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Abstract—The rectilinear Steiner minimum tree (RSMT)
problem, which asks for a minimum-length interconnection of a
given set of terminals in the rectilinear plane, is one of the funda-
mental problems in electronic design automation. Recently there
has been renewed interest in this problem due to the need for
highly scalable algorithms able to handle nets with tens of thou-
sands of terminals. In this paper we give a practicalO(n log2 n)

heuristic for computing near-optimal rectilinear Steiner trees
based on a batched version of the greedy triple contraction al-
gorithm of Zelikovsky [21]. Experiments conducted on both ran-
dom and industry testcases show that our heuristic matches or
exceeds the quality of best known RSMT heuristics, e.g., on ran-
dom instances with more than 100 terminals our heuristic im-
proves over the rectilinear minimum spanning tree by an average
of 11%. Moreover, our heuristic has very well scaling runtime,
e.g., it can route a 34k-terminals net extracted from a real de-
sign in less than 25 seconds compared to over 86 minutes needed
by the O(n2) edge-based heuristic of Borah, Owens, and Irwin
[3]. Since our heuristic is graph-based, it can be easily modified
to handle practical considerations such as routing obstacles, pre-
ferred directions, via costs, and octilinear routing – indeed, exper-
imental results show only a small factor increase in runtime when
switching from rectilinear to octilinear routing.

I. I NTRODUCTION

The rectilinear Steiner minimum tree(RSMT) problem,
which asks for a minimum-length interconnection of a given
net (i.e., set of terminals) in the rectilinear plane, is one of
the fundamental problems in electronic design automation.
Although deep-submicron technology has introduced addi-
tional routing objectives, minimum length continues to be the
primary objective when routing non-critical nets, since the
minimum-length interconnection has minimum total capaci-
tance and occupies minimum amount of area.

Of growing interest are practical methods for minimum-
length rectilinear routing of nets with up totens of thousands
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of terminals. Nets of this size, e.g., scan enable, are becoming
more common in modern designs due to the increased empha-
sis on design for test [1]. Such nets are non-critical and tend to
consume significant routing resources, so minimizing length
is the appropriate optimization objective. Furthermore, very
large RSMT instances are created by reductions that model
non-zero terminal dimensions, e.g., nets with pre-routes. High-
quality routing of such instances requires representing each ter-
minal by a set of electrically equivalent points [15] and this re-
sults in RSMT instances with as much as 100,000 points [22].

The main contribution of this paper is a highly scalable
heuristic for computing rectilinear Steiner trees. Existing im-
plementations of exact methods [17] and of best-performing
heuristics such as Iterated 1-Steiner [10] and Rajagopalan-
Vazirani [12] cannot be used on instances with tens of
thousands of terminals due to combinatorial explosion and
quadratic memory requirements, respectively. Our heuristic
requiresO(n) memory andO(n log2 n) time forn terminals,
and routes, e.g., a 34k-terminals net extracted from a real de-
sign in less than 25 seconds compared to over 86 minutes
needed by theO(n2) edge-based heuristic of [3]. More im-
portantly, this dramatic reduction in runtime is achieved with
no loss in solution quality. On random instances with more
than 100 terminals our algorithm improves over the rectilinear
minimum spanning tree (MST) by an average of 11%, match-
ing in solution quality the edge-based heuristic of [3]. To the
best of our knowledge, this is the first practical sub-quadratic
RSMT heuristic with such performance.1

Due to considerable potential for further wirelength reduc-
tions, recently there has been much interest [11, 16, 18] inoc-
tilinear routing, which allows45Æ diagonal interconnect in ad-
dition to the traditional horizontal and vertical orientations.2

Since our heuristic is graph-based, it can be easily modified to
handle octilinear routing – indeed, the results reported in Sec-
tion V show only a small factor increase in runtime compared

1TheO(n log n) implementation given in [3] for the edge-based heuristic
requires advanced data structures, potentially involving large hidden constants.
We are not aware of any implementation demonstrating the practical applica-
bility of this implementation.

2The octilinear distance between points(x; y) and (x0; y0) is equal to
maxfjx � x0j; jy � y0jg + (

p
2 � 1)minfjx � x0j; jy � y0jg and is al-

ways smaller than the rectilinear distance,jx � x0j + jy � y0j, unless the
two points are on the same horizontal or vertical line, in which case the two
distances are equal.
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Fig. 1. A 3-restricted rectilinear Steiner tree partitioned into full components.
The dark full component is a north-west triple.

to the rectilinear implementation. The heuristic can be simi-
larly extended to handle other practical considerations such as
routing obstacles, preferred directions [19], and via costs.

Our highly scalable Steiner tree heuristic, referred to as the
batched greedy algorithm(BGA) in the following, derives its
efficiency from three key ideas:

� Combining the implementation proposed in [5] for the
greedy triple contraction algorithm(GTCA) of Ze-
likovsky [21] with the batched method introduced by the
Iterated 1-Steiner heuristic of Kahng and Robins [10].

� A new divide-and-conquermethod for computing a super-
set of sizeO(n logn) of the set ofO(n) triples required
by GTCA.

� A new linear size data structure that enables finding a bot-
tleneck (i.e., maximum cost) edge on the tree path be-
tween two given nodes inO(log n) time afterO(n log n)
preprocessing, with very low constants hidden under the
bigO. This data structure allows computing the gain of a
triple (see Section II for the definition) inO(log n) time,
leading to anO(n log2 n) implementation of BGA.3

The rest of the paper is organized as follows. In Section
II we briefly review the greedy triple contraction algorithm of
[21] and describe our new batched greedy algorithm. In the
following two sections we describe in detail two of the key
BGA subroutines: in Section III we give the new divide-and-
conquer method for computing the set ofO(n logn) triples
used by BGA, while in Section IV we describe the new data
structure for computing bottleneck edges. Finally, in Section
V we give experimental results comparing BGA with previ-
ous implementations of rectilinear and octilinear Steiner tree
heuristics and exact algorithms on test cases both randomly
generated and extracted from recent VLSI designs.

3Our data structure may be of interest in other applications that require
computing bottleneck edges. For example, Zachariasen incorporated it in the
beta version of the GeoSteiner 4.0 code for computing optimum geometric
Steiner trees. On large instances, computing bottleneck edges with the new
data structure was found to be faster, most likely due to improved memory
access locality, than look-up in a precomputed matrix [20].
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Fig. 2. The MST ofGS (a) before and (b) after contraction of the triple� .
The gain of the dashed triple is the difference between the cost of most
expensive edgesR(�) = fe1; e2g in each of the two cycles ofT [ � and the
cost of� . Two new zero-cost edgesA(�) = fe0

1
; e0

2
g replacee1 ande2 in

the updated MST.

II. T HE GREEDY TRIPLE CONTRACTION AND BATCHED

GREEDY ALGORITHMS

We begin this section by introducing the Steiner tree ter-
minology used in the rest of the paper. A Steiner tree for a
set of terminals is a tree spanning the terminals and possi-
bly additional points, calledSteiner points. A Steiner tree is
called afull Steiner treeif all terminals are leaves (i.e., have
degree 1). Any Steiner treeT can be split into edge-disjoint
full Steiner trees called thefull Steiner componentsof T [6].
A Steiner treeT is calledk-restricted if every full component
of T has at mostk terminals (an example of a 3-restricted rec-
tilinear Steiner tree is shown in Figure 1). The minimum-cost
3-restricted Steiner tree is in general cheaper than the mini-
mum spanning tree (MST) of the terminals (note that the MST
is the minimum-cost 2-restricted Steiner tree of the terminals).

The greedy triple contraction algorithm(GTCA) in [21]
finds an approximate minimum-cost 3-restricted Steiner tree
by greedily choosing 3-restricted full components which re-
duce the cost of the MST. In order to describe GTCA we
need to introduce a few more notations. LetGS be the com-
plete graph on a given setS of terminals, and letMST (S)
be the MST ofGS . A triple � is an optimal Steiner tree for
a set of three terminals.4 We denote bycenter(�) the single
Steiner point of� and bycost(�) the cost of� . In the graph
MST (S)[ � , there are two cycles (see Figure 2(a)). To obtain
an MST of this graph we should remove the most expensive
edge from each cycle. Lete1 and e2 be the two edges that
must be removed and letR(�) = fe1; e2g. Thegain of � is
gain(�) = cost(R(�)) � cost(�).

GTCA (see Figure 3) repeatedly adds a triple� with the
largest gain andcontractsit, i.e., collapses the three termi-
nals of� into a single new terminal. Contraction of a triple is
conveniently implemented by adding two new zero-cost edges
A(�) = fe0

1
; e0

2
g between the three terminals of� (see Figure

2(b)). It is easy to see that addition ofA(�) changes the MST
of GS – in the updated MST the two edges inA(�) replace the
two edges inR(�). Finally, GTCA adds all chosen triples to
the original MST ofGS and outputs the MST of this union.

Theorem 1 [2] The cost of the rectilinear Steiner tree con-
structed by GTCA is at most 1.3125 times more than the opti-

4The optimum Steiner tree of 3 given terminals can be computed in con-
stant time under the common geometric metrics, including rectilinear [8] and
octilinear [11] metrics.
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Input: SetS of terminals
Output: 3-restricted Steiner treeT spanningS

1. T  MST (GS)
2. F  ;
3. Repeat forever

Find a triple� with maximum gain
If gain(�) � 0, then go to Step 4
F  F [ f�g // Add �
T  T �R(�) +A(�) // Contract�

4. OutputMST (F [MST (GS))

Fig. 3. The greedy triple contraction algorithm.

mal Steiner tree.

Fößmeier, Kaufmann and Zelikovsky [5] prove that in or-
der to achieve an approximation ratio of 1.3125 in Theorem
1 it is sufficient to consider onlyempty tree triplesof termi-
nals. A triple� is emptyif the minimum rectangle bounding
the triple does not contain any other terminals and is atree
triple if the centerc of � is adjacent to all terminals of the
triple in MST (S + c) (or, equivalently, ifgain(�) > 0). As
shown in [5], there are at most36n empty tree triples. Even so,
finding the best triple in Step 3 of GTCA is very time consum-
ing. An efficientO(n2 logn) time implementation of GTCA
should maintain dynamic minimum spanning trees for which,
to date, there is no data structure able to handle instances with
tens of thousands of nodes in practical running time. Exist-
ing data structures are difficult to implement and involve big
asymptotic constants, see Cattaneo et al. [4] for a recent em-
pirical study.

Our new heuristic, thebatched greedy algorithm(BGA) (see
Figure 4) adopts the batched method from [10], substantially
reducing running time by relaxing the greedy rule used to se-
lect triples in GTCA. After contracting a triple we continue
by picking the best triple among those with unchanged gain;
in general this may not be the best triple overall. Note that a
triple � can change its gain only if one of the edges inR(�)
is removed when contracting other triple – if none of the con-
tracted triples removes edges fromR(�) then the gain of� is
unchanged. When done with one suchbatched phase(the body
of the while loop in Step 4) it is still possible to have positive
gain triples. Therefore, we recompute triple gains and repeat
the batched phase selection until no positive gain triples are
left. To enable further improvements, we add the centers of
triples selected in Step 4 to the terminal set then iterate Steps
2–5 (which constitute aroundof the algorithm) until no more
centers are added to the tree.

In next section we show how to compute inO(n logn) time
a set ofO(n logn) triples containing all empty tree triples
(see Theorem 3). Then, in Section IV we describe a data
structure which enables computing a bottleneck edge on the
tree path between any two given nodes inO(logn) time after
O(n logn) time preprocessing. Since computing the gain of
a triple amounts to 3 bottleneck edge computations, this leads

Input: SetS of terminals
Output: Steiner treeT spanningS

1. Compute the minimum spanning tree ofS, MST (S)
2. Compute a setTriples, of sizeO(n log n), containing all

empty tree triples
3. SP  ;
4. While Triples 6= ; do

For each� 2 Triples computeR(�),A(�), and
gain(�), discarding triples with non-positive gain

SortTriples in descending order of gain
Unmark all edges ofMST (S)
For each� 2 Triples do

If both edges inR(�) are unmarked, then mark
them and replace them in the MST with the
two edges inA(�), i.e.,
MST (S) MST (S)�R(� ) +A(�)

SP  SP + center(� )

5. If SP = ; then return the minimum spanning tree ofS, else

S  S + SP

Compute the minimum spanning tree ofS and discard all
Steiner points with degree 1 or 2

Go to Step 2

Fig. 4. The batched greedy algorithm.

to anO(n log2 n) time implementation of the batched phase
algorithm. This gives the following:

Theorem 2 The running time of the batched greedy algorithm
is O(Pn log2 n), whereP is the total number of batched
phases andn is the number of terminals.

In practice the total number of phasesP is small and can
be bounded by a constant. Thus, the runtime of BGA is
O(n log2 n).

III. G ENERATION OFTRIPLES

In this section we show how to compute inO(n log n) time a
set ofO(n logn) triples containing all empty tree triples. For
simplicity we assume that terminals are in general position,
i.e., no two of them share the samex- or y-coordinate. This
assumption is not restrictive since we can always break ties,
e.g., according to terminal IDs.

In a triple, the terminal which does not sharex- and y-
coordinates with the center is calleddiagonal. There are 4
types of triples depending on where the diagonal terminal lies
with respect to the center: a triple is callednorth-westif the di-
agonal terminal is in the north-west quadrant of the center (see
Figure 1); north-east, south-west, and south-east triples are de-
fined similarly. We will use the divide and conquer method
to findO(n logn) north-west triples containing all north-west
empty tree triples. Triples of the other types are obtained by
reflection and application of the same algorithm.

For finding north-west triples we recursively partition the
terminals into (almost) equal halves with a bisector line paral-
lel to liney = �x. LetLB (left-bottom) andTR (top-right) be
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Fig. 5. Four cases of partitioning of a north-west triple.

the half-planes defined by the bisector line, and letD, R, and
B be the diagonal, right, and bottom terminals of a north-west
triple that is intersected by the bisector line (see Figure 5). We
distinguish the following 4 cases:

Case 1:D;R 2 TR andB 2 LB. Figure 6 (a) illustrates how
to compute for each diagonal terminalD the unique terminal
R that can serve as a right terminal in an empty north-west
triple with D as the diagonal terminal. All terminals inTR
are processed inx-ascending order as follows: (1) if the next
terminal hasy larger then the current terminal, then a dashed
pointer is set from the next to the current terminal, and then
the current terminal is advanced to the next terminal; (2) other-
wise, a solid pointer is set from the current terminal to the next
one, and the current terminal is moved back along the dashed
pointer (if it exists, otherwise the current terminal is advanced
to the next). Clearly this procedure is linear since the runtime
is proportional to the number of pointers established and each
terminal has at most two pointers (one solid and one dashed).
When processing of the points inTR is finished, each solid arc
connects a terminalD with the leftmost terminal in TR lower
than and to the right ofD, i.e., with the unique terminalR that
can serve as a right terminal in an empty north-west triple with
D as the diagonal terminal.

In order to find all Case 1 north-west triples, we must find for
each solid arc(D;R) in TR the nodeB in LB which can com-
plete the triple, i.e., the nodeB with maximumy-coordinate in
the vertical strip defined byD andR. This is done in linear
time by one traversal of the terminals in LB inx-ascending or-
der (i.e., strip by strip) while computing the highest point in
each strip.

Case 2:B;R 2 TR and D 2 LB. For each terminalR, the
unique terminal inTR that can serve as the bottom terminal in
an empty north-west triple withR as the right terminal (i.e., the
highest terminal inTR lower and to the left ofR) can be found
by a procedure similar to the one in Step 1. Cf. [5], an arc

32

1 4

5

M1

M2

M3

M4

LB

(b)

TR

32

1 4

5

LB

TR

(a)

Fig. 6. Case 1: (a) Finding the right terminal for each diagonal terminal, e.g.,
if D = 1, thenR = 5, if D = 3, thenR = 4, etc. (b) Finding highest
terminals in the strips corresponding to consecutive terminals.

(R;B) in TR is completed into a tree north-west triple only
when the diagonal nodeD is the closest toR (and therefore
to B) in the octant ofLB containing points higher thanR.
To find the diagonal pointsD for each arc(R;B) in TR, we
simultaneously traverse terminals inTR in y-ascending order
and terminals inLB in (x� y)-ascending order as follows:
While there are unprocessed terminals in bothTR andLB, do

� Advance inTR until we reach a terminalR which has an
arc to the associatedB

� Advance inLB until we reach a terminalD higher than
R

� AssignD toR

Note that triples found bye the above procedure are not neces-
sarily empty. With a more careful implementation it is possi-
ble to avoid generating non-empty triples, however this would
not change the asymptotic number of triples generated or the
worst-case running time of the algorithm.
Case 3:R 2 TR andD;B 2 LB. It is equivalent to the case
1 after reflection over bisector.
Case 4:D 2 TR andB;R 2 LB. It is equivalent to the case
2 after reflection over bisector.

Theorem 3 A set of sizeO(n logn) containing all empty tree
triples can be computed inO(n logn) time.

Proof. Each north-west empty tree triple crossing the divid-
ing diagonal must fall in one of the 4 cases considered and
finding all crossing triples takes linear time. Thus, the running
time is given by the recurrenceT (n) = 2T (n=2)+O(n), i.e.,
T (n) = O(n logn). The number of triples generated by the
divide-and-conquer algorithm is alsoO(n logn) by the same
recurrence; notice that each recursive step generates a linear
number of triples. The same argument applies to the other 3
triple types. ut
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Input: Weighted treeT = (V;E; cost) with V = f1; 2; : : : ; ng
Output: Arraysparent(i) andedge(i), i = 1; : : : ; 2n� 1

1. Sort tree edgese1; : : : ; en�1 in ascending order of cost
2. Initialization:

next n

For eachi = 1; 2; : : : ; 2n� 1 do
parent(i) NIL
edge(i) NIL

3. For each edgeei = (u; v), i = 1; : : : ; n� 1, do

While u 6= v andparent(u) 6= NIL and
parent(v) 6= NIL do
u parent(u)
v  parent(v)

If parent(u) = parent(v) = NIL, then
next next+ 1
parent(u) parent(v) next
edge(u) edge(v) i

If parent(u) = NIL andparent(v) 6= NIL, then
parent(u) parent(v)
edge(u) i

If parent(u) 6= NIL andparent(v) = NIL, then
parent(v) parent(u)
edge(v) i

4. Output the arraysparent(i) andedge(i)

Fig. 7. The hierarchical greedy preprocessing algorithm.

IV. COMPUTING MAXIMUM COST EDGE ON A TREE PATH

It is easy to see that computing the gain of a triple� and the
edges inR(�) reduces to finding bottleneck (i.e., most expen-
sive) edges on the tree paths between pairs of terminals in� .
Thehierarchical greedy preprocessing(HGP) algorithm given
in Figure 7 computes for a given tree onn terminals two aux-
iliary arrays,parent andedge, with at most2n � 1 elements
each. Using these arrays, the bottleneck tree edge between any
two terminalsu andv can be found inO(logn) using the al-
gorithm in Figure 8.

Assuming that edges are sorted in ascending order of cost,
HGP is equivalent to the following recursive procedure. First,
for each nodeu, direct the cheapest edge incident tou, away
from u, and save its index inedge(u). As a result some edges
remain undirected, some become unidirected, and some be-
come bidirected. In the subgraph induced by the (uni- and bi-)
directed edges, each connected component consists of a bidi-
rected edge with two (possibly empty) arborescences attached
to its ends. HGP collapses each such connected componentK
into a single nodeq, then setsparent(u) to q for everyu 2 K.
Since each connected component contains at least one bidi-
rected edge, no more thann=2 collapsed component nodes are
created. The procedure is repeated on the tree induced by col-
lapsed components until there is a single node left. The total
runtime of HGP isO(n logn) because of the edge sorting in
Step 1, remaining HGP steps requireO(n) time.

Clearly, edge costs decrease along any directed path of a
connected componentK. Therefore, ifu andv are two ver-

Input: Tree edgese1; : : : ; en�1 in ascending order of cost,
arraysparent(i) andedge(i), i = 1; : : : ; 2n� 1, and nodes
u; v 2 V
Output: Maximum cost edge on the tree path betweenu andv

1. index �1,
2. While u 6= v do

index maxfindex; edge(u); edge(v)g
u parent(u)
v  parent(v)

3. Returneindex

Fig. 8. Subroutine for computing the maximum cost edge on the tree path
between nodesu andv.

tices ofK, then the index of the maximum cost edge on the
tree path betweenu andv ismaxfedge(u); edge(v)g. If u and
v are in different componentsK andK 0, we need to compute
the maximum betweenedge(u), edge(v), and the maximum
index of the most expensive edge on the path betweenK and
K 0 in the treeT with collapsed connected components. The
algorithm in Figure 8 is an iterative implementation of this re-
cursive definition. Since the hierarchy of collapsed connected
components has a depth of at mostlogn, we get:

Theorem 4 The algorithm in Figure 8 finds the maximum cost
edge on the tree path connecting two given nodes inO(log n)
time afterO(n logn) time for hierarchical greedy preprocess-
ing.

V. EXPERIMENTAL RESULTS

Comprehensive experimental evaluation indicates that the
Iterated 1-Steiner heuristic of Kahng and Robins [10] sig-
nificantly outperforms in solution quality the RSMT heuris-
tics proposed prior to 1992 [9]. Since then, the edge-based
heuristic of Borah, Owens, and Irwin [3], and the IRV heuris-
tic [12] have been reported to match or slightly exceed It-
erated 1-Steiner in solution quality. However, among these
best-performing heuristics only the edge-based heuristic can
be applied to instances with tens of thousands of terminals,
since current implementations of Iterated 1-Steiner and IRV re-
quire quadratic memory. Besides Borah’sO(n2) implementa-
tion of the edge-based heuristic, we compared ourO(n log2 n)
batched greedy algorithm to the recentO(n log2 n)Prim-based
heuristic of Rohe [14]. For comparison purposes, we also
include results from our implementation of the Guibas-Stolfi
O(n logn) rectilinear MST algorithm [7], and, whenever pos-
sible, the optimum RSMTs computed using the beta version of
the GeoSteiner 4.0 algorithm recently announced in [13].

All heuristics and MST algorithms were run on a dual 1.4
GHz Pentium III Xeon server with 2GB of memory running
Red Hat Linux 7.1. The GeoSteiner code using the CPLEX
6.6 linear programming solver was run on a 360 MHz SUN
Ultra 60 workstation with 2 GB of memory under SunOS 5.7.
The test bed for our experiments consisted of two categories
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of instances: instances drawn uniformly at random from a
1; 000; 000�1; 000; 000grid, ranging in size between 100 and
500,000 terminals, and a set of 8 testcases extracted from re-
cent industrial designs, ranging in size between 330 and 34,000
terminals.

Table I gives the percent improvement over the rectilinear
MST and running time (in CPU seconds) for experiments on
rectilinear instances. On random instances, the batched greedy
heuristic matches or slightly exceeds in average solution qual-
ity the edge-based heuristic of [3]. Both batched greedy and
the edge-based heuristic improve the rectilinear MST by an
average of 11% in our experiments. This is roughly 1% more
than the average improvement achieved by the Prim-based
heuristic of [14], and is within 0.7% of the optimum aver-
age improvement for the sizes for which the optimum could be
computed using GeoSteiner. Results on VLSI instances show
that the relative performance of the heuristics is the same to
that observed on random instances. However, the improve-
ment over the rectilinear MST and the gaps between heuristics
are smaller in this case.

The results in Table I show that the batched greedy algo-
rithm is highly scalable. Even though batched greedy is not as
fast as the MST or the Prim-based heuristic of [14], it can eas-
ily handle up to hundreds of thousands of terminals in minutes
of CPU time. Compared to Borah’sO(n2) implementation of
the edge-based heuristic, batched greedy is two or more orders
of magnitude faster as soon as the number of terminals gets
into the tens of thousands.

The batched greedy algorithm can be easily adapted to other
cost metrics, such as octilinear routing. The only required
modifications are in the distance formula (see Footnote 2) and
in the procedure for finding the optimum Steiner point of a
triple. Table II gives results obtained by the octilinear versions
of the Guibas-Stolfi MST,O(n2) edge-based,5 batched greedy,
and GeoSteiner 4.0 algorithms. Octilinear batched greedy is
almost always better than the octilinear edge-based heuristic,
and very close to optimum for the instances for which the latter
is available. Furthermore, octilinear batched greedy remains
highly scalable, with just a small factor increase in runtime
compared to the rectilinear version.

VI. CONCLUSIONS

Non-critical nets with tens of thousands of terminals are
becoming more common in modern designs due to the in-
creased emphasis on design for test. Even a single net of
this size can render quadratic Steiner tree algorithms imprac-
tical, given the stringent constraints on routing runtime (e.g.,
designers expect full chip global and detailed routing to be
completed overnight). In this paper we have given a high-
qualityO(n log2 n) heuristic that can practically handle these
nets without compromising solution quality.

Since our heuristic is graph-based, it can be easily modified
to handle other cost metrics, e.g., octilinear routing. We are

5We use our own octilinear modification of Borah’s code since the imple-
mentation in [11] appears to have cubic rather than quadratic runtime.

currently extending the heuristic to handle other practical con-
siderations, such as routing obstacles, preferred directions, and
via costs.
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[5] U. Fößmeier, M. Kaufmann and A. Zelikovsky. Faster approximation
algorithms for the rectilinear Steiner tree problem,Discrete & Computa-
tional Geometry18 (1997), pp. 93–109.

[6] E.N. Gilbert, H.O. Pollak. Steiner minimal trees,SIAM J. Appl. Math.32
(1977) pp. 826–834.

[7] L.J. Guibas and J. Stolfi. On computing all north-east nearest neighbors
in theL1 metricInformation Processing Letters17 (1983), pp. 219–223.

[8] M. Hanan. On Steiner’s problem with rectilinear distance,SIAM Journal
on Applied Mathematics14 (1966), 255–265.

[9] F.K. Hwang and D.S. Richards and P. Winter.The Steiner tree problem.
North-Holland, Annals of Discrete Mathematics 53, 1992.

[10] A.B. Kahng and G. Robins. A new class of iterative Steiner tree heuris-
tics with good performance,IEEE Trans. on CAD11 (1992), pp. 1462–
1465.

[11] C.-K. Koh and P.H. Madden, Manhattan or Non-Manhattan? A study of
alternative VLSI routing architectures, inProc. Great Lakes Symposium
on VLSI, 2000, pp. 47–52.
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TABLE I
PERCENT IMPROVEMENT OVERMST AND CPUTIME OF THE COMPARED RECTILINEARSTEINER TREE ALGORITHMS

#Term. MST Prim-Based Edge-Based Batched Greedy GeoSteiner 4.0
Len.(�m) CPU %Imp. CPU %Imp. CPU %Imp. CPU %Imp. CPU

Random instances (average results over 10 instances)
100 85169.9 0.0005 9.78 0.001 10.97 0.006 10.99 0.003 11.66 0.555
500 184209.7 0.0036 10.08 0.007 11.12 0.216 11.17 0.081 11.76 15.205

1000 258926.8 0.0079 10.04 0.014 10.96 0.939 10.99 0.230 11.61 117.916
5000 573178.8 0.0501 10.02 0.082 11.02 56.348 11.05 1.903 — —

10000 809343.5 0.1268 10.04 0.191 11.01 415.483 11.05 5.192 — —
50000 1808302.7 1.2330 10.05 1.320 11.01 16943.777 11.06 69.043 — —

100000 2555821.9 3.1150 10.08 3.143 11.04 61771.928 11.08 195.589 — —
500000 5710906.8 22.9130 10.07 20.570 — — 11.08 1706.765 — —

VLSI instances
337 247.7 0.0020 5.96 0.000 6.50 0.060 6.43 0.040 6.75 16.040
830 675.6 0.0055 3.10 0.010 3.19 0.320 3.20 0.080 3.26 9.480

1944 452.2 0.0165 6.86 0.040 7.77 3.640 7.85 0.400 8.15 1304.270
2437 578.8 0.0217 7.09 0.040 7.96 5.740 7.96 0.680 8.34 13425.310
2676 887.2 0.0235 8.07 0.040 8.99 5.340 8.93 0.770 9.38 430.800

12052 2652.7 0.1378 7.65 0.180 8.46 540.840 8.45 5.230 — —
22373 13962.5 0.3419 8.99 0.480 9.83 2263.760 9.85 13.060 — —
34728 9900.5 0.5455 8.16 0.690 9.01 5163.060 9.05 24.200 — —

TABLE II
PERCENT IMPROVEMENT OVERMST AND CPUTIME OF THE COMPARED OCTILINEARSTEINER TREE ALGORITHMS

#Term. MST Edge-Based Batched Greedy GeoSteiner 4.0
Len.(�m) CPU %Imp. CPU %Imp. CPU %Imp. CPU

Random instances (average results over 10 instances)
100 72375.1 0.0005 4.28 0.530 4.43 0.010 4.75 11.608
500 155611.7 0.0036 4.12 13.410 4.29 0.118 4.60 311.991

1000 219030.8 0.0079 4.12 54.641 4.25 0.296 4.59 1321.382
5000 484650.5 0.0506 4.17 1466.296 4.31 2.820 — —

10000 684409.5 0.1217 4.13 5946.815 4.28 8.362 — —
50000 1528687.2 1.1940 4.16 147210.395 4.30 116.419 — —

100000 2160629.4 3.1060 — — 4.32 476.307 — —
500000 4826839.1 23.0610 — — 4.31 6578.840 — —

VLSI instances
337 219.0 0.0020 2.92 5.690 2.99 0.050 3.13 72.960
830 630.4 0.0055 0.93 27.610 0.90 0.120 1.07 195.190

1944 407.2 0.0167 3.33 202.030 3.47 0.750 4.01 5279.870
2437 523.1 0.0218 3.67 345.330 3.77 0.820 4.29 7484.730
2676 780.2 0.0236 3.41 392.340 3.51 1.310 3.89 6080.050

12052 2372.3 0.1417 3.63 7517.680 3.72 10.800 — —
22373 12069.8 0.3447 3.65 25410.340 3.74 21.380 — —
34728 8724.9 0.5427 3.64 62971.090 3.74 25.160 — —
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