
47.1

An Algebraic Multigrid Solver for Analytical
with Layout Based Clustering

Placement

Hongyu Chen’, Chung-Kuan Cheng’, Nan-Chi Chou2, Andrew B. Kahng’,
John F. MacDonald3, Peter Suaris4, Bo Yao’, Zhengyong Zhu’
’ University of California, San Diego, CSE Dept., La Jolla, CA 92093-01 14
Mentor Graphics Corporation, 1001 Ridder Park Drive, San Jose, CA 95131

MFntor Graphics Corporation, 11 232 El Camino Real, Suite 200, San Diego, CA 921 30
Mentor Graphics Corporation, 8005 SW Boeckman Road, Wilsonville, OR, 97070

2

ABSTRACT
An efficient matrix solver is critical to the analytical placement.
As the size of the matrix becomes huge, the multilevel methods
tum out to be more efficient and more scalable. Algebraic
Multigrid (AMG) is a multilevel technique to speedup the iterative
matrix solver [lo]. We apply the algebraic multigrid method to
solve the linear equations that arise from the analytical placement.
A layout based clustering scheme is put forward to generate
coarsening levels for the multigrid method. The experimental
results show that the algebraic multigrid solver is promising for
analytical placement.

Categories and Subject Descriptors

General Terms

Keywords

B.7.2 [Design Aids]: Layout.

Algorithms, Performance, Experimentation.

Analytical placement, Algebraic multigrid method, Layout based
clustering

1. INTRODUCTION
The analytical placement formulates the placement problem into
some mathematical programs, and solves a set of simultaneous
equations to provide the placement solution. Quadratic placement
[2,3,4] and force-directed placement [l] are examples of the
analytical placement. Lots of computations are involved in solving
the linear equations. An efficient matrix solver, therefore, is
crucial to such a placement system.
As the number of components in a placement system keeps
growing, the size of the matrix is also getting larger. There could
be millions of unknowns in the equations in the near future. To
solve such a huge linear system, the single-level method, like the
Successive Over Relaxation method (SOR), has reached its limit.
The multilevel methods are more efficient and scalable.
[4] and [6] are among the first to introduce multilevel method into
placement problems. [4] solves the placement for the clustered

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2003, June 2-6,2003, Anaheim, Califomia, USA.
Copyright 2003 ACM 1-581 13-688-9/03/0006 ... $5.00.

circuit first, and uses it as an initial guess of the fine level
placement. [6] incorporates the V-cycle optimizing scheme:
optimization on a hierarchy of coarsening graphs. It uses non-
linear programming at the coarsest level, and adopts heuristics for
mapping solutions between adjacent levels.
In circuithypergraph partitioning, multilevel partitioners usually
get very good results [5,7]. For solving large partial differential
equations (PDEs), multigrid technique can work hundreds times
faster than the one-level method [9]. The multigrid method is also
introduced to power mesh analysis [111 recently to speed up the
calculation.
The idea behind multigrid is to decompose the error of a solution
into the low frequency part and the high frequency part. The one-
level iterative method, like Gauss-Seidel iterations, can effectively
eliminate the high frequency errors on each level. The low
frequency errors are left for the coarser levels. A solution mapping
from the fine level to the coarse level translates the low frequency
error at the fine level into the high frequency error at the coarse
level, in which it can be efficiently eliminated.
The traditional multigrid methods assume that there is a uniform
geometric grid structure for the problem, so the interpolation and
restriction can be defined geometrically [9]. A new branch called
algebraic multigrid (AMG) was developed to handle the case
where no geometric grid structure is available. The AMG method
defines a hierarchy of coarsening levels solely from the matrix
itself. Thus it can be applied to a broader range of problems.
Moreover, the convergence of the algebraic multigrid method is
guaranteed when the smoothing iteration on each level converges.
The matrix arising from the analytical placement is symmetric
positive-definite. This nice property makes the AMG method a
good candidate. But the irregularity of the matrix makes it
difficult to find a good hierarchy for the AMG method.
We focus on the solver for the linear systems arising from
analytical placement. We incorporate the complete algebraic
multigrid scheme in our solver, including the V-cycle iteration,
the smoothing iterations on each level, and the restrictions and
interpolation operations based on the clustering hierarchy.
Moreover, We propose a new layout based clustering method to
generate a hierarchy that is necessary for the AMG method.
Our contributions include the following:
1. Introduce for the fist time the AMG method to the analytical

placement solver. Our implementation of the AMG solver runs
5 times faster than the SOR solver, and 2 times faster than the
PCG solver.

2. Give a circuit theory interpretation of how the algebraic
multigrid solver works.

794

3. Propose a new cell clustering method based on the layout.
4. Demonstrate that the proposed clustering approach is superior

to other clustering approach in terms of the performance and
the ability to work with arbitrary circuit structures.

The rest of the paper is organized as follows: Section 2 gives the
problem formulation of the analytical placement. Section 3
introduces our algebraic multigrid solver. Section 4 reveals our
layout based clustering method. Section 5 gives the experimental
results. The conclusion is drawn in section 6.

2. ANALYTICAL PLACEMENT
In this section we provide the formulation of the analytical
placement and outline the approach to find the solution.

2.1 Problem Formulation
We formulate the analytical placement the same way as in [l]. A
circuit is represented by a weighted graph, G={ V, E } . Each node
v, EV corresponds to a cell in the circuit. Each edge e, corresponds
to a two-pin signal net. A star net model [SI is used to convert the
multi-pin net to a set of two pin nets if necessary.
Let n be the number of movable cells in the circuit, (x,, y,) be the
coordinate of each node v,, X and Y be the vectors (xI . x2, ..., x,)
and (y', y2, ..., yJ, respectively. The cost of each edge is the
squared Euclidean distance between the two cells connected by
the edge. The object function is to minimize the sum of the edge
costs. The analytical placement problem can be written in the
matrix form as the following mathematical program QP.
QP: min{ @(X,Y) =+XTCX+d:X++YTCY+d;Y 1 (1)

Where C is an n x n symmetric matrix. Matrix C is sparse and
positive definite as long as graph G is connected and at lease one
node linked to some fixed point [l]. d, and d, are the n-
dimensional vectors.

2.2 Solving Analytical Placement
The object function contains two parts: @(x) = + x T c ~ + d ; and

@(y) = + y c y + d l , which can be minimized independently. In

the following we focus on the @(XI part only.

Q (X) can be minimized by solving the linear equation system

C X + d , = O (2)
To place the cells evenly, [11 introduces additional forces on each
cell, which are derived from cell density. Equation (2) is extended
to incorporate the additional force:

C X + d , + e , = O (3)
where e, is the additional force vector on cells in the x direction.
Several iterations are needed to solve the analytical placement. In
each iteration, the additional force vector e, is updated according
to the current placement. Equation (3) is then solved to get the
new placement.
One important property of the placement process is that the
equations in the iteration share the same left hand matrix C. We
take advantage of this property in the proposed algebraic multigrid
solver: We derive the coarsening levels from the matrix C only
once, and reuse them in the AMG solver for all the equations (3).
Conjugate gradient methods are used in [1,2,4] to solve the linear
equations. SOR solver is also widely used because of its
simplicity and efficiency for small circuits [2]. We propose a new
multigrid-based method that is more efficient on large cases.

3. ALGEBRAIC MULTIGRID SOLVER
This section presents the AMG solver to solve equation (3). A
circuit theory based interpretation is also described.

The algebraic multigrid method works on a hierarchy of
coarsening levels. It maps the equations and solutions between the
levels. It iterates on all levels to reduce the error of the solution
efficiently. The elements of the AMG solver are as follows:
3.1.1 Coarsening levels and the clustering
A hierarchy o f coarsening levels, /P to -ny, is necessary for the
AMG method. Following [9], we assume that L? is the finest level
and lf is the coarsest level. To each level d, we associate with it
a linear equation AkXk = bk, and a graph Gk = { vk, E k } . The finest
level equation is the original equation we want to solve. For
example, if we want to solve equation (3), we have A'= C, 2?= X
and bo = -(d,+eJ.
The levels are generated by a hierarchical clustering process. A
clustering from level d to &' is defined as a mapping of the
nodes in vk to the nodes in vk+': Each node in level k is mapped to
one and only one node in level k+I. We may also define the
clustering relationship by a restriction matrix . Let I = nk.

The nk by nk+' matrix IF' = (i,) is defined by

3.1 Elements of the multigrid method

1 if node v: is mapped to node vZk"
i, =io Otherwise

In each column of there is one and only one "1". Note that

nk+' 5 nk, so the higher level has less number of nodes.
If a cluster node v, in level k is mapped to a cluster node v, in level
k + l , the node v, is called the parent of node v,, and the node v, is
called the child of the node v,.
Given the clustering scheme, we get the linear equations on each
level by the Galerkin operation [lo]:

Ak+' = Ak I;+' (4)

bk+l = I,"+' bk (5)
k k+l Where Ik+l = (I ,

Property of Ak: The matrix Ak is symmetric positive-definite
(s.p.d.).
The matrix A' = C is s.p.d. by definition [l]. The transformation
from Ak to Ak+l (equation (4)) guarantees Ak+l to be s.p.d. if Ak is
s.p.d., because I,"+, = (1;")T, and I;+l is of full rank.

Figure 1 gives an example of a two level clustering. In Figure l(a),
the original circuit is drawn on the bottom level d. The clustered
circuit is drawn on the top level n'. The clustering relationships
are represented by the dashed lines: The nodes 1, 2 and 3 in level
L? are clustered to node 1 in level d. The node 4 in level L? is
clustered into node 2 in level d. The nodes 5 and 6 in level /P
are clustered into node 3 in level n'. The interpolation matrix
1; is shown in Figure l(b).

We will introduce how to get the K-level clustering in section 4.
Here we assume that the clustering relations are given, i.e., all the
matrices IF' are known for k = 0, 1, . . ., K-1.

3.1.2 Restriction and interpolation
Restrictions and interpolations are defined to map the solutions
between two adjacent levels, based on the clustering structure. We

)T is the interpolation matrix.

795

I ; =
1 1 1 0 0 0
0 0 0 1 0 0

0 0 0 0 1 1

Fig. 1 A two level clustering example.

adopted similar interpolation and restriction approaches as in the
aggregate-type AMG [14]. Interpolation is a mapping of a level
k+l solution Xk+' on to a level k solution Xk as follows:

(6) X k = Ik Xktl + Rk k+l

Where I:+l is the restriction matrix. Rk is the offset position

vector of level k nodes to their parent nodes in level k + l .
Restriction is a mapping of a level k solution to a level k+l
solution. We adopt the following correction process.

Where Nk" =(n,,) is the diagonal matrix of n,, = llm,,, and m,, is
the number of children of a cluster c, in level k+l.This restriction
operation puts the level k+l nodes at the average position of their
children in the level k.
In restriction operation, we also update the vector Rk and the
coarse level right hand side bk+l as follows:

(7)
x k + l = ~ : + l X k N k + l

(8) Rk = X k -1 Xk+l

bk+l =
k+l

Ikk+l (bk-AkRk) (9)

Smoothing @ @ Smoothing
~

Update X2,R',bZ

Fig. 2. A V-cycle iteration on 3 levels.

Algorithm V-cycle iteration
Input: A', bo, ..., Ak, bk

Begin
output xo

Initialize xO, ..., X' to zero vectors;
Initialize Ro, ..., R(k-') to zero vectors;
For i = k down to 1 do

Iterate on AiXi=bi
x(i-1) = Ii(i-1)xi + R'

Endfor
Iterate on Aoxo = bo;
Update Ro= Xo-IloX';
Update b' = I:(bo - AoRo)
For i = 1 to k-1 do

Iterate on A'X'=b';
Update RI = Xi - Iii+' X"';
Update b"' = Iy'(bi - A'R')

endfor
End

Fig. 3. The pseudo code for a V-cycle iteration

3. I .3 Smoothing
The iteration on each level to refine the solutions is called
smoothing. Gauss-Seidel iterations are usually used for smoothing.
We use SOR iterations to speed up the convergence [14]. The
experiments show that the AMG method convergence faster with
SOR iteration as the smoothing operation.

3. I .4 The V-cycle iteration
The V-cycle iteration begins at the coarsest level, d. We got the
estimation of X K after some smooth iterations. We then transform
the solution XK to X K - ' by equation (6). The smooth iteration is
carried out at level K-1 and another transformation by equation (6)
is done to get the solution XK-'. We keep on going downwards
until we reach the finest level. After we iterate on level 0, we call
a correction procedure (equation (7)) to update XI from Xo. We
also update vectors b' and Ro by equation (8) and (9). The
smoothing iteration is performed at level 1 before we move to
level 2. We keep on going upwards until the top level is reached.
Figure 2 illustrates the process of a V-cycle with 3 levels. The
pseudo code for a V-cycle iteration is shown in Fig. 3.
3.1.5 Overall solvingprocedure
The overall solving procedure begins with the clustering as a
preprocess, and constructs a hierarchy first. Then for each
equation (3) to be solved, several V-cycle iterations are carried out
one after another until the solution converges.

3. I . 6 Convergence issues
The solution error after k V-cycle iterations can be defined as

e@) = 11 xo(k)- x o (k - 1) Ilm

Where x o (k) is the solution at the finest level. We define the
convergence rate at iteration k to be p@) = eckJ e@+. We say that
the V-cycle iteration converges ifp@) < 1.

The rigorous convergence analysis for the AMG method is still an
open problem. Our experiments show that the AMG method is
globally convergent, i.e., it always gets closer to the exact solution
after each V-cycle. We have the following theorem on the
convergence rate of the two-level AMG method [101:

Theorem 1: Let A=(a,) be a symmetric, positive-definite matrix.

Let R, be the set of other nodes that are clustered with node i , and
N, be the set of neighbor nodes of i . If there is a fixed O<t$l that
for each node i who belongs to a cluster with more than one node,
the following relation holds: max laik I 2 C I a, 1 , then the

j e N ,
k e N , nR,

convergence rate of the two-level AMG method can be bounded

Theorem 1 tells us that the convergence of the AMG method is
independent of the problem size.

by p 2 J F - q .

3.2 A Circuit Theory Interpretation
We explain how the multigrid solver works by an analogy to the
circuit analysis. An example with two level clustering is used.
The level 0 placement system is illustrated in Fig. 4(a). It contains
5 movable nodes, which are represented by dots, and 2 fixed pad
cells, which are represented by the squares. Fig. 4(b) depicts the
resistive network circuit analogs to the placement system in Fig.
4(a). Each node in Fig. 4(b) corresponds to a cell in Fig. 4(a); each
branch corresponds to an edge. The resistance on each branch
equals to the weight of the corresponding edge in Fig. 4(a). The
voltage on each node corresponds to the position of each cell.

796

s (4 (b)

(c)

Fig. 4. A placement system and the corresponding circuit.

The cluster is defined by merging nodes 1, 2 and 3 on level 0 into
node 1’ on level 1, and merging cell 4 and 5 into node 2’. The
clustering is illustrated in Fig. 4(c) with the dashed line circle. Fig.
4(d) shows the corresponding circuit for the clustered placement
system. Two new nodes, 1’ and 2’, are introduced. The old nodes
are also marked with crosses. The voltages on the two new nodes
are the unknowns for level 1. Five voltage sources, el to e5, are
introduced to represent the voltage difference between the level 0
nodes and the level 1 nodes.
We assume that all the resistance in Figure 4(b) equals to 1. The
KCL equations on level 0 is A o y = bo, where

The interpolation matrix is - 1 1 1 0 0 . According to
o-[o 0 0 1 11

our AMG method, the level 1 equation is A’X’ = b’, where

V, - e , - e2 - e3 + 2e, + e , ,

V2 + e2 + 2e, - 2e, - 2e, 1 b’ = I i (b o - Q o R o) =

Please note that this equation A’X’ = b’ is also the level 1 KCL
equation for the two nodes 1’ and 2’.
For the V-cycle iteration, we first iterate on the level 1 circuit to
solve the two voltages VI ’ and VI ’. At level 1, we assume that the
voltage sources el to e5 are constants. We then interpolate by
equation (5) to get the guess of the level 0 voltage on each node.
The smoothing iterations are carried out on level 0 after that to
refine the solution vector 2. We then restrict the level 1 voltages,
VI ’ and V2 ’, to be the average voltage of each cluster (equation
(6)). The voltage sources e1 to es and the right hand side vector b’
are also updated according to the current values of and XI. This
brings us to the starting point of the next V-cycle iteration.
The iteration on level 1 will smooth the low frequency error, or
the error of the average voltage of each cluster, while the iteration
on level 0 will smooth the high frequency errors, or the errors of
the voltages at each node.

4. CLUSTERING METHODS
The clustering methods provide a hierarchy of levels, which is
necessary for the AMG solver. We propose a new layout based
clustering method. We also tried the hMETIS clustering [5] and a

random clustering. The best clustering scheme for the AMG solver,
however, remains open.

4.1 Layout Based Clustering
The layout based clustering is inspired by the idea that the
placement without any additional force tells us the coupling
between the cells: The cells are close to each other in the layout
and also logically connected should be strongly coupled. We try to
cluster the strongly coupled cells together. On the other hand, we
need a fast clustering process, so a greedy approach is chosen.
The distance information between the cells is generated by some
tentative placement: We start from placing all the cells at the same
place. A random initial placement is not adopted because the
initial distance between the cells introduces some bias to the
measurement. The SOR iteration is then used to drive the
analytical placement. We take a snapshot of the placement when
the standard deviation of the solution reaches its maximum. We
call the placement at that time a blown up placement.
The distance dg for each edge eg connecting cell ci and ci is
calculated as follows:

where df”, d?), dp) and dB(’.) are the geometric distances
between cell ci and cj in the four blown up placements derived
from initial settings of placing all the cells at the lower left, lower
right, upper left and upper right corners of the chip, respectively.
The cost of each edge eu is defined as follows:

Where si is the size of the cluster ci; a is a parameter for balancing
the cost of the distance and the cluster size.
We follow the edge-coarsening scheme as described in [5]. At
each level, we sort the edges by their cost cg. The edge with the
smallest cost is collapsed first. The two clusters connected by that
edge merge into a single cluster. The edge collapsing is repeated
until the number of clusters is reduced by a preset factor. Figure 5
gives the pseudo code for the layout based clustering.

d.. B = d..@u+ B d..flr)+ ‘I dp)+ d , y) (10)

cij = a.dg+(l-a) . (si+@ (1 1)

4.2 hMETIS Clustering
We also implemented the clustering method in the hMETIS

Algorithm Layout Based Clustering
Input systems A’, bo, Go
Output : A hierarchy of coarsening levels
Begin

Generate blown up placements by SOR iterations;
Calculate the dii for each edge eii ;
Calculate the cost cij of each edge el;
Num-clusters = num-of-cells;
NumThreshold = num-clusters / RATIO; // RATIO = 4
k=O;
While (num-clusters > 100)

While (num-clusters > NumThreshold)
Choose an edge e i t with the smallest cost;
Merge the two clusters ci and ci;

Num-cluster -;
Endwhile
NumThreshold /= RATIO;
k = k + l ;
Construct level k;
Update cost of each edge in level k;

Endwhile
End

Figure 5 . Pseudo code for the layout based clustering

797

Table 1 Comparison of CPU time for SOR, PCG and AMG-L solvers to reduce the relative error to 1 0-2

SOR

Circuit
Name

IBMO 1
IBM02
IBM03
IBM04
IBMO5
IBM06
IBM07
IBM08
IBMO9
IBMlO
IBM 11
IBM12
IBM 13
IBM 14
IBM 15
IBM16
IBM 17
IBM 18

PCG

Cells

12752
19601
23136
27507
29347
32498
45926
5 1309
53395
69429
70558
71076
84 199
147605
161570
183484
185495
210613

#iter Time(s)

120 4.54
130 10.79
120 11.66
130 16.00
140 19.03
120 19.72
120 31.33
130 35.33
220 71.04
140 57.85
180 79.05
130 59.86
140 81.27
350 314.79
590 757.81
440 591.25
350 553.20

Nets

14111
19584
2740 1
3 1970
28446
34826
48117
50513
60902
75196
81454
77240
99666
152772
186608
190048
189581
201920

#iter

45
35
35
40
20
35
55
40
55
60
60
55
60
75
75
80
70
80

Non-zera

73126
127684
142327
159248
185286
206190
270759
315927
334798
443343
421424
462449
539781
843858
1097957
1175600
1264240
1273165

SOR

ii iter
70
90
80
90
90
80
90
90
150
90
120
90
100
240
390
290
230
770

= 1.95)
Time (s)

2.75
6.73
8.14

10.18
12.76
13.66
21.33
24.13
47.34
37.68
53.50
41.97
57.46

208.69
502.37
385.48
361.83

11 84.77

partitioning. Some key points of this method are as follows:
-
-

Edge clustering. Each time we choose an edge to collapse.
Random seed. Each time we randomly choose a seed cluster,
and try to cluster it with another cluster that is connected.
Edge weight based cost function. For a clustering seed, we
choose the edge with the largest weight to collapse.
Slow clustering scheme: The cluster number ratio between
two adjacent levels is constrained to be 1.7.
Tie breaking: When two edges have the same cost, we break
the tie by favoring the edge connecting to a smaller cluster.

4.3 Random Clustering
The random clustering is the same with the hMETIS clustering
except that the edge is chosen randomly each time for collapsing.

5. EXPERIMENT RESULTS

-

-

-

We implemented the algebraic multigrid solver and different
clustering methods in C. These algorithms were tested using a set
of placement benchmarks published in ISPD 2002 [13]. The
statistical information of the benchmarks is listed in table 1.
Equation (2) in section 2.2 was solved to test the different solvers.
The experiments were run on a Sun Ultra 60 workstation with 360
MHz CPU and 512 Mega-bytes memory.
We combined the algebraic multigrid solver described in section 3
with the clustering methods in section 4, and tested the following
three algorithms: AMG-L, AMG-H and AMG-R are the
algebraic multigrid solvers with layout based clustering, with
hMETIS clustering, and with random clustering, respectively.
For the AMG-L algorithm, we set GI to be 1.8 for the SOR
smoothing in each level. We set a to be 0.15 for equation (1 1).
The first experiment compared the performance of the AMG-L
solver with an SOR and a PCG solver. The SOR solver is based on
an algorithm in [12]. We set the o to be 1.95 for the SOR solvers.
The PCG solver is based on an algorithm in [12]. It adopts
incomplete Cholesky factorization as the preconditioner.
To test the convergence of the solvers, we examined the relative
error e, = (IX-X*(lJllX*I(, on the fine level solution X. The exact
solution X* was got by running AMG-L solver for a sufficient
long time. We made check points every V-cycle for AML-L
solver, every 10 iterations for SOR solver and every 5 iterations
for PCG solver to get the relative error e,.

iter
40
25
25
30
20
25
45
30
50
45
50
45
50
60
65
60
60
60

:G
Solving

2.47
3.09
3.41
4.56
2.91
5.12

12.10
9.86

16.95
22.71
23.57
21.89
29.75
68.81
90.26
92.11
99.63

112.91

AI
9 V-cycle

7
4
4
4
4
3
3
3
4
4
3
3
3
3
3
3
3
4

3-L
Solving
Time (s)

1.76
1.70
2.12
2.73
3.75
2.24
4.27
4.66
6.73
8.28
6.90
7.05
8.19

15.90
16.07
21.28
24.67
30.96

AMG-L
Over
SOR

1.56
3.96
3.84
3.73
3.40
6.10
4.99
5.17
7.04
4.55
7.76
5.95
7.01

13.13
3 1.27
18.11
14.67
38.27

)eedup
Over
PCG

1.40
1.82
1.61
1.67
0.78
2.28
2.83
2.1 1
2.52
2.74
3.42
3.11
3.63
4.33
5.62
4.33
4.04
3.65

Table 2. CPU time for solvers to reduce relative error to

Circuit
Name

IBMOl
IBM02
IBM03
1BM04
IBM05
IBM06
1BM07
IBM08
IBM09
IBM 10
IBMll
IBM12
IBM13
IBM14
IBM 15
IBM 16
IBM17
IBM 18

Time(s)

2.98
3.88
4.34
5.73
3.53
6.56

15.41
12.39
20.1 1
29.67
29.71
27.58
37.36
84.75

109.24
124.44
118.12
149.90

AMG-L

#V-cyc

10
6
7
7
7
5
5
5
7
6
6
6
5
6
6
5
6
7

Time(s)

2.84
3.32
4.16
5.14
6.64
5.18
7.81
9.47

11.96
16.16
14.30
15.69
17.39
34.42
40.94
43.83
5 1.25
67.29

We compared the CPU time needed for each solver to reduce the
relative error to in solving equation (2) one time. The
results are listed in table 1 and table 2, respectively. In Figure 6,
we plot the CPU time to reach 1 0-2 relative error for all the solvers
on various test cases. In Figure 7, we give the convergence
histories for the three solvers on the test case IBM17. For AMG-L
solver, the clustering time is excluded from the CPU time, since
the clustering time can be amortized because the clustering is done
once for solving all the equations (3). For PCG solver, we also
exclude the CPU time for calculating the precondition matrix.
The results show that AMG method converges much faster than
PCG and SOR at the beginning several iterations, and converges
consistently at different error values. To reach relative error,
the AMG-L solver runs up to 38 times faster than the SOR solver,
and 5 times faster than PCG solver on large cases. For 10” relative
error, AMG solver also outperforms PCG solver by a factor of 2 to
3 on large cases. The results verify that for AMG solver, the
number of V-cycles needed to converge is independent of the
matrix size. This almost constant number of V-cycles strongly
demonstrates that the method is scalable for huge designs.

and

798

QIO

_ -
Test case number

CPU Time (s)

Fig. 7 Convergence histories for test case B M 1 7

The second experiment tests the impact of different clustering
method. We test the AMG-L, AMG-H and AMG-R algorithms.
The implementations of the multignd iterations are the same in all
three algorithms. They differ only in the way they do the
clustering. The CPU time each algorithm needs to get a
relative error is reported in table 3. The clustering time is the time
spent for deriving the whole clustering hierarchy. For AMG-L
algorithm, the clustering time also covers the time to find the
blown up placements.
The results show that the clustering method makes a difference in
the convergence. Layout based clustering outperforms hMETIS
clustenng in large cases. Both layout based and hh4ETIS
clustering outperform random clustering. Comparing the results in
table 3 to table 2, we find that algebraic multigrid method works
better than the SOR method even with random clustering.
The clustering speed was not the goal so far. The random
clustering sometimes takes longer time than hMETIS clustenng
because hMETIS clustering tends to pick edges connecting un-
clustered parts first, which makes the clustenng faster.

6. CONCLUSION
The multilevel methods are more efficient to solve the huge linear
equation system. We apply the algebraic multigrid method to
solve the huge linear equations arise from the analytical placement.
A layout based clustermg scheme is proposed to generate
coarsening levels for arbitrary circuit structures. The experimental
results show that algebraic multigrid solver converges faster than
PCG solver, and much faster than the one-level SOR solver on
large test cases.

Table 3. CPU time for different AMG algorithms to e, <

Circuit
Name

IBMO 1
IBM02
IBM03
IBM04
IBMO5
IBM06
IBM07
IBM08
IBM09
IBMlO
IBMll
IBMl2
IBM 13
IBM 14
IBMI5
IBM16
IBM17
IBM18

AMG-L
Clst

Time(s)
4.58
15.71
8.05
19.0

19.92
10.64
41.92
33.81
70.15
80.41
106.86
78.8

103.32
455.45
339.54
427.86
384.51
319.22

Solving
Time(s)
2.84
3.32
4.16
5.14
6.64
5.18
7.81
9.47
11.96
16.16
14.30
15.69
17.39
34.42
40.94
43.83
51.25
67.29

AMG-H -
Clst

rime(s)
2.74
10.79
7.02
7.48
20.89
10.9

14.39
39.06
14.87
28.5
18.19
34.87
25.95
57.0
73.64
86.47
117.68
112.26

-

-

Solving
Time(s)

1.79
3.84
3.65
4.77
6.24
6.42
15.78
12.97
17.23
21.95
16.42
21.63
26.70
77.41
126.97
138.86
68.88

259.65

AMG-R
Clst

Time(s)
2.32
8.43
7.52
6.67
19.12
16.05
17.18
33.39
19.94
36.37
27.09
48.73
41.88
103.9
182.6
191.8
268.4
186.1

Solving
Time(s)

3.17
5.57
5.16
7.84
9.46
7.30

19.35
17.39
28.21
36.83
25.40
32.75
72.48
96.14

174.90
130.51
116.51
237.36

7. ACKNOWLEDGMENTS
This work was supported in part under grants from NSF project
number MIP-9987678, the California MICRO program and SRC
support.

8. REFERENCES
[I] H. Eisenmann, F. M. Johannes, Generic global placement and

floorplanning. Proc. 351h Design Automation Conference, San
Francisco, California, 1998, pp. 269-274.
C. J.Alpert, et al, Quadratic Placement Revisited, Proc. 341h Design
Automation Conference, Anaheim, California, 1997, pp. 752-757.
J. M. Kleinhans, et al, GORDIAN: VLSI Placement by Quadratic
Programming and Slicing Optimization, IEEE Trans. Computer-
Aided Design, Vol. 10, No. 3, Mar. 1991, pp. 356-365.
X. Hong, et al, CASH: A Novel Quadratic Placement Algorithm for
Very Large Standard Cell Layout Design Based on Clustering, Proc.
ASP-DAC, 2000, Yokohama, Japan, pp. 271-276.
G. Karypis and V. Kumar, Multilevel k-way Hypergraph partitioning,
Univ. of Minnesota, Technical Report #98-036.
T. Chan, J. Cong, T. Kong and J. Shinned, Multilevel Optimization
for Large-scale Circuit Placement, Proc. IEEE International
Conference on Computer Aided Design, San Jose, California, pp.

[7] C. J. Alpert, et al, Multilevel Circuit Partitioning, IEEE Trans. CAD,

[8] C. J. Alpert and A.B.Kahng, Recent Directions in Netlist Partitioning:
A Survey, Integration, the VLSI Journal, 19(1-2), 1995, pp. 1-81.

[9] W. L. Briggs, V. E. Henson, and S. F. McConnick, A Multigrid
Tutorial, 2"d Ed. SIAM, 2000.

[IO] K. Sttiben, A Review of Algebraic Multigrid, GMD Report No. 69.
Nov. 1999.

[l I] J. N. Kozhaya, S. R. Nassif, F. N. Najm, Multigrid-like Technique for
Power Grid Analysis. Proc. ICCAD 2001, pp. 480-487.

[12] G. H. Golub and C. F. V. Loan, Matrix Computations, 2nd edition.
Johns Hopkins, 1993.

[I31 S.N. Adya, I.L. Markov, Consistent Placement of Macro-Blocks
Using Floorplanning and Standard-Cell Placement, Proc ISPD 2002,

[I41 P. Vanek, J. Mandel, M. Brezina, Algebraic Multigrid by Smoothed
Aggregation for Second and Fourth Order Elliptic Problems,
Computing 56, 1996, pp. 179-196.

[2]

[3]

[4]

[5]

[6]

171-176, NOV. 2000.

Vol. 17, NO. 8, August, 1998, pp. 655-667

pp. 12-17.

799

