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Abstract
The “chicken-egg” dilemma between VLSI interconnect

timing optimization and delay calculation suggests an it-
erative approach. We separate interconnect timing trans-
formation as Hanan grafting and non-Hanan sliding, and
reveal generally negligible contribution of non-Hanan slid-
ing. We propose a greedy iterative interconnect timing opti-
mization algorithm called Q-Tree. Our experimental results
show that Q-Tree starting with Steiner minimum tree topolo-
gies achieves better timing performance than C-Tree [1],
PER-Steiner [5] and BA-Tree [14] algorithms. Also, exe-
cuting Q-Tree starting with BA-Tree or P-Tree [13] topolo-
gies can achieve better timing performance, especially, with
shorter wires and fewer buffers. In general, Q-Tree can
be applied to any interconnect tree for further timing per-
formance improvement, with practical instance sizes and
easily-extended functionality - e.g., with buffer station and
routing obstacle avoidance consideration.

1 Introduction

The major objective of VLSI interconnect synthesis has
shifted from area minimization to performance optimiza-
tion. Design convergence - in particular timing closure -
has become one of the most critical concerns of any de-
sign methodology. Logic synthesis must be revoked with no
guarantees of improvement if physical design cannot meet
timing assumptions from logic synthesis. Interconnect tim-
ing optimization has become increasingly critical in achiev-
ing timing closure.

Existing VLSI interconnect construction algorithms (Ta-
ble 1) have various well-understood limitations in their
fields of use. Traditional minimum-spanning tree (MST)
(e.g., Prim) or Steiner minimum tree (SMT) (e.g., ER-
Steiner [5]) interconnect topologies are no longer timing op-
timum in deep submicron (DSM) technologies due to non-
negligible interconnect resistance. Shortest path trees (SPT)
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SPT MST SMT
Min Prim ER-Steiner
Area [5]

A-Tree AHHK BPRIM
Linear [7] [2] [6]
Delay BRBC

[6]
C-Tree ERT SERT Alpha

Elmore [1] [4] [4] PER- [15]
Delay SERT-C Steiner

[4] [5]
w/ Sim. BA-Tree P-Tree

Buffering [14] [13]
w/ Buffer MBA-Tree RMP Q-Tree S-Tree
Station + [8] [8] [11]
Routing
Obstacle

Table 1: Interconnect routing tree construction algorithms
categorized by topologies and objectives/functionalities.

and arborescences (e.g., A-Tree [7]), or shallow-light tree1

[3] (e.g., AHHK [2], BPRIM and BRBC [6]) are insensi-
tive to electrical parameters (e.g., driver strength, sink load
capacitance, required-arrival times) and thus give the same
results over all technologies, pin loads, driver strengths,
etc. Elmore-delay-based timing optimization heuristics
(e.g., C-Tree [1], ERT, SERT, SERT-C [4], PER-Steiner [5]
and Alphabetic tree [15]) do not guarantee timing perfor-
mance: e.g., C-Tree solutions are limited in 5 empirical
AHHK-over-SMT tree topologies; and PER-Steiner con-
structs shortest paths to pre-identified critical sinks before
further improvements. Dynamic programming approaches
(e.g., BA-Tree [14], MBA-Tree, RMP [8], P-Tree [13] and
S-Tree [11]) can achieve optimum area or timing perfor-
mance, and can extend to address such functionality as si-
multaneous buffering, use of buffer stations, and routing
obstacle avoidance. However, dynamic programming ap-
proaches are only weakly scalable, e.g., to nets with up to
10 [8] or 15 [11] sinks even with pruning techniques that
sacrifice optimality.

In this paper, we propose a new iterative improvement

1A shallow-light tree achieves small radius or small maximum source-
to-sink pathlength in the tree (i.e., “shallow”) and small cost(i.e., “light”)
at the same time.
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approach for buffered interconnect timing optimization. We
present our problem formulation in Section 2. Section
3 analyzes iterative interconnect timing optimization ap-
proaches, which we separate as Hanan grafting and non-
Hanan sliding. A greedy iterative interconnect timing op-
timization algorithm Q-Tree is developed in Section 4. We
present our experimental results in Section 5 and conclude
in Section 6.

2 Notations and Problem Formulation
We adopt the following notations in this paper.

� r = per unit length wire resistance,

� c = per unit length wire capacitance,

� Rs = driver output resistance of source s of intercon-
nect T ,

� Rb = buffer output resistance,

� Cb = buffer input capacitance,

� Db = internal buffer delay,

� Ct(i) = capacitance of sink i 2 K,

� q(v) = required-arrival time of node v,

� RU (u) = total resistance of the path up to the near-
est upstream buffer or source, including the buffer or
source output resistance,

� CT (v) = total capacitance of the subtree rooted at
node v down to the nearest downstream buffer or sinks
(i.e., no buffer is properly included in the subtree), in-
cluding the sink or buffer input capacitance,

� l(u; v) = edge length between nodes u and v,

� pT (u; v) = path in tree T between nodes u and v.

A DSM VLSI interconnect can be represented as a RC
tree with segment resistances and capacitances, resistive
driver, and capacitive loads. The presence of buffers B sep-
arates an interconnect into stages. Elmore delay [9] from
the source s to a sink k is given by:

dE(k) =
X

i2fkg[(B\pT (s;k))

d
stage
E (i) (1)

where path delay in a stage driven by b 2 fsg [ B is given
by:

d
stage
E (i) =

X

(u;v)2pT (b;i)

rl(u; v)(0:5cl(u; v) + CT (v))

+RsCT (b) +Db: (2)

The Interconnect Timing Optimization (ITO) problem is as
follows: Given

1. unit interconnect resistance r,

2. unit interconnect capacitance c,

3. source s with driving resistance Rs,

k

vu

s

(a)

k

v

u’

l

s

(b)

Figure 1: Elmore delay dE(k) could be decreased by sliding
a Steiner point u upstream by distance l to u0 .

4. sink set K with capacitance Ct(i) and required-arrival
time q(i) 8i 2 K,

5. buffer library L with input capacitance Cb(t), output
resistance Rb(t), internal delay Db(t) (and location
(x; y)(t) if t is a buffer station) 8t 2 L,

construct a tree T (B [ fsg [K) where every b 2 B is an
instance of some buffer type t 2 L, such that

1. source required-arrival time q(s) is maximized,

2. q(s) + dE(i) � q(i); 8i 2 K.

By setting unit interconnect resistance r = 0 with an
empty buffer library L = ;, we see that RSMT reduces to
ITO, which shows that ITO is NP-hard.

3 Analysis
In this section, we analyze two iterative interconnect tim-

ing optimization primitives called Hanan grafting and non-
Hanan sliding. Our analyses reveal limited contribution of
non-Hanan sliding, and form the foundation of the Q-Tree
algorithm in the next section.
3.1 Sliding

A timing optimum interconnect tree may not be a RSMT
on the Hanan grid,2 since Elmore delay to a sink can be
decreased by non-Hanan sliding [10, 15].

Definition 1 Non-Hanan sliding performs interconnect
tree transformation by relocating a Steiner node towards its
parent node, i.e., to a non-Hanan location with introduction
of coincident interconnect segments.

For a Steiner node u slid upstream by distance l to loca-
tion u0 (Figure 1), 3 the change of Elmore delay to sink k

per unit extra wirelength (= sliding distance) is given by:

�dslE(k) = (RU (u)� rl)cl � rl(CT (v) + cl(u; v))

= rcl(l�(u)� l) (3)

2The Hanan grid is formed by passing horizontal and vertical lines
through every terminal i 2 fsg [K .

3We consider a binary tree for simplicity. A general tree can be trans-
formed to a binary tree by introducing additional Steiner nodes and zero-
length edges.
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1l  = 0 l  = l*2

d  (k)E

(a)

l

1l  = l* l  = 02

d  (k)E
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Figure 2: Elmore delay dE(k) is a concave quadratic func-
tion of sliding distance l with two roots: 0 and an either (a)
positive or (b) negative l�(u).

where

l�(u)
def
=

RU (u)

r
�

CT (v)

c
� l(u; v):

Observation 1 Elmore delay to sink k is decreased (i.e.,
�dslE(k) � 0), by sliding a Steiner node u upstream by dis-
tance l if and only if l�(u) � l.

Observation 2 The smaller is l�(u), the larger is the El-
more delay decrease per unit extra wirelength.

Note that Elmore delay is a concave function of sliding dis-
tance l (Figure 2). The following observations hold.

Observation 3 Minimum Elmore delay to the sink k is
achieved by sliding the Steiner node u to an extreme lo-
cation (i.e., its current location or the location of its parent
node), which is a Hanan location if the original routing is
Hanan.

Observation 4 Maximum required-arrival time at source
of a Hanan routing is achieved by sliding the Steiner node
u to a Hanan location, unless the extra wirelength makes a
different (off-path) sink critical.

3.2 Grafting
Complementary to non-Hanan sliding, which embeds the

same tree topology beyond the Hanan grid, Hanan grafting
embeds a different tree topology on the Hanan grid. Hanan
grafting extends the basic edge replacement operation pro-
posed in [5] by allowing possible buffer insertion.

Definition 2 Hanan grafting performs tree transformation
by possibly buffered edge replacement on the Hanan grid.4

Consider a grafting which replaces a tree edge (u; v),
u = parent(v), by a non-tree edge (u0; v0). The change
of Elmore delay �d

gr
E (k) to sink k can be calculated for

each of the following cases (Figure 3): (a) v0 62 pT (s; k),
(b) v0 2 pT (s; k), u0 62 pT (s; k), and (c) v0 2 pT (s; k),
u0 2 pT (s; k), each with possible buffer insertion. E.g., in

4Depending on different scenarios, buffers can be inserted at the head
of the edge, at the head of edge segments, at buffer stations, optimally, etc.
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Figure 3: Grafting a routing tree by replacing a tree edge
(u; v) by a non-tree edge (u0; v0) with a possible buffer b in-
serted: (a) v0 62 pT (s; k), (b) v0 2 pT (s; k); u

0 62 pT (s; k),
(c) v0 2 pT (s; k); u

0 2 pT (s; k).

case that v0 62 pT (s; k), without buffer insertion, the Elmore
delay change is given by:

�d
gr
E (k) = RU (w

0)c(l2 � l1)� rl(w;w0)CT (v) (4)

or, with a buffer b inserted,

�d
gr
E (k) = RU (w

0)(c � l2b � c � l1 � CT (v)

+Cb(b))� rl(w;w0)CT (v) (5)

where l1 = l(u; v), l2 = l(u0; v0), l2a = d(v0; b), l2b =
d(b; u0), if a buffer b is inserted on (u0; v0), w = lca(k; v)
(resp. w0 = lca(k; v0)) is the least common ancestor of k
and v (resp. k and v0).

We observe that (i) the optimum sliding is Hanan when
starting with a Hanan routing, unless the extra wirelength
makes a different sink critical; and (ii) Hanan sliding is a
special case of Hanan grafting, i.e., case (a) without buffer
insertion. The following observation holds.

Observation 5 Without introduction of extra wirelength
which makes a different sink critical, a Hanan graft-
ing achieves the largest source required-arrival time q(s)
decrease per unit extra wirelength (i.e., �d

gr
E (k) �

�dslE(k) � 0, where k is the critical sink); otherwise non-
Hanan sliding makes further timing performance improve-
ment.

Observation 5 forms the basis of our proposed greedy itera-
tive timing optimization algorithm - Q-Tree.

4 Greedy Iterative Optimization
We propose a greedy iterative timing optimization algo-

rithm Q-Tree based on the above efficiency analysis. Q-
Tree chooses the most efficient interconnect tree transfor-
mation with the largest source required-arrival time increase
per unit extra wirelength (Algorithm 1). Hanan grafting is
preferred over non-Hanan sliding whenever possible due to
Observation 5.
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Observing that in many cases shorter wires imply smaller
delay, we classify grafting into three categories depend-
ing on whether the wirelength is (i) decreased, (ii) un-
changed or (iii) increased. Each category is sorted respec-
tively by (i) amortized critical sink delay decrease KA =

��dE(k) � (l2 � l1)avg(
��dE(k)
l2�l1

), where ��dE(k) is

the actual critical sink delay decrease, avg(��dE(k)
l1�l2

) is
the average critical sink delay decrease per unit extra wire-
length, and (l2 � l1)avg(

��dE(k)
l1�l2

) is the expected future
critical sink delay decrease due to current wirelength saving
l1 � l2, (ii) critical sink delay decrease KB = ��dE(k),
and (iii) critical sink delay decrease per unit extra wire-
length KC = ��dE(k)

l2�l1
. In choosing the most efficient

grafting, decreased wirelength is preferred over unchanged
wirelength, which is preferred over increased wirelength.
The chosen grafting is then verified by updating all sink El-
more delays. If no other sink becomes more timing critical,
the chosen grafting is committed by updating the routing
tree. Otherwise the next efficient grafting candidate is veri-
fied until finding a committable grafting or reaching the end
of the lists (Algorithm 2).

The most efficient sliding is at a Steiner node u with the
smallest l�(u) � l(u; parent(u)) (Equation 3). Node u is
slid upstream by distance l to maximize the source required-
arrival time q(s) = Mini2Kfq(i) � dE(s; i)g, where El-
more delay dE(i) is quadratic in l if i 2 T (u) (Equation 3),
or linear in l if i 62 T (u).5

The overall runtime for Q-Tree is
O(Mn3jLj log(n3jLj), where M is the number of
graftings tried in a Q-Tree run, n is the tree size, and jLj is
the buffer library size.

5 Experiments
In the following experiments we collect data over 5, 10,

15, 20, 50 and 100 terminals. For each terminal number,
100 sets of terminal locations are randomly generated in
a 10; 000�m � 10; 000�m square, over which intercon-
nects are constructed based on 180nm, 130nm, 100nm
and 70nm ITRS parameters and the Berkeley Predictive
Technology Model (BPTM) beta version[12] (Table 2). Re-
sults in terms of average source required-arrival time, wire-
length, buffer number and runtime are presented with iden-
tical driver, buffer and sink size (Rs = Rb; Cb = Ct)
and identical sink required-arrival times.6 The runtimes are
measured on a 1:4GHz Intel Xeon i686with 1GB memory,
excluding the time for SMT construction by the ER-Steiner
heuristic.

5The optimum sliding distance l can be found by calculating the inter-
sections of these quadratic or linear functions, which takes O(n2) runtime.
We adopt a binary search approach (Algorithm 3), which takes O(n log l)
runtime with negligible suboptimality as observed in our experiments.

6Similar results are obtained for (i) instances with uniformly distributed
sink capacitances in (0; Cb) and (ii) instances with sink required-arrival
times uniformly distributed in (0; Rb �

P
i2K

Ct(i)).

Algorithm 1: Q-Tree
Input: r, c, Rs,

Ct(i) and q(i) 8i 2 K ,
Cb(t) and Rb(t) 8t 2 Bl.

Output: Routing tree T with maximized
source required-arrival time q(s).

Construct, if not given, an initial tree T
Compute Elmore delay dE(t) for each sink t
For each critical sink k with minimum slack q(k)� dE(k)
If grafting returns timing improved routing tree T
Continue

Else if sliding returns timing improved routing tree T
Continue

Else
Return T

Algorithm 2: Grafting
Input: Routing tree T , critical sink k, buffer library Bl.
Output: Timing improved or unchanged routing tree T .

For each pair of nodes v0 and u0 62 Tv0

For each buffer type t 2 L [ ;
For each node v 2 Tw , w = lca(v0; u0) and v0 2 Tv
Compute�dE(k)
If l2 < l1
Push grafting (u0; v0; v;KA) into queue QA

Else if l2 = l1
Push grafting (u0; v0; v;KB) into queue QB

Else if l2 > l1
Push grafting (u0; v0; v;KC) into queue QC

Update avg(�dE(k)
l2�l1

) for amortization
SortQA with key KA in increasing order
SortQB with keyKB in increasing order
SortQC with keyKC in increasing order
While true
IfQA 6= ;
Pop up a grafting from QA

Else ifQB 6= ;
Pop up a grafting from QB

Else ifQC 6= ;
Pop up a grafting from QC

Else
Return unchanged routing tree T

Compute q(s)
If q(s) increases
Return timing improved routing tree T

Algorithm 3: Sliding
Input: Routing tree with critical sink k.
Output: Timing improved or unchanged routing tree T .

For each Steiner node u, k 2 Tu
Compute l�(u)

Find node u� with minimum l�(u�) < l(u�; parent(u�))
Find sliding distance l
Update Elmore delay dE(t) for each sink t 2 T
If q(s) increases
Return improved routing tree T

Else
Return unchanged routing tree T

We first compare three (unbuffered) interconnect topol-
ogy optimizations: Q-Tree starting with ER-Steiner, C-Tree
and PER-Steiner (Table 3). We observe that significant in-
terconnect timing performance improvement over Steiner
minimum trees can be achieved by interconnect topology
optimization at the expense of moderate wirelength in-
crease. This improvement grows with technology advance-
ment and instance size increase. Further, Q-Tree topology
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180nm 130nm 100nm 70nm
r(
=�m) 0.040 0.098 0.186 0.391
c(fF=�m) 0.232 0.212 0.191 0.155
Rb(
) 139.434 186.826 226.800 250.063
Cb(fF ) 63.358 33.652 17.370 6.869
Db(ps) 23.348 20.830 19.949 15.040

RbCb +Db(ps) 32.182 27.117 23.888 16.757

Table 2: ITRS and BPTM parameters for 180nm, 130nm,
100nm and 70nm technologies.

ERjQ-Tree C-Tree PER-Steiner
n jq(s)j l(T ) CPU jq(s)j l(T ) CPU jq(s)j l(T ) CPU
10 0.780 1.346 0.004 0.829 1.178 0.014 0.989 1.155 0.000

180 20 0.657 1.297 0.107 0.722 1.200 0.066 0.957 1.136 0.001
50 0.544 1.254 4.779 0.639 1.255 0.941 0.933 1.069 0.005

100 0.507 1.134 52.415 0.623 1.214 9.556 0.841 1.045 0.020
10 0.687 1.399 0.005 0.704 1.257 0.012 0.981 1.104 0.000

130 20 0.569 1.449 0.109 0.598 1.281 0.065 0.945 1.174 0.001
50 0.459 1.367 4.729 0.506 1.266 0.941 0.878 1.070 0.005

100 0.395 1.206 53.894 0.482 1.231 9.592 0.781 1.051 0.022
10 0.636 1.595 0.006 0.630 1.250 0.012 0.962 1.207 0.000

100 20 0.522 1.446 0.119 0.527 1.305 0.064 0.931 1.110 0.001
50 0.410 1.384 4.207 0.432 1.287 0.943 0.829 1.078 0.006

100 0.338 1.235 51.752 0.412 1.231 9.610 0.662 1.056 0.021
10 0.558 1.617 0.004 0.560 1.345 0.014 0.900 1.097 0.000

70 20 0.450 1.597 0.134 0.457 1.305 0.066 0.839 1.098 0.001
50 0.337 1.483 4.810 0.363 1.359 0.948 0.585 1.058 0.005

100 0.280 1.254 54.801 0.328 1.262 9.627 0.385 1.028 0.023

Table 3: Average source required-arrival time q(s), wire-
length l(T ) (normalized to ER-Steiner [5]), and runtime of
unbuffered (a) Q-Tree starting with ER-Steiner, (b) C-Tree
and (c) PER-Steiner over 100 randomly generated termi-
nal sets with identical sink capacitances and required-arrival
times under 180nm, 130nm, 100nm and 70nm technol-
ogy, respectively.

optimization starting with ER-Steiner topologies achieves
better timing performance with longer wires than C-Tree
and PER-Steiner topology optimizations.

We observe indistinguishable timing performance im-
provement by Q-Tree topology optimization with or without
non-Hanan sliding. Since introduction of buffer insertion
would further decrease the contribution of sliding, i.e., as
an alternative of critical sink isolation, we have: Non-Hanan
sliding contributes generally negligible timing performance
improvement.

We apply Q-Tree to ER-Steiner, BA-Tree and P-Tree
interconnects.7 For each interconnect, Q-Tree is first ap-
plied without any bound of wirelength or buffer number to
achieve the best possible timing performance. Bound of
wirelength and buffer number is then applied to achieve a
“dominant” Q-Tree solution (i.e., with shorter wires, fewer
buffers and better timing performance). We observe that
(Table 4):

7C-Tree solutions on randomly generated instances are not available
due to instability of C-Tree code. P-Tree results on 50 sink instances are
not available due to weak scalability.

1. Q-Tree starting with ER-Steiner in average achieves
better timing performance than BA-Tree with longer
wires and more buffers, and worse timing performance
than P-Tree with shorter wires and fewer buffers.

2. Q-Tree starting with ER-Steiner can achieve dominant
solutions over BA-Tree.

3. Q-Tree starting with BA-Tree can achieve better tim-
ing performance, especially, dominant solutions over
BA-Tree.8

4. Q-Tree starting with P-Tree can achieve better timing
performance, especially, dominant solutions over P-
Tree.9

6 Conclusion
We propose iterative interconnect timing optimization as

a solution to the “chicken-egg” dilemma between VLSI in-
terconnect timing optimization and delay calculation. We
separate iterative optimization approaches as Hanan graft-
ing and non-Hanan sliding. Our analyses reveal limited
contribution of non-Hanan sliding on timing performance
improvement. We also propose a greedy iterative intercon-
nect timing optimization algorithm Q-Tree. Our experimen-
tal results show that Q-Tree starting with ER-Steiner (resp.
BA-Tree or P-Tree) can achieve better timing performance,
especially, with shorter wires and fewer buffers compared to
BA-Tree (resp. BA-Tree or P-Tree). In general, Q-Tree can
be applied to any interconnect tree for further timing per-
formance improvement, with practical instance sizes and
easily-extended functionality, e.g., with buffer station and
routing obstacle consideration. Q-Tree provides a simple
and powerful VLSI interconnect timing optimization ap-
proach.

The authors thank Professor John Lillis, Milos Hrkic,
and Dr. Manjit Borah for their help with the P-Tree and
PER-Steiner codes, and Dr. Ion Mandoiu for useful com-
ments on the experimental setup.

References
[1] C. J. Alpert, M. Hrkic, J. Hu, A. B. Kahng, J. Lillis, B. Liu, S. T.

Quay, S. S. Sapatnekar, A. J. Sullivan, and P. Villarrubia. Buffered
Steiner trees for difficult instances. In ACM/SIGDA International
Symposium on Physical Design, pages 4–9, 2001.

[2] C. J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng, and D. Karger.
Prim-Dijkstra tradeoffs for improved performance-driven routing
tree design. IEEE Transactions on Computer-Aided Design, 14(7),
1995.

[3] B. Awerbuch, A. Baratz, and D. Peleg. Cost-sensitive analysis of
communication protocols. In Proc. ACM Symp. on Principles of Dis-
tributed Computing, pages 177–187, 1990.

8Q-Tree dominates BA-Tree by better construction, i.e., in merging
branches in different quadrants.

9Q-Tree dominance over P-Tree is possible due to P-Tree suboptimal-
ity, i.e., buffers can only be inserted at a branching point.

Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI’03) 
0-7695-1904-0/03 $17.00 © 2003 IEEE 



n ERjQ ERjQ� BA BAjQ BAjQ� P PjQ PjQ� ERjQ ERjQ� BA BAjQ BAjQ� P PjQ PjQ�

180 100
jq(s)j 0.638 0.889 0.912 0.165 0.828 0.487 0.204 0.242 0.552 0.808 0.827 0.167 0.750 0.328 0.174 0.203

5 l(T ) 1.255 1.130 1.141 1.087 1.035 1.363 1.359 1.326 1.311 1.242 1.141 1.168 1.035 1.341 1.326 1.326
jBj 5.190 0.410 0.810 3.240 0.810 6.260 6.320 5.870 5.700 0.250 0.490 3.020 0.490 7.610 7.090 6.830

CPU 0.010 0.000 0.000 0.010 0.000 0.031 0.063 0.044 0.016 0.000 0.000 0.010 0.000 0.026 0.072 0.064
jq(s)j 0.433 0.612 0.844 0.511 0.680 0.289 0.120 0.128 0.387 0.605 0.714 0.066 0.491 0.167 0.121 0.122

10 l(T ) 1.578 1.171 1.293 1.318 1.281 1.775 1.766 1.751 1.653 1.261 1.295 1.502 1.128 1.625 1.625 1.614
jBj 12.830 1.680 2.630 4.780 2.630 13.890 13.630 12.740 13.510 0.680 0.850 5.110 0.850 18.200 16.550 16.340

CPU 0.402 0.017 0.000 0.045 0.010 6.283 1.012 0.885 0.474 0.017 0.000 0.095 0.012 4.035 1.009 1.008
jq(s)j 0.351 0.633 0.703 0.419 0.560 0.225 0.095 0.114 0.288 0.566 0.622 0.174 0.400 0.124 0.085 0.085

15 l(T ) 1.665 1.222 1.268 1.268 1.268 1.881 1.879 1.866 1.759 1.292 1.267 1.506 1.138 1.667 1.660 1.657
jBj 18.050 1.720 4.090 6.030 4.090 20.540 16.870 16.220 20.620 0.730 2.230 6.130 2.230 24.370 20.370 20.080

CPU 1.653 0.080 0.000 0.191 0.018 201.339 1.018 1.002 2.310 0.053 0.000 0.375 0.060 98.241 1.028 1.011
jq(s)j 0.184 0.392 0.521 0.348 0.400 - - - 0.154 0.314 0.477 0.291 0.323 - - -

50 l(T ) 1.742 1.306 1.433 1.433 1.433 - - - 1.762 1.349 1.413 1.413 1.413 - - -
jBj 41.680 5.590 8.440 10.240 8.440 - - - 38.540 5.010 8.070 10.030 8.070 - - -

CPU 76.404 9.634 0.012 7.359 0.460 - - - 77.438 9.996 0.012 7.522 0.504 - - -
130 70

jq(s)j 0.577 0.846 0.859 0.176 0.780 0.387 0.204 0.204 0.525 0.763 0.793 0.159 0.719 0.268 0.164 0.191
5 l(T ) 1.317 1.242 1.141 1.168 1.035 1.383 1.376 1.365 1.341 1.242 1.141 1.168 1.035 1.354 1.316 1.318

jBj 5.440 0.240 0.420 2.890 0.420 7.530 7.290 6.780 5.490 0.260 0.400 3.040 0.400 8.280 7.780 7.400
CPU 0.015 0.000 0.000 0.010 0.000 0.020 0.071 0.056 0.023 0.000 0.000 0.010 0.000 0.022 0.079 0.067
jq(s)j 0.391 0.560 0.762 0.271 0.527 0.211 0.118 0.117 0.376 0.564 0.654 0.012 0.491 0.122 0.070 0.070

10 l(T ) 1.620 1.213 1.295 1.358 1.230 1.685 1.682 1.672 1.686 1.345 1.290 1.482 1.093 1.553 1.553 1.545
jBj 13.790 1.330 1.860 4.640 1.860 16.950 15.420 15.190 13.420 0.270 0.420 5.460 0.420 19.520 18.030 17.830

CPU 0.488 0.019 0.000 0.059 0.020 4.654 1.023 1.003 0.465 0.021 0.000 0.120 0.013 3.298 1.012 1.009
jq(s)j 0.309 0.576 0.676 0.322 0.459 0.162 0.075 0.084 0.274 0.612 0.579 0.007 0.348 0.086 0.063 0.064

15 l(T ) 1.778 1.228 1.258 1.388 1.220 1.811 1.811 1.792 1.791 1.353 1.234 1.493 1.049 1.614 1.614 1.611
jBj 20.580 1.390 3.030 5.160 3.030 22.990 19.110 18.360 20.830 0.390 0.660 5.850 0.660 28.370 22.980 22.710

CPU 2.356 0.065 0.000 0.214 0.026 133.807 1.029 1.009 2.518 0.053 0.000 0.419 0.053 79.318 1.038 1.013
jq(s)j 0.174 0.317 0.464 0.309 0.340 - - - 0.162 0.285 0.453 0.275 0.361 - - -

50 l(T ) 1.779 1.401 1.443 1.443 1.443 - - - 1.796 1.373 1.410 1.410 1.410 - - -
jBj 37.390 6.120 9.280 11.250 9.280 - - - 38.180 3.750 6.450 8.610 6.450 - - -

CPU 68.412 10.437 0.010 7.912 0.499 - - - 80.272 9.275 0.015 7.314 0.466 - - -

Table 4: Average source required-arrival time q(s), wirelength l(T ) (normalized to ER-Steiner [5]), buffer number jBj and
runtime (in seconds) achieved by (a) Q-Tree starting with ER-Steiner (ERjQ), (b) Q-Tree starting with ER-Steiner with l(T )
and jBj bounded by 1:1� BA-Tree results (ERjQ�), (c) BA-Tree (BA), (d) Q-Tree starting with BA-Tree (BAjQ), (e) Q-Tree
starting with BA-Tree with l(T ) and jBj bounded by 1:0� BA-Tree results (BAjQ�), (f) P-Tree (P), (g) Q-Tree starting with
P-Tree (PjQ), (h) Q-Tree starting with P-Tree with l(T ) and jBj bounded by 1:1� P-Tree results (PjQ�), over 100 randomly
generated sets of terminals with identical sink capacitances and required-arrival times under 180nm, 130nm, 100nm and
70nm technology, respectively.
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