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Implementation and Extensibility of
an Analytic Placer

Andrew B. Kahng, Member, IEEE, and Qinke Wang, Student Member, IEEE

Abstract—Automated cell placement is a critical problem in
very large scale integration (VLSI) physical design. New analytical
placement methods that simultaneously spread cells and optimize
wirelength have recently received much attention from both
academia and industry. A novel and simple objective function for
spreading cells over the placement area is described in the patent of
Naylor et al. (U.S. Pat. 6301693). When combined with a wirelength
objective function, this allows efficient simultaneous cell spreading
and wirelength optimization using nonlinear optimization tech-
niques. In this paper, we implement an analytic placer (APlace)
according to these ideas (which have other precedents in the open
literature), and conduct in-depth analysis of characteristics and
extensibility of the placer. Our contributions are as follows. 1)
We extend the objective functions described in (Naylor et al., U.S.
Patent 6301693) with congestion information and implement a
top-down hierarchical (multilevel) placer (APlace) based on them.
For IBM-ISPD04 circuits, the half-perimeter wirelength of APlace
outperforms that of FastPlace, Dragon, and Capo, respectively,
by 7.8%, 6.5%, and 7.0% on average. For eight IBM-PLACE v2
circuits, after the placements are detail-routed using Cadence
WRoute, the average improvement in final wirelength is 12.0%,
8.1%, and 14.1% over QPlace, Dragon, and Capo, respectively.
2) We extend the placer to address mixed-size placement and
achieve an average of 4% wirelength reduction on ten ISPD’02
mixed-size benchmarks compared to results of the leading-edge
solver, FengShui. 3) We extend the placer to perform timing-driven
placement. Compared with timing-driven industry tools, evalu-
ated by commercial detailed routing and static timing analysis,
we achieve an average of 8.4% reduction in cycle time and 7.5%
reduction in wirelength for a set of six industry testcases. 4) We
also extend the placer to perform input/output-core coplacement
and constraint handing for mixed-signal designs. Our paper aims
to, and empirically demonstrates, that the APlace framework is
a general, and extensible platform for “spatial embedding” tasks
across many aspects of system physical implementation.

Index Terms—Analytic placement, APlace, mixed-size, very
large scale integration (VLSI).

I. INTRODUCTION

AUTOMATED cell placement is a critical problem in very
large scale integration (VLSI) design. As deep submicron
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technology scales, new challenges arise for placement tools: de-
sign sizes are larger, turnaround times are shorter, and a variety
of additional physical and geometrical constraints must be ful-
filled simultaneously.

A common placement formulation seeks to minimize wire-
length under the constraint that cells do not overlap each other.
The current state-of-the-art placement tools can be classified
into two categories, based on how they obtain a placement
without cell overlaps [15]. The first class consists of algorithms
that refine the existing placement to obtain a better overlap-free
placement. For example, TimberWolf [52] is a well-known
annealing-based placement tool; it develops new placements
by permuting an existing placement. The second class of
algorithms uses top-down recursive partitioning to provide
the necessary cell spreading. Within this approach, a min-cut
objective [4], [32] has been successfully used. A number of
placement tools fall into this category: recursive partition
with min-cut objective [8], [23], [54], [60], (Capo, CPlace,
FengShui), quadratic placement [37], [53], [56] (GORDIAN,
PROUD), and analytic placement with linear wirelength [51]
(GORDIAN-L). Recently, the Dragon [57], [58] placement tool
was presented, combining annealing with recursive bisection.
Constructive methods based on (hybrids of) partitioning and
analytical techniques are usually fast and produce good results.
However, wirelength minimization may come at the cost of
routability, or the inability to handle hard constraints.

New analytical placement methods that simultaneously
spread cells and optimize wirelength have recently received
much attention from both academia and industry. In such
methods, forces based on the current cell distribution are ap-
plied to iteratively reduce cell overlaps. A quadratic objective
combining wirelength and additional forces is proposed by
[15]; in each iteration, a better spreading of cells is achieved
without excessive net stretching. Another model of cell at-
tracting and repelling (ARP) is presented in [16] and [17].
Attractors (dummy cells) are added to sparse regions to drag
cells from nearby dense regions, together with a cell repeller
model that captures the wirelength objective. The ideas of
additional forces and fixed pseudocells are also combined in
[24]. The difficulty of force and attractor-directed placement
methods is that wirelength is easily damaged by improper
forces and attractors. Recently, a fast placement algorithm
with good quality was presented in [55]. Quadratic wirelength
optimization and a cell shifting technique are iteratively applied
to obtain a high-quality placement without cell overlapping.
After quadratic optimization, a special cell-shifting technique
is used to reduce cell overlapping, and pseudopins and nets are
added to hold cells from clustering again in the next quadratic
optimization process.

0278-0070/$20.00 © 2005 IEEE
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A novel and simple objective function for spreading cells over
the placement area was proposed in the recent patent of Naylor
et al. [44]. Combined with a wirelength objective function, it
allows efficient simultaneous cell spreading and wirelength op-
timization using nonlinear optimization techniques. The focus
of our present paper is the implementation of an analytic placer
(APlace) according to this idea, followed by in-depth analysis
of characteristics and extensibility of the placer. While we im-
plement the placer relying largely on the description in [44], it
should be noted that this method integrates quite a few ideas
that have been published in the open literature, as we describe
in detail in Section II below. The main contributions of our paper
include the following.

1) We perform analysis and empirical studies of relevant
characteristics of the objective functions described in
[44].

2) We extend the objective functions with congestion in-
formation to improve the routability of results.

3) We implement a top-down hierarchical (multilevel)
placer (APlace) based on the objective functions. For
IBM-ISPD04 circuits, the half-perimeter wirelength
(HPWL) of APlace outperforms that of FastPlace,
UCLA Dragon (v2.2.3), and Capo (v8.8), respec-
tively, by 7.8%, 6.5%, and 7.0% on average. For eight
IBM-PLACE v2 circuits, after APlace’s results are
detail-routed using Cadence WRoute (SE5.4), the
average improvement in final wirelength is 12.0%
over Cadence QPlace (SE5.4), and 8.1% over UCLA
Dragon (v3.01), and 14.1% over Capo (v8.7).

4) We extend the placer to handle mixed-size place-
ment. Our extension is compared to recent academic
tools: UCLA mPG-MS [11], Feng Shui (v2.4) [35],
and a three-stage placement-floorplanning-placement
flow that uses Capo [1], [2]. For ten IBM-ISPD02
mixed-size circuits, the HPWL of our placer outper-
forms that of mPG-MS, Feng Shui and the Capo flow
respectively by 24.7%, 4.0%, and 26.0% on average.

5) We extend the placer to address timing-driven place-
ment.Ourextensioniscomparedtotwoindustryplacers:
QPlace (SE v5.4) and amoebaPlace (SoC Encounter
v3.2). When timing-driven placement is performed for
six industry circuits and placements are detail-routed
using Cadence WarpRoute (SoC Encounter v3.2), our
placer has a minimum cycle time that outperforms that
of QPlace and amoebaPlace respectively by 9.6% and
8.5%, as well as average improvements of 7.2% and
6.5% in routed wirelength, respectively.

6) We extend the placer to perform input/output (I/O)-
core coplacement for area-array I/O designs. I/Os can
be evenly distributed without damaging the wirelength
figure of merit.

7) We also extend the placer with constraint handling for
mixed-signal designs. Basic geometric constraints in-
cluding alignment, spacing and symmetry constraints
can be enforced during placement.

The remainder of this paper is organized as follows. Section II
discusses the objective functions of the placer. Section III

describes our implementation, and Section IV summarizes the
placement results. In Sections V and VI, we extend the placer
to handle mixed-size placement and timing-driven placement.
In Sections VII and VIII, the placer is extended with I/O-core
coplacement and constraint handling. The paper concludes in
Section IX.

II. PROBLEM FORMULATION

A basic goal of placement is to minimize wirelength subject
to the constraint that cells do not overlap. Therefore, the ob-
jective function for analytic placement historically includes two
terms: a density objective to spread cells, and a wirelength ob-
jective to minimize wirelength. In this section, we discuss the
basic objective functions that our placer uses and experiments
are performed to study characteristics of them.

A. Cell Spreading

One important objective of a placer is to distribute cells
evenly over the placement area. Constructive placement
methods can easily achieve this goal. Force-directed placement
methods apply forces based on the current area distribution
to move cells away from high-density regions and toward
low-density regions. However, it is difficult to choose appro-
priate forces; wirelength is often seriously damaged when the
cells are spread out.

To distribute cells evenly over the placement area, a generic
strategy is to divide the placement region into grids and then at-
tempt to equalize the total cell area in every grid. The straightfor-
ward “squared deviation” penalty for uneven cell distribution is

Penalty

(1)

However, this penalty function is not smooth or differentiable,
and is hence difficult to optimize. Naylor et al. [44] tried to
smooth the above penalty function, proposing a “bell-shaped”
cell potential function instead of a solid cell area function. For a
cell with center at Cell Cell with area , the potential
at grid point Grid Grid is given by

Potential

Cell Grid Cell Grid (2)

where

(3)

Here, defines the bell-shaped function, which is illustrated
in Fig. 1; controls the radius of any given cell’s potential
(range of interaction); and is a normalization factor so that

Potential , i.e., eachcellhasa totalpotential equal
to its area. Then, the penalty function in (1) is transformed to

Penalty

Potential (4)
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Fig. 1. Bell-shaped function.

TABLE I
CELL DISTRIBUTION RESULTS WITH DIFFERENT NUMBER OF GRID NODES AND

CELL POTENTIAL RADII (r’s) FOR THE ibm01-EASY CIRCUIT

where is the
expected total potential at the grid point .

We can use the conjugate gradient method to minimize the
penalty function in (4). Our implementation will be described
in detail in Section III. We calibrate our optimizer using the
ibm01-easy testcase from the IBM-PLACE 2.0 benchmark suite
[25]. Our stopping criterion is when the maximum (Manhattan)
movement of any cell between consecutive iterations is less than
30 units. Results with different numbers of grids and cell poten-
tial radii ( ’s) are summarized in Table I.

Definition 1: Discrepancy within area is defined as the
maximum ratio of actual total cell area to expected cell area over
all windows with area .

We use discrepancy to measure evenness of cell distribution.
In Table I, the second and fifth columns show the discrepancy
within 1% of the total placement area, for each of the cell dis-
tributions that the placer obtains. The number of iterations, and
total running times needed to meet the above convergence cri-
terion, are also shown in the table.

From these tests, we make the following conclusions. 1) The
finer the grid, the more iterations needed for the optimizer to
converge; however, a more even cell distribution is obtained. 2)
For finer grids, larger values of help to reduce the number of
iterations, although the running time per iteration is increased.
3) We observe serious oscillations in discrepancy when
and the number of grid nodes is larger than 60.

B. Wirelength Formulation

Minimization of wirelength is a common objective for cir-
cuit placement. Linear and quadratic wirelength objectives are
typically used; see, e.g., [39] and [51] for comparisons. The

quadratic objective function is used in many analytical place-
ment methods because it is continuously differentiable and can
be minimized efficiently by solving a system of linear equations.
Unfortunately, this is not true for linear objective functions, and
linear programming suffers from excessive computation times.
The Gordian-L objective [51] minimizes a linear wirelength
function using quadratic programming methods. Also, [38] pro-
poses an -order objective function to capture the strengths of
both methods.

While wirelength and overall placement quality is typically
evaluated according to the HPWL, this “linear wirelength” func-
tion cannot be efficiently minimized. Convex nonlinear approx-
imations of HPWL, which do not require net models and which
permit direct inclusion of nonlinear delay terms, are proposed
and well-studied in such papers as [3], [6], [33], and [34]. The
approach of Naylor et al. [44] follows along similar lines, and
uses a log-sum-exp method to capture the linear HPWL while
simultaneously obtaining the desirable characteristic of contin-
uous differentiability. The log-sum-exp formula picks the most
dominant terms among pin coordinates. For a net with pin co-
ordinates , the wirelength ob-
jective is

(5)

where is a smoothing parameter. is strictly convex,
continuously differentiable and converges to as
converges to 0. The log-sum-exp formula picks the most dom-
inant terms; it has been previously used in physical design ap-
plications such as transistor sizing [50].

We minimize the wirelength objective function using the
conjugate gradient optimizer. Initially, cells are randomly
distributed over the placement area, and then the wirelength
objective function in (5) is minimized. The program is stopped
after 300 iterations. Results with different smoothing parameter
values ( ’s) are shown in Table II. The wirelength calculated
according to (5) for the initial random placement is displayed
in the third column. Compared to the actual initial HPWL
of this random placement (i.e., Initial ), we
see that the wirelength formulation becomes more accurate
(closer to HPWL) when smaller values of are used. However,
with larger values, the wirelength objective function is more
smooth and can be minimized more quickly, and a smaller final
HPWL is obtained (e.g., final for ).

Combining the above two objectives, the analytic placer op-
timizes the following function:

(6)

The density term drives the spreading of cells and is always
changing with the current cell distribution. The wirelength term
draws connected components back toward each other.

III. DETAILED IMPLEMENTATION

We now describe implementation details of APlace.
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TABLE II
WIRELENGTH MINIMIZATION RESULTS WITH DIFFERENT SMOOTHING

PARAMETERS (�’s) FOR THE ibm01-EASY CIRCUIT

A. Conjugate Gradient Optimizer

We use the conjugate gradient method to optimize the objec-
tive function as described in (6). The conjugate gradient method
is quite useful in finding an unconstrained minimum of a high-
dimensional function . A detailed treatment, along with a
survey of descent-based methods for nonlinear programming,
can be found in [42].

In general, the conjugate gradient method finds the minimum
by executing a series of line minimizations (i.e., line searches).
A line minimization corresponds to one-dimensional function
minimization along some search direction. The result of one line
minimization is used as the start point for the next line mini-
mization. The method has the following form:

for
for

(7)

(8)

where denotes the gradient is a step length ob-
tained by a line search algorithm, is the search direction,
and is chosen so that becomes the th conjugate direc-
tion when the function is quadratic and the line search finds the
minimum along the direction exactly. Varieties of the conjugate
gradient methods differ in how they select ; the best-known
formulas for are due to Fletcher–Reeves, Polak–Ribiere, and
Hestenes–Stiefel. Our implementation uses the Polak–Ribiere
formula:

(9)

A Golden Section search method is used to find the step
length for each iteration. The length of the search interval
reduces by a factor of 0.618 (the golden ratio) or more in each
step, and converges linearly to zero.

The conjugate gradient iteration in (8) repeats until the fol-
lowing stopping criterion is reached: 1) a predetermined number
of iterations has passed; 2) the step length returned by the line
search function is small enough; or 3) the function value is not
changing significantly with additional iterations.

B. Control Factors

The weights of the wirelength and density objective functions
provide important control parameters to the placer. Intuitively,

a larger wirelength weight will draw cells together and prevent
them from spreading out, while a larger density penalty weight
will spread the cells out (without attention to wirelength). These
controls are managed by keeping the density weight fixed at
some constant, and setting the wirelength weight to be large
at the outset, but then decreasing this weight (by a factor of
two, or a smaller factor near the final placement) whenever the
conjugate gradient optimizer slows down and a stable solution
emerges. After every weight change, the conjugate gradient op-
timizer is used to compute a new stable state wherein cells are
distributed more evenly but wirelength is larger. The process re-
peats until the cells are spread evenly over the placement area.

The number of grid nodes, cell potential parameter and
wirelength smoothing parameter are also important control
knobs for APlace. According to the empirical studies discussed
in Section II above, the number of grid nodes should increase
during the whole placement process. Coarser grids at the be-
ginning spread out the cells faster, while finer grids at the final
stages help to reach a more even distribution. In our implemen-
tation, the cell potential radius is set to 2 for coarser grids in
order to reduce running times, and to 4 for finer grids. The wire-
length smoothing parameter is set to be half of the grid length.

C. Top-Down Hierarchical Algorithm

We use a top-down hierarchical approach to accelerate
APlace. During initialization, a hierarchy of clusters is con-
structed using MLPart 4.21, a leading-edge, open-source
min-cut hypergraph/circuit partitioner [7]. The top-down hier-
archical algorithm is described in Fig. 2. Notations used are
summarized as follows.

Cell.
Number of cells.
Maximum number of cluster levels.
Number of clusters at level .
Cluster of cells at level .

Area Total cell area of cluster .
Radius of cell’s potential.
Spacing of grids.
Wirelength smoothing parameter.
Objective function of the placer.
Gradient vector
Vector of cluster positions.
Vector of cell positions.

Subscript ranges, where not explicit, are
and .

For each level in the cell/cluster hierarchy, a coarse grid is
determined by the average cluster size. We compute the density
penalty by regarding cells in a cluster as a macro cell with area
equal to the total cell area of the cluster. For wirelength calcula-
tion, cells are assumed to be located at the center of the cluster.

Figs. 3 and 4 show how discrepancy and HPWL change
with successive iterations for the ibm01-easy circuit. The
clustering hierarchy for ibm01-easy has three levels. During
the first approximately 900 iterations, the placer is working at
cluster levels. Clustering helps to spread cells more quickly,
but wirelength is impaired during cell expansion. It is clearly
seen from the figures that when wirelength weight is decreased
and the conjugate gradient optimizer restarts, discrepancy
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Fig. 2. Top-down hierarchical APlace.

drops sharply and wirelength is often increased at first and then
refined during the optimization. When both discrepancy and
wirelength change slowly, we have a near stable suboptimal
solution for the current objective function; additional iterations
will not further reduce discrepancy and wirelength very much
and the wirelength weight should be reduced. Guided by these
figures, we set the iteration limit at 100 in our experiments
below.

D. Detailed Placement

The placement results of APlace have cell overlaps and need
to be legalized. A simplified Tetris [22] legalization algorithm is
implemented in APlace; this algorithm also bears strong resem-
blance to the method proposed in a technical report of Li and
Koh [40]. The Tetris legalization is applied after global place-
ment: Cells are sorted according to their vertical coordinates,
and then for each cell from left to right the current nearest avail-
able position is found. This greedy algorithm is very fast, with
negligible running time compared to that of global placement,
and increases the wirelength by about 4% for IBM-PLACE 2.0
circuits [25].

After legalization, the modules of orientation optimization
and “row ironing” from UCLApack [10] are applied to the re-
sults. Row ironing helps to improve wirelength by applying a
branch-and-bound placer in sliding windows. These algorithms
are fast (running times are ignorable compared to that of global
placement) and decrease the wirelength by about 2% for IBM-
PLACE 2.0 circuits [25].

E. Congestion-Directed Placement

To improve routability of placement results, we have inte-
grated congestion information into the objective functions to

Fig. 3. Discrepancy as a function of iterations for the ibm01-easy circuit.

Fig. 4. HPWL as a function of iterations for the ibm01-easy circuit.

TABLE III
PLACEMENT AND GLOBAL ROUTING RESULTS OF APlace WITH VARYING

CONGESTION ADJUSTMENT FACTORS (
’s) FOR THE ibm01-HARD CIRCUIT

direct cell distribution. We use Kahng and Xu’s accurate bend-
based congestion estimation method [31] in our placer. If a par-
ticular grid is determined to be congested (respectively, uncon-
gested), the expected total cell potential of the grid in (4) is
reduced (respectively, increased) accordingly. The sum of ex-
pected area potential over all grids is kept constant, and equal
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to the total cell area. Specifically, expected cell potential is ad-
justed as follows:

Congestion
Congestion

(10)

where is the congestion adjustment factor and decides the ex-
tent of congestion-directed placement.

Table III summarizes placement runs for the ibm01-easy cir-
cuit with different congestion factors ( ’s). Specific parameters
used for these runs are and . Wirelengths
before and after legalization are shown in the second and third
columns. Discrepancy within 1% placement area is shown in the
fourth column, and serves as a measure of evenness of cell dis-
tribution. The fifth column shows the total number of iterations.
Global routing is performed using Cadence WRoute (SE5.4).
The last two columns show the total wire length in the gcell
grid, and total number of overcapacity gcells; these values pro-
vide figures of merit for routability of the placement results.

According to these results, routability is approximately 38%
better with a congestion factor of 0.05, but deteriorates when
the congestion factor is larger. Wirelength of congestion-aware
placements is not seriously impaired.

IV. EXPERIMENTAL RESULTS

APlace is implemented in C++. We use the IBM-PLACE v2.0
benchmarks [25] as our test cases. These circuits include easy
and hard cases of eight designs. IBM-PLACE circuits are widely
used in the literature, and are becoming common benchmarks
for standard-cell placement.

Our results are compared with a leading industry placer,
Cadence QPlace (SE5.4) and the recent academic tools UCLA
Dragon (v3.01) [14] and Capo (v8.7) [10]. All placers read
the same LEF/DEF files and write DEF files as the placement
output. Results of Capo are legalized using Cadence QPlace
(SE5.4, ECO mode). The placements are then sent to Cadence
WRoute (SE5.4, global and final routing enabled and auto-stop
disabled) to be routed.

All the experiments of APlace, Dragon, and Capo are per-
formed on a Xeon server with 2.4-GHz CPU (double threads
on each CPU) and 4 GB of memory; QPlace and WRoute are
run on a Sun Ultra10 workstation with a 400-MHz CPU. We
run QPlace with full placement mode (-full), and Dragon with
fixed die mode (-fd). We run MetaPlacer for Linux, which in-
corporates Capo and orientation optimizer. Row ironing is dis-
abled (-noRowIroning) for MetaPlacer for better routability of
the placement results. One start of Dragon and of Capo is done
for each case in the experiments, since the whole flow of place-
ment and routing is very time consuming.

The APlace results with no congestion awareness are sum-
marized in Table IV. Specific parameters used for these runs
are: and . Wirelengths (meters) before
and after legalization are shown in the third and fourth columns.
Average wirelength increase after legalization is 3.7% (range:
1.3%–7.6%). Discrepancy within 1% placement area is shown

TABLE IV
PLACEMENT RESULTS OF APlace (NO CONGESTION AWARENESS)

FOR IBM-PLACE 2.0 CIRCUITS

in the fifth column and used to evaluate the evenness of cell dis-
tribution in APlace results. The last two columns show the total
number of iterations and running times in minutes.

The placement results with congestion awareness are sent to
Cadence WRoute (SE5.4) to be routed. The results are com-
pared to QPlace, Dragon and Capo in Table V. Routing results
include success (finished routing with no violations), finished
(with violations) and failure (because of time limit). For all
cases, the number of violations, final wirelength, the number
of vias and running times of WRoute are shown in the last four
columns.

According to the results, average placed wirelength improve-
ment over QPlace is 8.5% (range: 2.0%–11.9%); average im-
provement over Dragon is 4.4% (range: 1.8%–9.7%); average
improvement over Capo is 8.3% (range: 4.2%–10.9%). APlace
is faster (0.8X) than Dragon, but much (13X) slower than Capo.

We observe that almost all of the circuits are successfully
routable with good wirelength; finished routings with a small
number of violations can be manually fixed. Average improve-
ment of the routed wirelength over QPlace is 12.0% (range:
4.4%–18.6%); average improvement over Dragon is 8.1%
(range: 0.1%–12.3%); average improvement over Capo is
14.1% (range: 5.6%–20.3%). The routability of APlace’s re-
sults is better than that of Capo’s; routed wirelength of APlace
outperforms that of QPlace and Dragon with an average of
less than 2% increase in the number of vias and less than 80%
increase in running time of WRoute.

We also tested APlace on IBM-ISPD04 benchmarks [55].
These circuits are derived from IBM benchmarks, but have
fixed pads on the boundary. The APlace results with no con-
gestion awareness are summarized in Table VI. The results
are compared with those of FastPlace, Dragon (v2.2.3) and
Capo (v.8.8) reported in [55]. According to the results, av-
erage placed wirelength improvement over FastPlace is 7.8%
(range: 0.8%–11.4%); average improvement over Dragon is
6.5% (range: %–13.1%); average improvement over Capo
is 7.0% (range: 3.1%–11.1%). Running times (in seconds)
cannot be directly compared: Capo is run on a Sun Sparc-2
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TABLE V
PLACEMENT AND ROUTING RESULTS OF APlace (WITH CONGESTION

AWARENESS) FOR EIGHT IBM-PLACE 2.0 CIRCUITS WITH

COMPARISON TO QPlace, DRAGON AND CAPO

TABLE VI
PLACEMENT RESULTS OF APlace (NO CONGESTION AWARENESS)

FOR IBM-ISPD04 CIRCUITS

750-MHz machine and APlace is run on a PIII 1.4 GHz ma-
chine. On average, APlace is less than 4.3X slower than Capo
on IBM-ISPD04 benchmarks, and much slower (about 50X)
than FastPlace.

V. MIXED-SIZE PLACEMENT

As VLSI designs scale to billion-transistor complexities, de-
sign productivity increasingly requires the reuse of predesigned
or generated macro blocks (processing and interface cores, em-
bedded memories, etc.). This presents a “boulders and dust”
challenge to placers [5], where the sizes of placeable objects can
vary by factors of 10 000 or more. In this section, we extend the
APlace approach to address the mixed-size placement problem.
Our focus is on two issues: 1) the cell-spreading potential func-
tion and 2) legalization.

A. Previous Work

Modern application specific integrated circuit (ASIC) designs
are typically laid out in the fixed-die context, where the out-
line of the core area, as well as routing tracks and power/ground
distribution, are fixed before placement [8]. Mixed-size place-
ment becomes particularly complex in the fixed-die context be-
cause of its discreteness [2]. Traditional standard-cell frame-
works often cannot address this challenge smoothly, and must
resort to devices such as manual preplacement of blocks, with
an attendant loss of overall solution quality.

Recently, a three-stage placement-floorplanning-placement
flow [1], [2] has been proposed which places macro blocks and
standard cells without overlap. In the first step, all macros are
shredded into small pieces connected by fake wires. A stan-
dard-cell placer, Capo, is used to obtain an initial placement,
and the initial locations of macros are produced by averaging
the locations of faked cells created during the shredding
process. In the second step, the standard cells are merged into
soft blocks, and a fixed-outline floorplanner, Parquet, generates
valid locations of macros and soft blocks of movable cells.
Finally, with macros considered fixed, Capo is used again to
replace small cells. This approach scales reasonably well, but
wirelength results are often quite suboptimal.

A different approach is pursued by [11], wherein a simulated
annealing-based multilevel placer, mPG-MS, recursively clus-
ters both macro blocks and standard cells to build a hierarchy.
The top-level netlist is placed, and then the placement is gradu-
ally refined by unclustering the netlist and improving the place-
ment of smaller clusters by simulated annealing. Large objects
are gradually fixed without overlap during coarse placement,
and the locations of smaller objects are determined during fur-
ther refinement. Significant effort is needed for legalization and
overlap removal during this placement process.

Another recursive bisection-based placement tool, Feng Shui,
has been presented more recently in [35]. Rather than addressing
standard cells and macro blocks separately, the placer considers
them simultaneously via a fractional cut technique which al-
lows horizontal cut lines that are not aligned with row bound-
aries. When compared to previous academic tools, the Feng
Shui placer achieves surprising solution quality (as evaluated
by placed HPWL) and good scalability.

B. Potential Function for Mixed-Size Placement

As described in Section II-A, the density objective drives cell
spreading. The placement area is divided into grids, each cell
has a potential or influence with respect to nearby grids, and the
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placer seeks to equalize the total cell potential at each grid. For
standard-cell placement, the grid usually has a length greater
than the average cell width, and the radius of cell’s potential,
, is set to be a constant during optimization. However, for

mixed-size placement, the size range between large and small
objects can be as large as a factor of 10 000 [11], and the radius
of influence of a cell’s potential will need to change according
to the cell’s dimension. In particular, a larger block will have
potential with respect to more grids.

After investigation of several possibilities, we have chosen to
address the potential function for large macros in the following
simple way. Suppose a macro block has width . The radius
or scope of this block’s influence is , i.e., every grid
within the distance of from the block’s center has a
nonzero potential from this block. Moreover, the total potential
of the block over all grids is equal to the block’s area. Therefore,
the function in (2) becomes

(11)

where

(12)

so that the function is continuous when .

C. Legalization

A second key issue is that analytic placement results have cell
overlaps that must be legalized. After investigation of a variety
of approaches, we perform legalization in mixed-size placement
as follows. Cells are sorted based on a combination of vertical
coordinate and width, so that larger blocks may be fixed at a
position ahead of nearby small cells. We also scale the cell po-
sitions to the left side by a fixed factor (set to 0.90 in all of the
discussion and results below) so that 1) cells will not be pushed
outside the placement region and 2) horizontal overlaps among
macros can be properly resolved by the legalization.

When an initial global placement has many overlaps among
macros, legalization of mixed-size circuits can be extremely
challenging. Indeed, a greedy algorithm such as “Tetris” may
fail to find a valid position for one or more blocks, or wirelength
may be seriously damaged by movement of blocks. Fortunately,
the potential function described above allows our mixed-size
placer to distribute cells quite evenly in the global placement,
with little overlap among larger blocks. Hence, the greedy legal-
ization approach is still an acceptable adjunct even for mixed-
size placement: Wirelength increase after the legalization step
for our testcases is 6.5% on average (cf. an increase of approx-
imately 5% for pure standard-cell designs).

D. Experimental Results

We use ten circuits from the IBM-ISPD02 Mixed-Size Place-
ment Benchmarks [26] as our testcases. These circuits are pub-
licly available at the GSRC Bookshelf [19] and are widely used
in the literature.

TABLE VII
RESULTS OF OUR PLACER FOR TEN MIXED-SIZE CIRCUITS

TABLE VIII
COMPARISON OF OUR RESULTS WITH THE CAPO FLOW

mPG-MS AND FENG SHUI

Table VII summarizes the results for the ten mixed-size
circuits. The second and third columns show HPWLs (me-
ters) before and after legalization. The fourth column shows
the wirelength increase due to legalization, expressed as a
percentage. Average wirelength increase after the legalization
step for our testcases is 6.5%. As our placer does not perform
detailed placement, we use Feng Shui (v2.4) [35] as the de-
tailed placer. Wirelength (meters) after detailed placement and
percentage improvement are shown in the sixth and seventh
columns. We see that the average wirelength improvement after
the detailed placement step is 3.5%. All of our experiments are
performed on an Intel Xeon server with dual 2.4-GHz CPUs
(double threads on each CPU) and 4 GB of memory. Running
times of global and detailed placement (minutes) are shown in
the fifth and eighth columns, respectively.

Table VIII compares our results with those of recently pub-
lished papers that experiment with the same benchmarks. The
results of the three-stage placement-floorplanning-placement
flow, which uses the Capo standard-cell placer, were first
presented in [1] and further improved in [2], results of the
mPG-MS placer were presented in [11], and results of Feng
Shui (v2.4) are from [35]. Final HPWL values and running
times (minutes) for each placer are also shown in Table VIII.

According to the results, average wirelength improve-
ment of our placer over the Capo flow is 26.0% (range:
11.5%–34.0%); average improvement over mPG-MS is 24.7%
(range: 9.9%–40.1%); and average improvement over Feng
Shui is 4.0% (range: 7.3%–20.0%). Running times of the
placers cannot be directly compared, since the Capo flow used
2-GHz Linux/Pentium IV workstations, mPG used 750-MHz
Sun Blade 1000 workstations, and Feng Shui used 2.5-GHz
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Fig. 5. Placement before legalization of our placer for the ibm02 circuit.

Fig. 6. Placement after legalization of our placer for the ibm02 circuit.

Linux/Pentium IV workstations. However, APlace is much
slower than Feng Shui. Finally, Figs. 5 and 6 show placements
for the ibm02 benchmark before and after legalization.

VI. TIMING-DRIVEN PLACEMENT

Design value depends on performance; with device and in-
terconnect scaling, this presents greater challenges to timing-
driven placement. In this section, we extend the placer to ad-
dress timing-driven placement.

A. Previous Work

Timing-driven placement has been studied extensively. Ex-
isting approaches can be broadly divided into two classes: path-
based and net-based.

Atypicalpath-basedapproach[21],[28],[47],[48]usuallycon-
siders all or a subset of paths directly within the problem formula-
tion. The majority of this class of approaches are based on math-
ematical programming techniques. This class of algorithms usu-
ally maintains an accurate timing view during optimization, but
its drawback is relatively high complexity due to the exponential
number of paths that need to be simultaneously minimized.

For this reason, much of the recent timing-driven work [20],
[45], [46] has been net-based. Unlike path-based approaches

that handle paths directly, net-based approaches [15], [49] usu-
ally transform timing constraints or requirements into either
net weight or net length (or delay) constraints, and employ a
weighted wirelength minimization engine.

The process of generating net-length constraints or net-delay
constraints is called delay budgeting. The main idea is to
distribute slacks from the end-points of each path to constituent
nets along the path, such that a zero-slack solution is obtained
[12], [43]. A serious drawback of this class of algorithms is
that delay budgeting is usually done in the circuit’s structural
domain, without consideration of physical placement feasi-
bility. As a result, it may severely overconstrain the placement
problem.

Instead of assigning a delay budget to each individual net or
edge, net-weighting-based approaches assign weights to nets
based on their timing criticality. The basic idea is to put a higher
weight for nets that are more timing critical. Net-weighting
techniques have some favorable properties: relatively low
complexity, strong flexibility, and easy implementation. As
circuit sizes increase and practical timing constraints become
increasingly complex, these advantages make the net weighting
method more attractive.

There are two principles for assigning net weights. The main
principle used in most algorithms is that a timing critical net
should receive a heavy weight. For example, VPR [41] uses the
following formula to assign weight to an edge :

slack (13)

where is the current longest path delay, and is a constant
called the criticality exponent.

The other principle is path sharing: In general, an edge with
many paths passing through should have a heavy weight as well.
Path counting is a method developed to take path-sharing effects
into consideration by computing the number of paths passing
through each edge in the circuit. These numbers can then be
used as net weights. Another work [36] proposed a solution that
distinguishes timing-critical paths from noncritical paths, and
scale the impact of all paths by their relative timing criticality.
Given a weighting function slack , the weight assigned to
a particular edge is

slack (14)

where is the current longest path delay, and slack is the
slack of a timing critical path .

B. Slack-Derived Edge Weights

It is natural to apply the net weighting method in APlace to
perform timing-driven placement.

Our placer uses the following formula to assign weight
to an edge

slack (15)

where

(16)
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Fig. 7. Flow of timing-driven process in APlace-TD.

Here, is the criticality exponent.
delay slack delay is the slack

of path and is the expected improvement of the longest
path delay after this timing-driven iteration. The timing-driven
process may repeat a few iterations. The weight of a net that is
always timing critical is accumulated.

C. Timing-Driven Placement Flow

Fig. 7 shows the flow of timing-driven process at the final
stage of our placer. The near-finished placement of the placer is
sent to TrialRoute (SoC Encounter v3.2) to perform a fast global
and detailed routing. RC is extracted based on the routing result.
Then, we use a commercial tool, Pearl (SE v5.4) to do static
timing analysis (STA), and the resulting critical path delays are
imported into the placer to decide net weights based on timing
criticality and path sharing. The weighted wirelength objective
is then optimized using the Conjugate Gradient solver together
with the density objective.

D. Experimental Results

1) Impact of Net Weighting Parameters: Experiments are
performed to study the parameters of the net weighting formula
described in (15) and (16).

Table IX shows the timing-driven placement runs with
varying expected improvements ( ’s) and criticality expo-
nents ( ’s) for an industry testcase, indust1. The circuit is in
LEF/DEF/GCF/SDC format and has 7077 cells and 8032 nets.

Again, all experiments are performed on an Intel Xeon
server with dual 2.4-GHz CPUs (double-threaded) and 4 GB
of memory. Minimum cycle time (MCT) in nanoseconds is
reported by the STA to measure performance of timing-driven
placements, together with HPWL (in meters) and running
times (in minutes) of the placements, and routed wirelength (in
meters) and the number of vias of TrialRoute’s results.

The value of expected improvement decides how many
timing critical paths are considered for the net weighting. For
each value of expected improvement, timing-driven placements
are performed with criticality exponents between 1 and 19. The
MCT improvement in percentage with timing-driven placement
is shown in the last column of Table IX. The minimum cycle
time initially decreases with the criticality exponent; since
wirelength always increases, the minimum cycle time gradually
deteriorates when the criticality exponent is larger.

2) Comparison With Industry Placers: Results of our placer
are compared with two industry placers: QPlace (SE v5.4) and
amoebaPlace (SoC Encounter v3.2) in Table X. QPlace is run

TABLE IX
TIMING-DRIVEN RESULTS WITH VARYING EXPECTED IMPROVEMENTS (u’s)

AND CRITICALITY EXPONENTS (�’s) FOR THE INDUST1 CIRCUIT

on a Sun Ultra10 workstation with a 400-MHz CPU. Timing-
driven and nontiming-driven placements are sent to Cadence
WarpRoute (SoC Encounter v3.2) to do timing-driven routing.
RC is then extracted and Pearl (SE v5.4) is used to perform STA.

We use six industry circuits as our testcases. Two of them,
mac1 and mac2, are among the ISPD 2001 Circuit Benchmarks
[27] that first appeared in [13]. These circuits are also used
in [59] as benchmarks for timing-driven placement. Only Ver-
ilog files are available for these two cases; they are synthesized
with a commercial tool, Cadence BuildGates (v5.12). We use a
0.18- m standard-cell library as the LEF file and use the values
reported in [59] as the clock cycles for the two circuits. The other
four testcases are available in complete LEF/DEF/GCF/SDC
format.

In Table X, the second and third columns show the number
of cells and nets of the industry circuits. For each testcase, non-
timing-driven, and timing-driven placement are performed by
each placer. For the indust4 circuit, timing-driven QPlace fails
because of incompatible timing constraint file format. Placed
wirelengths (in meters) and running times (in minutes) of
each placement are summarized in the fifth and sixth columns.
APlace-TD usually has a better placed wirelength than industry
placers; but it is slower.

Timing-driven routing is performed with WarpRoute; over-
capacity gcells in percentage, the number of violations, routed
wirelength (in meters), the number of vias and running times
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TABLE X
TIMING-DRIVEN AND NONTIMING-DRIVEN RESULTS OF OUR PLACER FOR SIX INDUSTRY CIRCUITS WITH COMPARISON TO QPlace AND amoebaPlace

(in minutes) of WarpRoute’s results are shown in the seventh
through eleventh columns of Table X. Most of the placement re-
sults of APlace-TD can be successively routed with good wire-
length; finished routings with a small number of violations can
be manually fixed. According to the results, average (routed)
wirelength improvement of APlace-TD over QPlace is 7.2%
(range: 1.2%–7.1%); and average improvement over amoe-
baPlace is 6.5% (range: 11.1%–23.2%). Compared to non-
timing-driven APlace, APlace-TD has a slightly better routed
wirelength (0.7% on average).

In the last column, minimum cycle time (in nanoseconds)
is reported from the STA tool as the performance measure of
timing-driven or nontiming-driven placements.1 Our placer
usually has a better minimum cycle time. Average improve-
ment in minimum cycle time of APlace-TD over QPlace is
9.6% (range: 1.2%–14.8%); and average improvement over

1For some testcases, especially mac1 and mac2, timing-driven placements
from the industry placement can have worse minimum cycle times than those
from nontiming-driven placement. This may be due to improper timing con-
straints in the testcases—e.g., for “old” designs. We also note that the indust3
and indust4 testcases do not show any significant sensitivity of MCT to the
placement.

amoebaPlace is 8.5% (range: 0.8%–28.5%). Compared to
nontiming-driven APlace, APlace-TD improves the minimum
cycle time by 2% on average (range: 0.1%–3.8%). The MCT
improvements are especially negligible for the indust3 and
indust4 circuits; as noted in the footnote above, minimum cycle
times of these two circuits are less sensitive with different net
weights.

VII. I/O-CORE COPLACEMENT

IC packaging technologies with peripheral I/O pads have
well-known shortcomings: clock/power distribution is con-
strained, and large parasitics of peripheral I/O pads cause cou-
pling and power issues for off-chip signaling. The area-array
I/O regime is projected to eventually dominate IC implementa-
tion methodology, affording improved pad count and reliability,
and reduced noise coupling.

Area-array I/O presents new challenges to placement tools.
Caldwell et al. [9] conducted a thorough study of the implica-
tion of area-array I/O for placement methods. They determined
that with alternating I/O and core placement methods, which
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Fig. 8. I/O-core coplacement results of APlace for six industry circuits.

are often used in practice, the number of iterations needed to
achieve good solutions can be surprisingly large. Also, a bad
initial I/O placement can seriously handicap subsequent itera-
tions. A simultaneous methodology is proposed in [18], which
performs top-down hierarchical placement, with I/Os replaced
to each partition by min-cost assignment. However, previous re-
sults from the simultaneous methodology are not good.

I/Os and core cells can be simultaneously placed in APlace.
I/Os are spread over the placement area, in the same way and at
the same time as core cells. The objective function of APlace in
(6) is modified as

(17)

where the third term drives the spreading of I/Os.
We have tested extensions of APlace to perform I/O-core

coplacement on six industry circuits. Cells directly connected to
fixed pads are regarded as I/O cells. Specific parameters used for
the experiments are: and . Fig. 8 shows
the placement for the mac1 circuit with 623 I/Os. Core cells
and I/Os are displayed as yellow (grey) blocks and pink (dark)
blocks, respectively. I/Os are distributed evenly over the place-
ment area in the figure. The results are summarized in Table XI.
For each circuit, the placement is performed without and with
I/O-core coplacement. The third column shows the wirelength
after legalization, in meters. I/O distribution is evaluated by the
I/O discrepancy within 1% placement area. According to the re-
sults, I/O-core coplacement reduces I/O discrepancy by 61.3%
on average, with an average increase of 5.3% in placed wire-
length.

VIII. GEOMETRIC CONSTRAINTS

The need to increase the complexity and reduce the cost of
electronic systems has greatly accelerated the demand for com-
bining discrete components into ASICs. As more digital cir-
cuitry is integrated, the analog components of a system are more
likely to represent a bottleneck in the path to size and cost re-
duction for a system. With increased demand for mixed-signal

TABLE XI
I/O-CORE CO-PLACEMENT OF APlace FOR MAC1 CIRCUIT

Fig. 9. Placement of APlace with 90 artificial geometric constraints for
ibm01-easy circuit.

ASICs, there is a corresponding demand for software tools and
design methodologies that increase the productivity of analog
and mixed-signal ASIC designs.

Digitally targeted tools are often inadequate to handle the crit-
ical and specific requirements of analog layout. Performance of
analog circuits is much more sensitive to the details of physical
implementation than that of digital circuits. A large number of
constraints have to be considered in order to avoid extra design
iterations caused by too many parasitic effects. Layout synthesis
is often a multiobjective optimization problem where, along
with area, wiring length and delay, topological constraints must
be taken into account.

Basic geometric constraints for mixed-signal placement
include the following categories: fixed components, spacing,
alignment, axial symmetry, and nodal symmetry. These cate-
gories cover most of the topological requirements in an analog
layout system. More complex constraints, such as matching,
can be built as combinations of these basic constraints.

Geometric constraints can be handled directly in APlace,
since they can be converted to penalty functions and added to
the objective function of the placer. Penalty functions for basic
geometric constraints are summarized as follows.
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TABLE XII
PLACEMENT RESULTS OF APlace WITH 90 ARTIFICIAL

GEOMETRIC CONSTRAINTS

1) For an -alignment constraint for cells with coordi-
nates , which is ex-
pressed as , the penalty function
is .

2) For an -spacing constraint between two cells with co-
ordinates and , which is expressed
as , the penalty function is

when
when
when

3) For an axial symmetry constraint with an axis
between two cells with coordinates and

, which is expressed as and
, the penalty function is .

4) For a nodal symmetry constraint with a center
between two cells with coordinates and

, which is expressed as
and , the penalty function is

.
Constraint handling is implemented in APlace, and experi-

ments are performed for each IBM-PLACE easy circuit with a
manually specified combination of 40 spacing constraints, 20
alignment constraints, 20 axial symmetry, and 10 nodal sym-
metry constraints. Cells in the artificial constraints are randomly
selected from the netlist. Specific parameters used for the ex-
periments are: and . Fig. 9 shows the
placement with 90 geometric constraints for the ibm01-easy cir-
cuit. Constraints are shown as cells connected by colored (dark)
lines. Cells connected by blue lines have alignment constraints
among them; cells connected by black lines have axial sym-
metry and spacing constraints; and cells connected by red lines
have nodal symmetry and spacing constraints. We can see from
the figure that geometric constraints are closely enforced. The
placement results are summarized in Table XII. The second and
third columns show the wirelength before and after legalization
in meters. Compared to placement results without constraints,
the legalized wirelength is increased by 8.2% on average.

IX. CONCLUSION AND FUTURE WORK

We have implemented APlace, an analytic placer based on
ideas described in the recent patent of Naylor et al. [44], and
have conducted in-depth analysis of characteristics and results
of the placer. The implementation is successful: placed and
routed wirelengths outperform QPlace, FastPlace, Dragon and
Capo. We also extend the basic placer to perform top-down hier-
archical placement, congestion-directed placement, mixed-size
placement, timing-driven placement, I/O-core coplacement,

and constraint handling for mixed-signal contexts. Our work
empirically demonstrates that the APlace analytic framework
is a general and extensible platform for “spatial embedding”
tasks across many aspects of system physical implementation.

We are currently working on speedup of APlace. The ef-
forts include: 1) usage of lookup tables when computing density
penalties and exponential function; 2) implementation of a faster
pseudo-Newton solver; and 3) application of the Augmented La-
grangian method for the constrained optimization problem.

Our other ongoing research directions include: 1) extension
of the placer to power or IR drop directed placement; 2) exten-
sion to three-dimensional placement; 3) extension to thermal-di-
rected placement; and 4) devising a unified analytic placement
approach that can simultaneously address congestion, timing,
power, and wirelength at a level beyond the existing state of the
art.
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