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ABSTRACT 
An efficient matrix solver is critical to the analytical placement. 
As the size of the matrix becomes huge, the multilevel methods 
tum out to be more efficient and more scalable. Algebraic 
Multigrid (AMG) is a multilevel technique to speedup the iterative 
matrix solver [lo]. We apply the algebraic multigrid method to 
solve the linear equations that arise from the analytical placement. 
A layout based clustering scheme is put forward to generate 
coarsening levels for the multigrid method. The experimental 
results show that the algebraic multigrid solver is promising for 
analytical placement. 
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1. INTRODUCTION 
The analytical placement formulates the placement problem into 
some mathematical programs, and solves a set of simultaneous 
equations to provide the placement solution. Quadratic placement 
[2,3,4] and force-directed placement [l]  are examples of the 
analytical placement. Lots of computations are involved in solving 
the linear equations. An efficient matrix solver, therefore, is 
crucial to such a placement system. 
As the number of components in a placement system keeps 
growing, the size of the matrix is also getting larger. There could 
be millions of unknowns in the equations in the near future. To 
solve such a huge linear system, the single-level method, like the 
Successive Over Relaxation method (SOR), has reached its limit. 
The multilevel methods are more efficient and scalable. 
[4] and [6] are among the first to introduce multilevel method into 
placement problems. [4] solves the placement for the clustered 
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circuit first, and uses it as an initial guess of the fine level 
placement. [6] incorporates the V-cycle optimizing scheme: 
optimization on a hierarchy of coarsening graphs. It uses non- 
linear programming at the coarsest level, and adopts heuristics for 
mapping solutions between adjacent levels. 
In circuithypergraph partitioning, multilevel partitioners usually 
get very good results [5,7]. For solving large partial differential 
equations (PDEs), multigrid technique can work hundreds times 
faster than the one-level method [9]. The multigrid method is also 
introduced to power mesh analysis [ 111 recently to speed up the 
calculation. 
The idea behind multigrid is to decompose the error of a solution 
into the low frequency part and the high frequency part. The one- 
level iterative method, like Gauss-Seidel iterations, can effectively 
eliminate the high frequency errors on each level. The low 
frequency errors are left for the coarser levels. A solution mapping 
from the fine level to the coarse level translates the low frequency 
error at the fine level into the high frequency error at the coarse 
level, in which it can be efficiently eliminated. 
The traditional multigrid methods assume that there is a uniform 
geometric grid structure for the problem, so the interpolation and 
restriction can be defined geometrically [9]. A new branch called 
algebraic multigrid (AMG) was developed to handle the case 
where no geometric grid structure is available. The AMG method 
defines a hierarchy of coarsening levels solely from the matrix 
itself. Thus it can be applied to a broader range of problems. 
Moreover, the convergence of the algebraic multigrid method is 
guaranteed when the smoothing iteration on each level converges. 
The matrix arising from the analytical placement is symmetric 
positive-definite. This nice property makes the AMG method a 
good candidate. But the irregularity of the matrix makes it 
difficult to find a good hierarchy for the AMG method. 
We focus on the solver for the linear systems arising from 
analytical placement. We incorporate the complete algebraic 
multigrid scheme in our solver, including the V-cycle iteration, 
the smoothing iterations on each level, and the restrictions and 
interpolation operations based on the clustering hierarchy. 
Moreover, We propose a new layout based clustering method to 
generate a hierarchy that is necessary for the AMG method. 
Our contributions include the following: 
1. Introduce for the fist time the AMG method to the analytical 

placement solver. Our implementation of the AMG solver runs 
5 times faster than the SOR solver, and 2 times faster than the 
PCG solver. 

2. Give a circuit theory interpretation of how the algebraic 
multigrid solver works. 
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3. Propose a new cell clustering method based on the layout. 
4. Demonstrate that the proposed clustering approach is superior 

to other clustering approach in terms of the performance and 
the ability to work with arbitrary circuit structures. 

The rest of the paper is organized as follows: Section 2 gives the 
problem formulation of the analytical placement. Section 3 
introduces our algebraic multigrid solver. Section 4 reveals our 
layout based clustering method. Section 5 gives the experimental 
results. The conclusion is drawn in section 6. 

2. ANALYTICAL PLACEMENT 
In this section we provide the formulation of the analytical 
placement and outline the approach to find the solution. 

2.1 Problem Formulation 
We formulate the analytical placement the same way as in [l]. A 
circuit is represented by a weighted graph, G={ V, E } .  Each node 
v, EV corresponds to a cell in the circuit. Each edge e, corresponds 
to a two-pin signal net. A star net model [SI is used to convert the 
multi-pin net to a set of two pin nets if necessary. 
Let n be the number of movable cells in the circuit, (x,, y,) be the 
coordinate of each node v,, X and Y be the vectors (xI .  x2, ..., x,) 
and (y', y2, ..., yJ, respectively. The cost of each edge is the 
squared Euclidean distance between the two cells connected by 
the edge. The object function is to minimize the sum of the edge 
costs. The analytical placement problem can be written in the 
matrix form as the following mathematical program QP. 
QP: min{ @(X,Y) =+XTCX+d:X++YTCY+d;Y 1 (1) 

Where C is an n x n symmetric matrix. Matrix C is sparse and 
positive definite as long as graph G is connected and at lease one 
node linked to some fixed point [l]. d, and d, are the n- 
dimensional vectors. 

2.2 Solving Analytical Placement 
The object function contains two parts: @(x) = + x T c ~ + d ;  and 

@( y) = + y c y  + d l  , which can be minimized independently. In 

the following we focus on the @(XI part only. 

Q ( X )  can be minimized by solving the linear equation system 

C X + d ,  = O  (2) 
To place the cells evenly, [ 11 introduces additional forces on each 
cell, which are derived from cell density. Equation (2) is extended 
to incorporate the additional force: 

C X + d ,  + e ,  = O  (3) 
where e, is the additional force vector on cells in the x direction. 
Several iterations are needed to solve the analytical placement. In 
each iteration, the additional force vector e, is updated according 
to the current placement. Equation (3) is then solved to get the 
new placement. 
One important property of the placement process is that the 
equations in the iteration share the same left hand matrix C. We 
take advantage of this property in the proposed algebraic multigrid 
solver: We derive the coarsening levels from the matrix C only 
once, and reuse them in the AMG solver for all the equations (3). 
Conjugate gradient methods are used in [ 1,2,4] to solve the linear 
equations. SOR solver is also widely used because of its 
simplicity and efficiency for small circuits [2]. We propose a new 
multigrid-based method that is more efficient on large cases. 

3. ALGEBRAIC MULTIGRID SOLVER 
This section presents the AMG solver to solve equation (3). A 
circuit theory based interpretation is also described. 

The algebraic multigrid method works on a hierarchy of 
coarsening levels. It maps the equations and solutions between the 
levels. It iterates on all levels to reduce the error of the solution 
efficiently. The elements of the AMG solver are as follows: 
3.1.1 Coarsening levels and the clustering 
A hierarchy o f  coarsening levels, /P to -ny, is necessary for the 
AMG method. Following [9], we assume that L? is the finest level 
and lf is the coarsest level. To each level d, we associate with it 
a linear equation AkXk = bk, and a graph Gk = { vk, E k } .  The finest 
level equation is the original equation we want to solve. For 
example, if we want to solve equation (3), we have A'= C, 2?= X 
and bo = -(d,+eJ. 
The levels are generated by a hierarchical clustering process. A 
clustering from level d to &' is defined as a mapping of the 
nodes in vk to the nodes in vk+': Each node in level k is mapped to 
one and only one node in level k+I. We may also define the 
clustering relationship by a restriction matrix . Let I = nk. 

The nk by nk+' matrix IF' = (i,) is defined by 

3.1 Elements of the multigrid method 

1 if node v: is mapped to node vZk" 
i, =io Otherwise 

In each column of there is one and only one "1". Note that 

nk+' 5 nk, so the higher level has less number of nodes. 
If a cluster node v, in level k is mapped to a cluster node v, in level 
k + l ,  the node v, is called the parent of node v,, and the node v, is 
called the child of the node v,. 
Given the clustering scheme, we get the linear equations on each 
level by the Galerkin operation [lo]: 

Ak+' = Ak I;+' (4) 

bk+l = I,"+' bk (5) 
k k+l Where Ik+l = ( I ,  

Property of Ak: The matrix Ak is symmetric positive-definite 
(s.p.d.). 
The matrix A' = C is s.p.d. by definition [l]. The transformation 
from Ak to Ak+l (equation (4)) guarantees Ak+l to be s.p.d. if Ak is 
s.p.d., because I,"+, = (1;" )T, and I;+l is of full rank. 

Figure 1 gives an example of a two level clustering. In Figure l(a), 
the original circuit is drawn on the bottom level d. The clustered 
circuit is drawn on the top level n'. The clustering relationships 
are represented by the dashed lines: The nodes 1, 2 and 3 in level 
L? are clustered to node 1 in level d. The node 4 in level L? is 
clustered into node 2 in level d. The nodes 5 and 6 in level /P 
are clustered into node 3 in level n'. The interpolation matrix 
1; is shown in Figure l(b). 

We will introduce how to get the K-level clustering in section 4. 
Here we assume that the clustering relations are given, i.e., all the 
matrices IF' are known for k = 0, 1, . . ., K-1. 

3.1.2 Restriction and interpolation 
Restrictions and interpolations are defined to map the solutions 
between two adjacent levels, based on the clustering structure. We 

)T is the interpolation matrix. 
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I ;  = 
1 1 1 0 0 0  
0 0 0 1 0 0  

0 0 0 0 1 1  

Fig. 1 A two level clustering example. 

adopted similar interpolation and restriction approaches as in the 
aggregate-type AMG [14]. Interpolation is a mapping of a level 
k+l solution Xk+' on to a level k solution Xk as follows: 

( 6 )  X k  = Ik Xktl + Rk k+l  

Where I:+l is the restriction matrix. Rk is the offset position 

vector of level k nodes to their parent nodes in level k + l .  
Restriction is a mapping of a level k solution to a level k+l  
solution. We adopt the following correction process. 

Where Nk" =(n,,) is the diagonal matrix of n,, = llm,,, and m,, is 
the number of children of a cluster c, in level k+l.This restriction 
operation puts the level k+l  nodes at the average position of their 
children in the level k. 
In restriction operation, we also update the vector Rk and the 
coarse level right hand side bk+l as follows: 

(7) 
x k + l  = ~ : + l  X k N k + l  

(8) Rk = X k  -1 Xk+l 

bk+l = 
k+l 

Ikk+l (bk-AkRk) (9) 

Smoothing @ @ Smoothing 
~ 

Update X2,R',bZ 

Fig. 2. A V-cycle iteration on 3 levels. 

Algorithm V-cycle iteration 
Input: A', bo, ..., Ak, bk 

Begin 
output xo 

Initialize xO, ..., X' to zero vectors; 
Initialize Ro, ..., R(k-') to zero vectors; 
For i = k down to 1 do 

Iterate on AiXi=bi 
x(i-1) = Ii(i-1)xi + R' 

Endfor 
Iterate on Aoxo = bo; 
Update Ro= Xo-IloX'; 
Update b' = I:(bo - AoRo) 
For i = 1 to k-1 do 

Iterate on A'X'=b'; 
Update RI = Xi - Iii+' X"'; 
Update b"' = Iy'(bi - A'R') 

endfor 
End 

Fig. 3. The pseudo code for a V-cycle iteration 

3. I .3 Smoothing 
The iteration on each level to refine the solutions is called 
smoothing. Gauss-Seidel iterations are usually used for smoothing. 
We use SOR iterations to speed up the convergence [14]. The 
experiments show that the AMG method convergence faster with 
SOR iteration as the smoothing operation. 

3. I .4 The V-cycle iteration 
The V-cycle iteration begins at the coarsest level, d. We got the 
estimation of X K  after some smooth iterations. We then transform 
the solution XK to X K - '  by equation (6). The smooth iteration is 
carried out at level K-1 and another transformation by equation (6) 
is done to get the solution XK-'. We keep on going downwards 
until we reach the finest level. After we iterate on level 0, we call 
a correction procedure (equation (7)) to update XI from Xo. We 
also update vectors b' and Ro by equation (8) and (9). The 
smoothing iteration is performed at level 1 before we move to 
level 2. We keep on going upwards until the top level is reached. 
Figure 2 illustrates the process of a V-cycle with 3 levels. The 
pseudo code for a V-cycle iteration is shown in Fig. 3. 
3.1.5 Overall solvingprocedure 
The overall solving procedure begins with the clustering as a 
preprocess, and constructs a hierarchy first. Then for each 
equation (3) to be solved, several V-cycle iterations are carried out 
one after another until the solution converges. 

3. I .  6 Convergence issues 
The solution error after k V-cycle iterations can be defined as 

e@) = 11 xo(k)- x o ( k - 1 )  Ilm 

Where x o ( k )  is the solution at the finest level. We define the 
convergence rate at iteration k to be p@) = eckJ e@+. We say that 
the V-cycle iteration converges ifp@) < 1. 

The rigorous convergence analysis for the AMG method is still an 
open problem. Our experiments show that the AMG method is 
globally convergent, i.e., it always gets closer to the exact solution 
after each V-cycle. We have the following theorem on the 
convergence rate of the two-level AMG method [ 101: 

Theorem 1: Let A=(a,) be a symmetric, positive-definite matrix. 

Let R, be the set of other nodes that are clustered with node i ,  and 
N, be the set of neighbor nodes of i .  If there is a fixed O<t$l that 
for each node i who belongs to a cluster with more than one node, 
the following relation holds: max laik I 2 C I a,  1 ,  then the 

j e N ,  
k e N ,  nR, 

convergence rate of the two-level AMG method can be bounded 

Theorem 1 tells us that the convergence of the AMG method is 
independent of the problem size. 

by p 2 J F - q .  

3.2 A Circuit Theory Interpretation 
We explain how the multigrid solver works by an analogy to the 
circuit analysis. An example with two level clustering is used. 
The level 0 placement system is illustrated in Fig. 4(a). It contains 
5 movable nodes, which are represented by dots, and 2 fixed pad 
cells, which are represented by the squares. Fig. 4(b) depicts the 
resistive network circuit analogs to the placement system in Fig. 
4(a). Each node in Fig. 4(b) corresponds to a cell in Fig. 4(a); each 
branch corresponds to an edge. The resistance on each branch 
equals to the weight of the corresponding edge in Fig. 4(a). The 
voltage on each node corresponds to the position of each cell. 
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s (4 (b) 

( c )  

Fig. 4. A placement system and the corresponding circuit. 

The cluster is defined by merging nodes 1, 2 and 3 on level 0 into 
node 1’ on level 1, and merging cell 4 and 5 into node 2’. The 
clustering is illustrated in Fig. 4(c) with the dashed line circle. Fig. 
4(d) shows the corresponding circuit for the clustered placement 
system. Two new nodes, 1’ and 2’, are introduced. The old nodes 
are also marked with crosses. The voltages on the two new nodes 
are the unknowns for level 1. Five voltage sources, el to e5, are 
introduced to represent the voltage difference between the level 0 
nodes and the level 1 nodes. 
We assume that all the resistance in Figure 4(b) equals to 1. The 
KCL equations on level 0 is A o y  = bo, where 

The interpolation matrix is - 1 1 1 0 0 . According to 
o-[o 0 0 1 11 

our AMG method, the level 1 equation is A’X’ = b’, where 

V, - e ,  - e2  - e3 + 2e,  + e ,  , 

V2 + e2 + 2e, - 2e,  - 2e, 1 b’ = I i ( b o  - Q o R o )  = 

Please note that this equation A’X’ = b’ is also the level 1 KCL 
equation for the two nodes 1’ and 2’. 
For the V-cycle iteration, we first iterate on the level 1 circuit to 
solve the two voltages VI ’ and VI ’. At level 1, we assume that the 
voltage sources el to e5 are constants. We then interpolate by 
equation (5) to get the guess of the level 0 voltage on each node. 
The smoothing iterations are carried out on level 0 after that to 
refine the solution vector 2. We then restrict the level 1 voltages, 
VI ’ and V2 ’, to be the average voltage of each cluster (equation 
(6)). The voltage sources e1 to es and the right hand side vector b’ 
are also updated according to the current values of and XI. This 
brings us to the starting point of the next V-cycle iteration. 
The iteration on level 1 will smooth the low frequency error, or 
the error of the average voltage of each cluster, while the iteration 
on level 0 will smooth the high frequency errors, or the errors of 
the voltages at each node. 

4. CLUSTERING METHODS 
The clustering methods provide a hierarchy of levels, which is 
necessary for the AMG solver. We propose a new layout based 
clustering method. We also tried the hMETIS clustering [5] and a 

random clustering. The best clustering scheme for the AMG solver, 
however, remains open. 

4.1 Layout Based Clustering 
The layout based clustering is inspired by the idea that the 
placement without any additional force tells us the coupling 
between the cells: The cells are close to each other in the layout 
and also logically connected should be strongly coupled. We try to 
cluster the strongly coupled cells together. On the other hand, we 
need a fast clustering process, so a greedy approach is chosen. 
The distance information between the cells is generated by some 
tentative placement: We start from placing all the cells at the same 
place. A random initial placement is not adopted because the 
initial distance between the cells introduces some bias to the 
measurement. The SOR iteration is then used to drive the 
analytical placement. We take a snapshot of the placement when 
the standard deviation of the solution reaches its maximum. We 
call the placement at that time a blown up placement. 
The distance dg for each edge eg connecting cell ci and ci is 
calculated as follows: 

where df”, d?), dp) and dB(’.) are the geometric distances 
between cell ci and cj in the four blown up placements derived 
from initial settings of placing all the cells at the lower left, lower 
right, upper left and upper right corners of the chip, respectively. 
The cost of each edge eu is defined as follows: 

Where si is the size of the cluster ci; a is a parameter for balancing 
the cost of the distance and the cluster size. 
We follow the edge-coarsening scheme as described in [5]. At 
each level, we sort the edges by their cost cg. The edge with the 
smallest cost is collapsed first. The two clusters connected by that 
edge merge into a single cluster. The edge collapsing is repeated 
until the number of clusters is reduced by a preset factor. Figure 5 
gives the pseudo code for the layout based clustering. 

d.. B = d..@u+ B d..flr)+ ‘I dp)+ d , y )  (10) 

cij = a.dg+(l-a) . (si+@ (1 1) 

4.2 hMETIS Clustering 
We also implemented the clustering method in the hMETIS 

Algorithm Layout Based Clustering 
Input systems A’, bo, Go 
Output : A hierarchy of coarsening levels 
Begin 

Generate blown up placements by SOR iterations; 
Calculate the dii for each edge eii ; 
Calculate the cost cij of each edge el; 
Num-clusters = num-of-cells; 
NumThreshold = num-clusters / RATIO; // RATIO = 4 
k=O; 
While ( num-clusters > 100 ) 

While (num-clusters > NumThreshold ) 
Choose an edge e i t  with the smallest cost; 
Merge the two clusters ci and ci; 

Num-cluster -; 
Endwhile 
NumThreshold /= RATIO; 
k = k + l ;  
Construct level k; 
Update cost of each edge in level k; 

Endwhile 
End 

Figure 5 .  Pseudo code for the layout based clustering 
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Table 1 Comparison of CPU time for SOR, PCG and AMG-L solvers to reduce the relative error to 1 0-2 

SOR 

Circuit 
Name 

IBMO 1 
IBM02 
IBM03 
IBM04 
IBMO5 
IBM06 
IBM07 
IBM08 
IBMO9 
IBMlO 
IBM 11 
IBM12 
IBM 13 
IBM 14 
IBM 15 
IBM16 
IBM 17 
IBM 18 

PCG 

# Cells 

12752 
19601 
23136 
27507 
29347 
32498 
45926 
5 1309 
53395 
69429 
70558 
71076 
84 199 
147605 
161570 
183484 
185495 
210613 

#iter Time(s) 

120 4.54 
130 10.79 
120 11.66 
130 16.00 
140 19.03 
120 19.72 
120 31.33 
130 35.33 
220 71.04 
140 57.85 
180 79.05 
130 59.86 
140 81.27 
350 314.79 
590 757.81 
440 591.25 
350 553.20 

# Nets 

14111 
19584 
2740 1 
3 1970 
28446 
34826 
48117 
50513 
60902 
75196 
81454 
77240 
99666 
152772 
186608 
190048 
189581 
201920 

#iter 

45 
35 
35 
40 
20 
35 
55 
40 
55 
60 
60 
55 
60 
75 
75 
80 
70 
80 

# Non-zera 

73126 
127684 
142327 
159248 
185286 
206190 
270759 
315927 
334798 
443343 
421424 
462449 
539781 
843858 
1097957 
1175600 
1264240 
1273165 

SOR 

ii iter 
70 
90 
80 
90 
90 
80 
90 
90 
150 
90 
120 
90 
100 
240 
390 
290 
230 
770 

= 1.95) 
Time (s) 

2.75 
6.73 
8.14 

10.18 
12.76 
13.66 
21.33 
24.13 
47.34 
37.68 
53.50 
41.97 
57.46 

208.69 
502.37 
385.48 
361.83 

11 84.77 

partitioning. Some key points of this method are as follows: 
- 
- 

Edge clustering. Each time we choose an edge to collapse. 
Random seed. Each time we randomly choose a seed cluster, 
and try to cluster it with another cluster that is connected. 
Edge weight based cost function. For a clustering seed, we 
choose the edge with the largest weight to collapse. 
Slow clustering scheme: The cluster number ratio between 
two adjacent levels is constrained to be 1.7. 
Tie breaking: When two edges have the same cost, we break 
the tie by favoring the edge connecting to a smaller cluster. 

4.3 Random Clustering 
The random clustering is the same with the hMETIS clustering 
except that the edge is chosen randomly each time for collapsing. 

5. EXPERIMENT RESULTS 

- 

- 

- 

We implemented the algebraic multigrid solver and different 
clustering methods in C. These algorithms were tested using a set 
of placement benchmarks published in ISPD 2002 [13]. The 
statistical information of the benchmarks is listed in table 1. 
Equation (2) in section 2.2 was solved to test the different solvers. 
The experiments were run on a Sun Ultra 60 workstation with 360 
MHz CPU and 512 Mega-bytes memory. 
We combined the algebraic multigrid solver described in section 3 
with the clustering methods in section 4, and tested the following 
three algorithms: AMG-L, AMG-H and AMG-R are the 
algebraic multigrid solvers with layout based clustering, with 
hMETIS clustering, and with random clustering, respectively. 
For the AMG-L algorithm, we set GI to be 1.8 for the SOR 
smoothing in each level. We set a to be 0.15 for equation (1 1). 
The first experiment compared the performance of the AMG-L 
solver with an SOR and a PCG solver. The SOR solver is based on 
an algorithm in [12]. We set the o to be 1.95 for the SOR solvers. 
The PCG solver is based on an algorithm in [12]. It adopts 
incomplete Cholesky factorization as the preconditioner. 
To test the convergence of the solvers, we examined the relative 
error e, = (IX-X*(lJllX*I(, on the fine level solution X. The exact 
solution X* was got by running AMG-L solver for a sufficient 
long time. We made check points every V-cycle for AML-L 
solver, every 10 iterations for SOR solver and every 5 iterations 
for PCG solver to get the relative error e,. 

# iter 
40 
25 
25 
30 
20 
25 
45 
30 
50 
45 
50 
45 
50 
60 
65 
60 
60 
60 

:G 
Solving 

2.47 
3.09 
3.41 
4.56 
2.91 
5.12 

12.10 
9.86 

16.95 
22.71 
23.57 
21.89 
29.75 
68.81 
90.26 
92.11 
99.63 

112.91 

AI 
9 V-cycle 

7 
4 
4 
4 
4 
3 
3 
3 
4 
4 
3 
3 
3 
3 
3 
3 
3 
4 

3-L 
Solving 
Time (s) 

1.76 
1.70 
2.12 
2.73 
3.75 
2.24 
4.27 
4.66 
6.73 
8.28 
6.90 
7.05 
8.19 

15.90 
16.07 
21.28 
24.67 
30.96 

AMG-L 
Over 
SOR 

1.56 
3.96 
3.84 
3.73 
3.40 
6.10 
4.99 
5.17 
7.04 
4.55 
7.76 
5.95 
7.01 

13.13 
3 1.27 
18.11 
14.67 
38.27 

)eedup 
Over 
PCG 

1.40 
1.82 
1.61 
1.67 
0.78 
2.28 
2.83 
2.1 1 
2.52 
2.74 
3.42 
3.11 
3.63 
4.33 
5.62 
4.33 
4.04 
3.65 

Table 2. CPU time for solvers to reduce relative error to 

Circuit 
Name 

IBMOl 
IBM02 
IBM03 
1BM04 
IBM05 
IBM06 
1BM07 
IBM08 
IBM09 
IBM 10 
IBMll 
IBM12 
IBM13 
IBM14 
IBM 15 
IBM 16 
IBM17 
IBM 18 

Time(s) 

2.98 
3.88 
4.34 
5.73 
3.53 
6.56 

15.41 
12.39 
20.1 1 
29.67 
29.71 
27.58 
37.36 
84.75 

109.24 
124.44 
118.12 
149.90 

AMG-L 

#V-cyc 

10 
6 
7 
7 
7 
5 
5 
5 
7 
6 
6 
6 
5 
6 
6 
5 
6 
7 

Time(s) 

2.84 
3.32 
4.16 
5.14 
6.64 
5.18 
7.81 
9.47 

11.96 
16.16 
14.30 
15.69 
17.39 
34.42 
40.94 
43.83 
5 1.25 
67.29 

We compared the CPU time needed for each solver to reduce the 
relative error to in solving equation (2) one time. The 
results are listed in table 1 and table 2, respectively. In Figure 6, 
we plot the CPU time to reach 1 0-2 relative error for all the solvers 
on various test cases. In Figure 7, we give the convergence 
histories for the three solvers on the test case IBM17. For AMG-L 
solver, the clustering time is excluded from the CPU time, since 
the clustering time can be amortized because the clustering is done 
once for solving all the equations (3). For PCG solver, we also 
exclude the CPU time for calculating the precondition matrix. 
The results show that AMG method converges much faster than 
PCG and SOR at the beginning several iterations, and converges 
consistently at different error values. To reach relative error, 
the AMG-L solver runs up to 38 times faster than the SOR solver, 
and 5 times faster than PCG solver on large cases. For 10” relative 
error, AMG solver also outperforms PCG solver by a factor of 2 to 
3 on large cases. The results verify that for AMG solver, the 
number of V-cycles needed to converge is independent of the 
matrix size. This almost constant number of V-cycles strongly 
demonstrates that the method is scalable for huge designs. 
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The second experiment tests the impact of different clustering 
method. We test the AMG-L, AMG-H and AMG-R algorithms. 
The implementations of the multignd iterations are the same in all 
three algorithms. They differ only in the way they do the 
clustering. The CPU time each algorithm needs to get a 
relative error is reported in table 3. The clustering time is the time 
spent for deriving the whole clustering hierarchy. For AMG-L 
algorithm, the clustering time also covers the time to find the 
blown up placements. 
The results show that the clustering method makes a difference in 
the convergence. Layout based clustering outperforms hMETIS 
clustenng in large cases. Both layout based and hh4ETIS 
clustering outperform random clustering. Comparing the results in 
table 3 to table 2, we find that algebraic multigrid method works 
better than the SOR method even with random clustering. 
The clustering speed was not the goal so far. The random 
clustering sometimes takes longer time than hMETIS clustenng 
because hMETIS clustering tends to pick edges connecting un- 
clustered parts first, which makes the clustenng faster. 

6. CONCLUSION 
The multilevel methods are more efficient to solve the huge linear 
equation system. We apply the algebraic multigrid method to 
solve the huge linear equations arise from the analytical placement. 
A layout based clustermg scheme is proposed to generate 
coarsening levels for arbitrary circuit structures. The experimental 
results show that algebraic multigrid solver converges faster than 
PCG solver, and much faster than the one-level SOR solver on 
large test cases. 

Table 3. CPU time for different AMG algorithms to e, < 

Circuit 
Name 

IBMO 1 
IBM02 
IBM03 
IBM04 
IBMO5 
IBM06 
IBM07 
IBM08 
IBM09 
IBMlO 
IBMll 
IBMl2 
IBM 13 
IBM 14 
IBMI5 
IBM16 
IBM17 
IBM18 

AMG-L 
Clst 

Time(s) 
4.58 
15.71 
8.05 
19.0 

19.92 
10.64 
41.92 
33.81 
70.15 
80.41 
106.86 
78.8 

103.32 
455.45 
339.54 
427.86 
384.51 
319.22 

Solving 
Time(s) 
2.84 
3.32 
4.16 
5.14 
6.64 
5.18 
7.81 
9.47 
11.96 
16.16 
14.30 
15.69 
17.39 
34.42 
40.94 
43.83 
51.25 
67.29 

AMG-H - 
Clst 

rime(s) 
2.74 
10.79 
7.02 
7.48 
20.89 
10.9 

14.39 
39.06 
14.87 
28.5 
18.19 
34.87 
25.95 
57.0 
73.64 
86.47 
117.68 
112.26 

- 

- 

Solving 
Time(s) 

1.79 
3.84 
3.65 
4.77 
6.24 
6.42 
15.78 
12.97 
17.23 
21.95 
16.42 
21.63 
26.70 
77.41 
126.97 
138.86 
68.88 

259.65 

AMG-R 
Clst 

Time(s) 
2.32 
8.43 
7.52 
6.67 
19.12 
16.05 
17.18 
33.39 
19.94 
36.37 
27.09 
48.73 
41.88 
103.9 
182.6 
191.8 
268.4 
186.1 

Solving 
Time(s) 

3.17 
5.57 
5.16 
7.84 
9.46 
7.30 

19.35 
17.39 
28.21 
36.83 
25.40 
32.75 
72.48 
96.14 

174.90 
130.51 
116.51 
237.36 
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