further im-
proves wirelength by up to 2.3%, according to results in
Table 3. Routed wirelengths and the number of routing
violations, measured after WRoute, indicate that minHP-
WLit does not impact routability. The additional use of
RowIroning further improves HPWL by 2% (for a total
of about 5%), but increases the number of routing viola-
tions so much that WRoute aborts. This is consistent with
experiments in [9] which do not use RowIroning.

4. CONCLUSIONS
Global top-down row-based placers typically produce a

small number of overlapping cells, that we trace to cuts
perpendicular to rows. As naive legalization increases wire-
length and can impact routability, we propose and evalu-
ate several techniques for legalization and detailed place-
ment. A particular issue that has not been addressed in
the literature is that improving wirelength during detailed
placement can be detrimental to routability.

Our contributions can be summarized as follows:

• We tabulate the influence of freespace and bisection
cut sequence on wirelength improvement and the num-
ber of overlaps, showing that the latter two anti-
correlate.

• We contribute a generic overlap remover based on a
shortest-path computation.

• We empirically compare several possible legalization
objectives, including their effect on routability.

• Our legalizer reduces the wirelength of Capo and
QPlace placements by up to 4% compared to legal-
izing by QPlace in the -ECO mode.

5. REFERENCES
[1] S. Adya, I. Markov and P. Villarrubia, “On

Whitespace and Stability in Mixed-Size Placement,”
in IEEE Proc. of Intl. Conf. on Computer-Aided
Design, 2003, pp. 311-317.

[2] S. N. Adya et al., “Benchmarking for Large-Scale
Placement and Beyond,” ACM/IEEE Intl. Symp.
Phys. Design, 2003, pp. 95-103.

[3] S. Akers, “On the Use of the Linear Assignment
Algorithm in Module Placement,” in ACM/IEEE
Proc. of Design Autom. Conf., 1981, pp. 13–144.

[4] C. J. Alpert, “The ISPD98 Circuit Benchmark
Suite,” in ACM/IEEE Intl. Symp. on Physical
Design, 1998, pp. 18–25.

[5] UCLA Physical Design Tools,
“http://vlsicad.cs.ucla.edu/software/PDtools,”

218

[6] U. Brenner and J. Vygen, “Faster Optimal
Single-Row Placement with Fixed Ordering,” in
Design, Autom. and Test in Europe, 2000, pp.
117–122.

[7] A. E. Caldwell, A. B. Kahng and I. L. Markov,
“Optimal Partitioners and End-case Placers for
Standard-cell Layout,” IEEE Trans. on
Computer-Aided Des., vol. 19(11), pp. 1304-13, 2000.

[8] A. Caldwell, I. Markov and A. Kahng, “Hierarchical
Whitespace Allocation in Top-down Placement,”
IEEE Trans. on Computer-Aided Design , vol.
22(11), 2003.

[9] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can
Recursive Bisection Alone Produce Routable
Placements?” in ACM/IEEE Proc. of Design
Autom. Conf., 2000, pp. 477–482.

[10] T. Chan, J. Cong, T. Kong and J. Shinnerl,
“Multilevel Optimization for Large-Scale Circuit
Placement,” in IEEE Proc. of Intl. Conf. on
Computer-Aided Design, 2000, pp. 171–176.

[11] C. K. Cheng and E. S. Kuh, “Module Placement
Based on Resistive Network Optimization,” IEEE
Trans. on Computer-Aided Design, vol. 4, July 1984,
pp. 115–122.

[12] K. Doll, F. Johannes and K. Antreich, “Iterative
Placement Improvement by Network Flow
Methods,” IEEE Trans. on Computer-Aided Design,
vol. 13(10), 1994, pp. 1189–1200.

[13] H. Eisenmann and F. M. Johannes, “Generic Global
Placement and Floorplanning,” in ACM/IEEE Proc.
of Design Autom. Conf., 1998, pp. 269–274.

[14] K. M. Hall, “An r-Dimensional Quadratic Placement
Algorithm,” Management Science, vol. 17, pp.
219–229, 1970.

[15] D. Hill, “Method and System for High Speed
Detailed Placement of Cells Within an Integrated
Circuit Design,” US Patent 6370673, 2001.

[16] S. W. Hur and J. Lillis, “Mongrel: Hybrid
Techniques for Standard Cell Placement,” in IEEE
Proc. of Intl. Conf. on Computer Aided Design,
2000, pp. 165–170.

[17] A. B. Kahng, P. Tucker and A. Zelikovsky,
“Optimization of Linear Placements for Wirelength
Minimization with Free Sites,” in Asia and South
Pacific Design Autom. Conf., 1999, pp. 241–244.

[18] T. Lengauer, Combinatorial Algorithms for
Integrated Circuit Layout, 1st ed. John Wiley &
Sons, 1990.

[19] K. Takahashi, K. Nakajima, M. Terai and K. Sato,
“Min-Cut Placement With Global Objective
Functions for Large Scale Sea-Of-Gates Arrays,” in
IEEE Trans. on Computer-Aided Design, vol. 14(4),
1995, pp. 434–446.

[20] J. Vygen, “Algorithms for Detailed Placement of
Standard Cells,” in Design, Autom. and Test in
Europe, 1998, pp. 321–324.

[21] J. Vygen, “Algorithms for Large-Scale Flat
Placement,” in ACM/IEEE Proc. of Design Autom.
Conf., 1997, pp. 746–751.

[22] M. Wang, X. Yang and M. Sarrafzadeh,
“DRAGON2000: Standard-Cell Placement Tool for
Large Industry Circuits,” in IEEE Proc. of Intl.
Conf. on Computer-Aided Design, 2001, pp. 260–263.

[23] X. Yan, B. K. Choi and M. Sarrafzadeh,
“Routabtility Driven White Space Allocation for
Fixed-Die Standard-Cell Placement,” in ACM/IEEE
Intl. Symp. on Physical Design, 2002, pp. 42–47.

[24] M. C. Yildiz and P. H. Madden, “Improved Cut
Sequences for Partitioning Based Placement,” in
ACM/IEEE Proc. of Design Autom. Conf., 2001, pp.
776–779.

Circuit Mode Status overlaps HPWL CPU Impr
(s) (%)

ibm01e Capo raw illegal 964 5.517 -
Capo leg legal 0 5.586 -
QP -ECO legal 0 5.639 1.0
minHPWL legal 0 5.519 6.9 2.13%
minPERB legal 0 5.623 1.3 0.28%
minMAX legal 0 5.699 1.3 -1.06%

minHPWLit legal 0 5.462 39.1 3.14%

ibm02e Capo raw illegal 1502 1.599 -
Capo leg legal 0 1.602 -
QP -ECO legal 0 1.624 12.0
minHPWL legal 0 1.579 15.2 2.77%
minPERB legal 0 1.604 2.1 1.23%
minMAX legal 0 1.607 2.2 1.05%

minHPWLit legal 0 1.560 76.3 3.94%

ibm07e Capo raw illegal 2816 3.706 -
Capo leg legal 0 3.718 -
QP -ECO legal 0 3.756 29.0
minHPWL legal 0 3.695 37.5 1.62%
minPERB legal 0 3.730 8.5 0.69%
minMAX legal 0 3.760 8.1 -0.11%

minHPWLit legal 0 3.674 198.1 2.18%

ibm08e Capo raw illegal 3304 3.903 -
Capo leg legal 0 3.912 -
QP -ECO legal 0 3.944 34.0
minHPWL legal 0 3.886 55.0 1.47%
minPERB legal 0 3.917 4.7 0.58%
minMAX legal 0 3.935 5.2 0.23%

minHPWLit legal 0 3.862 235.7 2.08%

ibm09e Capo raw illegal 3575 3.253 -
Capo leg legal 0 3.275 -
QP -ECO legal 0 3.311 34.0
minHPWL legal 0 3.251 37.8 1.81%
minPERB legal 0 3.285 4.8 0.79%
minMAX legal 0 3.321 7.3 -0.30%

minHPWLit legal 0 3.237 139.3 2.23%

ibm10e Capo raw illegal 8811 6.222 -
Capo leg legal 0 6.306 -
QP -ECO legal 0 6.349 51.0
minHPWL legal 0 6.246 324.2 1.62%
minPERB legal 0 6.312 286.5 0.58%
minMAX legal 0 6.434 291.5 -1.34%

minHPWLit legal 0 6.226 371.5 1.94%

Table 1: Results for IBM easy benchmarks. Capo
raw is Capo’s initial overlapping placement. Capo
leg is Capo’s legalizer. QP -ECO is Cadence
QPlace legalizer. minHPWL is the proposed legal-
izer with min HPWL movement. minPERB, min-
MAX, and minHPWLit are the three objectives
proposed in the text. CPU is the total legalizing
time in seconds. HPWL values for ibm01 is ×107,
and HPWL values for ibm02-ibm10 is ×108.

bench- Objective HPWL Global Routing Detailed
mark Metrics Routing

Overtrack OverCapacity violations
ibm01 minPERB 5.773 4489 3755 11743

minMAX 5.846 4489 3755 11743
minHPWLit 5.625 4616 3799 12602

Table 2: Effect of legalizing objective on routabil-
ity of Capo’s placements. For space limitations,
we give results for only one benchmark; data from
other benchmarks show similar trends.

benchmark QPLACE OUR Impr
wirelength violations wirelength violations (%)

ibm01 840769 0 820245 0 2.3%
ibm02 2098289 0 2113935 0 -0.56%
ibm07 4694388 0 4668722 0 0.63%
ibm08 5320330 0 5277750 0 0.93%
ibm09 3872250 0 3824083 0 1.29%
ibm10 7420895 0 7333763 0 1.21%

Table 3: Effect of legalizer on wirelength and
routability of Cadence’s QPlace placements on
IBM easy instances.

219

