
On Mismatches Between Incremental Optimizers and Instance Perturbations in
Physical Design Tools*

Andrew B. Kahng and Stefanus Mantik

UCLA Computer Science Dept., Los Angeles, CA 90095-1596
{ abk,stefanus} @cs.ucla.edu

Abstract

The incremental, “construct by correction” design methodology has
become widespread in constraint-dominated DSM design. We study
the problem of ECO for physical design domains in the general con-
text of incremental optimization. We observe that an incremental de-
sign methodology is typically built from afull optimizer that generates
a solution for an initial instance, and an incremental optimizer that gen-
erates a sequence of solutions corresponding to a sequence of perturbed
instances. Our hypothesis is that in practice, there can be a mismatch
between the strength of the incremental optimizer and the magnitude of
the perturbation between successive instances. When such a mismatch
occurs, the solution quality will degrade - perhaps to the point where
the incremental optimizer should be replaced by the full optimizer. We
document this phenomenon for three distinct domains - partitioning,
placement and routing - using leading industry and academic tools.
Our experiments show that current CAD tools may not be correctly
designed for ECO-dominated design processes. Thus, compatibility
between optimizer and instance perturbation merits attention both as a
research question and as a matter of industry design practice.

1 Introduction

With the shift to deep-submicron processes and high-performance
constraint-dominated designs, achieving satisfactory design solutions
has become increasingly difficult. Thus, “construct by correction” it-
erative design methodologies have come to replace “correct by con-
struction” flows. One indicator of this shift is in commercial EDA
tools, where placement-based synthesis [101, “in-place optimization”,
“routing-driven synthesis”, etc. all support performance-driven incre-
mental netlist and layout optimization. A typical iteration consists of
(1) placement, (2) timing analysis, and (3) netlist reclustering, repeater
insertion, and driver resizing; the netlist changes are then fed back to
the placement tool as ECOs (Engineering Change Orders), and the se-
quence of steps (1)-(3) repeats. A second indicator of this shift lies
in the architecture of future tool offerings, e.g., integrated RTL floor-
planning and place-and-route tools that share a common design data
repository for physical context (physical design library, chip layout
plan), logic design (gate-level netlist), and analysis results (obtained
by an “analysis backplane” of parasitic estimation, delay calculation,
and incremental static timing analysis). Such a tool architecture allows
backward loops between arbitrary stages within the design flow. For
example, from detailed routing one might be able to iterate back up to
placement, back up to logic synthesis, or even back up to RTL design,
depending on the level at which changes are deemed necessary to si-
multaneously achieve routing completion, timing and signal integrity.

‘This work was supported in part by the MARC0 Gigascale Research Center and by
Cadence Design Systems, Inc. Andrew B. Kahng is now Professor of Computer Science
and Engineering, and of Elecmcal and Computer Engineering, at the University of Califor-
nia, San Diego.

We observe that incremental optimization lies at the heart of the
iterative, “construct by correction” paradigm. EDA tools that sup-
port this paradigm will typically provide the user with an “incremental
mode”, where the solution to a new problem instance is obtained by
perturbing the solution to the previous problem instance. For example,
given post-placement changes to the gate-level netlist (due to driver
resizing and repeater insertion) a previous placement result might be
used as the starting point for iterative solution (using low-temperature
simulated annealing) of the placement problem for the new netlist.
Similarly, given post-routing changes to net criticalities and topology
directives (due to timing and noise analysis results) a previous routing
might be used as the starting point for iterative solution (using rip-up
and reroute) of the routing problem. A number of incremental physical
design formulations are reviewed in [5] .

2 Incremental Optimization

A simple and general model of incremental optimization is:

0 An original instance, Io, is solved by afull algorithm to yield
solution SO.

0 Perturbed instances 11,. . . , In are generated one by one in se-
quence.

0 Each perturbed instance is solved by an incremental algorithm
which uses s i -] as the starting point for finding solution s i , i =
1, ..., n.

In what follows, we assume that both the full and incremental algo-
rithms perform iterative optimization (see the definition in [3]), i.e.,
they iteratively generate a new solution from the current solution. If
the algorithm can start the optimization process from any given initial
solution, then incremental optimization is always possible with this al-
gorithm. We also assume that each algorithm retums a local minimum
solution.’ Our work is motivated by the observation that the full al-
gorithm is often quite different from the incremental algorithm. For
example, a full algorithm for row-based placement might use a meta-
heuristic combination of analytic placement and annealing, while an
incremental algorithm might use only annealing.

2.1 A Potential Mismatch: Instance Perturbation vs. Strength of
Optimizer

We ask the following question:

‘This is ageneral model that encompasses greed, simulated annealing, and other heuris-
tics. (1) A given instance is defined by a finite solution space S and a cost funcdon
f : S -+ %+. (2) The generation of new candidate solutions from the current solution
corresponds to a neighborhood structure (i.e., a topology of “possible next-moves”) over
S. with N(s) denoting the set of neighbors of solution s. (3) The cost function and the
neighborhood structure together define the cost surfuce for the instance. (4) We seek a
glohul minimums’ E S such that f(s’) 5 f(s) Vs E S. (5) A locul minimum d E S satisfies
f(.+) 5 f(s) v.v E N (d) .

0-7803-6445-7/00/$10.00 0 2000 IEEE 17

mailto:cs.ucla.edu

Can the quality (say, relative to optimal) ofsolution Sn be worse than
that of solution so?
And ifso, can the decrease in solution quality be attributed to aspects
of the sequence l o , 11 , . . . , 1, (e.g., the “distance ” between successive
instances) and the incremental algorithm?

Figure 1: Perturbing the instance will perturb the cost surface.

(Of course, this question still makes sense even if the full algorithm is
the same as the incremental algorithm.) The intuition behind our ques-
tion is as follows (see Figure 1). Each perturbed instance li changes
the cost surface of the optimization, e.g., from the solid cost surface to
the dashed surface in Figure 1. The previous local minimum si-1 (SI
in the Figure) is in the “basin of attraction” [8] of some local minimum
si (q in the Figure) for the instance li, which is why the incremental
algorithm returns si for this instance. But if the new instance li differs
sufficiently from li-1 - in particular, such that si is not a good solution
(note the existence of solution sg in the Figure) - then the incremen-
tal algorithm must escape the “basin of attraction” in order to find a
good solution. Our hypothesis is that the changes between successive
instances must be compatible with the strength of the incremental al-
gorithm:

A strong incremental algorithm, in combination with small
changes to the cost surface in successive instances, will maintain
good solution quality but waste computational resources.

A weak incremental algorithm, in combination with large
changes to the cost surface in successive instances, will lead to
progressively worse solution quality.

In general, sufficiently large changes in the cost surface require
sufficiently powerful incremental algorithms that escape stale
basins of attraction in finding good solutions.

To the best of our knowledge, this question has not been addressed
in the literature. The most closely related body of research is that on
problem-space and heuristic-space methods in the metaheuristics lit-
erature [18] [12]. Such methods perturb a given instance to allow a
given optimization heuristic to escape local minima. The perturbations
induce alternate cost surfaces that one hopes are correlated to the orig-
inal cost surface (so that good solutions in the new surface correspond
to good solutions in the original), yet which have sufficiently differ-
ent structure (so that the optimization heuristic can move away from
the previous local minimum). While the success of such methods has
been well-documented, no research has addressed the potential cost -
in terms of either runtime or solution quality - of mismatches between
perturbation size and strength of the optimization heuristic.

2.2 An Experimental Investigation

Our .contributions stem from experimental analyses which clearly
demoqtrate that the mismatches noted above can be real.

We define an experimental framework that allows us to find the
maximum perturbation size that is consistent with no loss of so-
lution quality as the incremental optimizer tracks the sequence
of perturbed instances. This framework is used in three distinct
domains: partitioning, placement and routing.

We study incremental partitioning using a good partitioning tool.
Our results show that applying large perturbations to the instance
may allow the incremental optimizer to find much-improved so-
lutions.

We study incremental placement using a leading industry place-
ment tool and a realistic model of netlist changes made for per-
formance optimization. Our results show that current incremental
optimization approaches, while quite strong, must nevertheless
be carefully matched against the magnitude of netlist perturba-
tions.

We study incremental routing using a leading industry routing
tool and a realistic model of routing changes for performance op-
timization. Our results show that the router is not well-suited for
incremental optimization: a single drastic change with large per-
turbation size gives better results than an equivalent set of small
changes with small perturbation size.

We conclude that the incremental optimization model is of in-
creasing importance in VLSI CAD applications, and that the
question of potential mismatch between instance perturbations
and incremental optimization engines merits further study.

In the following sections, we will describe our experimental
methodology and results for hypergraph partitioning, standard-cell
placement, and standard-cell routing domains.

3 Experimental Design

In this section, we describe an experimental framework for assessing
the potential mismatch between (i) the incremental optimizer capabil-
ity, and (ii) the magnitude of the instance change. We would like to
understand (i) if applying the incremental optimizer to the perturbed
instance will actually improve the overall so1ution;and (ii) if the size of
the perturbation has any effect on the solution quality. To answer these
questions, we have devised two simple experiments that test whether
an incremental optimizer can maintain solution quality.

Reversal-Based Experiment. We construct a series of in-
stances IO,. . . , Ik- l , I k , l k + l , . . . , Iu; where 10 = 12, 11 = 12k-1,
etc. In other words, there are k successively perturbed instances
11,. . . , I k , then we reverse the sequence so that the final instance
Im is the same as the original instance IO. With this experiment
we can see whether the final solution Su; has better quality than
the initial solution SO. Thus, this experiment shows us whether
the incremental optimizer eventually improves or loses solution
quality.

Dicing-Based Experiment. We chop up a given perturbation
into smaller perturbations. Then, we see whether applying the
incremental optimizer to each of the corresponding perturbed in-
stances in sequence results in better solution quality (or, better
solution quality / runtime tradeoff point) than applying the in-
cremental optimizer to the final perturbed instance alone. This
experiment shows whether the magnitude of perturbation plays
an important role in incremental optimization. If the size of the
perturbation, Al, is too small and the incremental algorithm is
too strong (a situation which always leads to a better solution),
or if Al is too big and the incremental algorithm is weak (a situa-
tion which will lead to worse solutions), then there is a mismatch
between perturbation size and algorithm strength.

18

We have performed these experiments in three distinct domains of
physical design: partitioning, placement and routing. The detailed ex-
perimental setup for each domain is described in the respective sections
below. Uniformly, we will use p to denote the magnitude of the per-
turbation, and k to denote the number of perturbed instances generated
in the reversal-based experiment.

Solution

So
SI
Sz
S3
S4
S5
S6
S7
su
sy
Slo
5’11
Si2

si4
Si5
Sic,
si7
SIR
S l y

SI3

szo

4 Partitioning

Our instances for partitioning domain are netlist hypergraphs. We use
MLPart (a publicly available (academic) multi-level partitioner [4])*
for both full optimizer and incremental optimizer.

Our instance perturbation consists of weight changes for hyper-
edges. Five discrete values (1, 2, 5, 8 and 10) are allowed for the
hyperedge weights. Our initial instance is the original hypergraph with
all hyperedges having identical weight = 5. In generating an instance
I,+l from instance I j , we randomly select p hyperedges whose weights
are to be changed. For each of these p hyperedges, we toss a coin to de-
termine whether the hyperedge weight will be increased or decreased
to the next value from its current value. If a hyperedge has the max-
imum (minimum) possible weight, incrementing (decrementing) will
be ignored.

We start the reversal-based experiment by running the partitioner
on original instance 10 (again, with all hyperedge weights = 5) to ob-
tain the initial solution SO. The instance IO is then perturbed to obtain
instance 11. We apply the partitioner to 11 with SO as the starting point;
this yields solution SI. We continue this process until we obtain the
final perturbed instance Ik. From this point, we start to reverse the in-
stance sequence, i.e., solution for instance Ik+l = Ik-1 is obtained
with Sk as the initial solution.

In the dicing-based experiment, we set up two independent runs of
the partitioner. The first run creates a new instance 1; from the original
instance 10 by changing the weights for p hyperedges all at once, then
runs the partitioner to obtain Si. The second run creates a sequence of
instances 11,12, . . . , Ik that gradually implement the p weight changes,
and with the final instance Ik being exactly the same as 1;. The parti-
tioner is called for each instance until we obtain the final S k .

Experimental Results

We use four industry standard benchmarks from the IBM-intemd cir-
cuits released in the ISPD-98 Benchmark Suite [l , 21. Characteristics
of these benchmarks are shown in Table 1. We run three sets of exper-

p = 14
497 (36)
489(32)
487(34)
482(34)
481 (33)
480(33)
480(33)
480(33)
479 (34)
478 (34)
476 (33)
475 (32)
474(32)

472(30)
473 (32)
472(31)
472 (30)
472(30)
471 (29)

474(33)

471 (28)

Design 11 #TerminalNodes I #CoreNodes I #Nets
ibmOl I1 246 I 12506 I 14111

Design

ihmOl
ihmO2
ihmO3
ihm04

U Cul Ne% (CPU)

240 zw247n15(~ .21) zz7n4ynis (Y.25) z17/243/215 (9.21)
303 183/304n50(17.8) Z m 1 4 n 4 Y (17.7) z m 6 5 n 4 Y (17.2)
ini6 676n571681(20.6) m 0 7 / 6 2 Y (z0.Y) 67uIYl1635(20.6)
550 471/523/441(23.5) 480/548/443(22.7) u)41441i718(22.Y)

hllial P = 14 ~ = 1 4 0 ~ = 1 4 w

iments with different p values: 14, 140 and 1400. Each run uses 10%
for the partitioning balance tolerance, and actual cell areas for node
weights. For the reversal-based experiment, we generate a sequence of
ten perturbed instances (k = IO), i.e., we have 21 partitioning solutions
(SO, SI,. . . , S ~ O) . Table 2 shows a representative sequence of perturba-
tions with the corresponding results for the ibm04 test case. Table 3
shows results for all partitioning runs. Each value in this table is an
average over 30 runs (maximum and minimum values, with runtime in
seconds (Sun Ultra- 1) in parentheses).

Design Regular Instance Diced Instance

ibmO1 253 10.85 secs 216 1082.44 secs
ibm02 268 20.03 secs 257 2012.73 secs
ibm03 718 24.55 secs 697 2366.12 secs
ibm04 520 26.37 secs 496 2597.42 secs -

Cut Nets CPU #CutNets CPU ~

‘See http: //vlsicad. cs .ucla. edu/GSRC/bookshelf / and
http : / /www. openEDA. org for free source codes. The partitioner can take an
initial solution and perform the coarsening phase of multilevel Fiduccia-Mattheyses
partitioning while respecting this solution (i.e., clusters must always group nodes from the
same partition). However, in the uncoarsening phase the partitioning can diverge from the

ibm02
ibm03
ibm04

259 19342 19584
283 22853 27401
287 27220 31970

k Cut Net:

518 (38)
508 (33)
504 (32)
499 (33)
497 (33)

p=140

496 (33)
492 (33)
492 (34)
493 (34)
492 (35)
483 (34)
482 (34)
482 (34)
483 (34)
482 (34)
481 (32)
481 (32)
480 (32)
480 (34)
480 (34)
480 (34)

p = 1400
507 (62)
498 (62)
495 (62)
494 (61)
493 (62)
493 (63)
494 (63)
493 (63)
493 (63)
495 (63)
494 (62)
495 (62)
493 (62)
491 (63)
489 (62)
488 (62)
487 (61)
487 (62)
486 (62)
485 (62)
484 (60)

Table 2 A sequence of perturbations and incremental optimizations
for the ibm04 test case. Values are average net cut over 30 runs, with
standard deviation in parentheses.

In the dicing-based experiment, our first experimental run uses
p = 1400, which changes 1400 hyperedge weights. The second ex-
perimental run uses the same hyperedge weight changes but with the
overall perturbation broken down into 100 small steps, each with 14
weight changes. Table 4 compares results from both runs; again, val-
ues are averages over 30 runs.

Table 4 Comparison between an incremental run on a partitioning
instance with a single large perturbation, and incremental runs on the
same instance with a “diced” perturbation.

Table 3 shows the improvement obtained by the instance perturba-
tions. Incremental partitioning runs give a substantial improvement in
overall solution quality”. This shows that the problem-space meta-
heuristic approach may be more effective for partitioning. We note
that our conclusion holds even for runtime-equalized comparisons ver-
sus multistart execution of the multilevel partitioner. In general, re-

initial solution.

at http://vlsicad.cs.ucla.edu/GSRCmookshelf).
3Qunlitatively similar results are obtained for flat FM (FMPan, also publicly available

19

sults of (S~O) runs are extremely good when compared with the best
published solutions for these test cases.

5 Placement

Our instances in the placement domain are circuit netlists. The full
optimizer is the Cadence QPlace 5.0.46 placer (all settings for maxi-
mum quality), and the incremental optimizer is the same QPlace placer,
invoked in incremental mode. The initial instance is the original
unplaced netlist, and instance perturbations comprise netlist changes
which remove or insert cells and nets. To create instance l j + l from in-
stance I , , we randomly select p cells and delete them from the netlist.
If a net on which cells have been removed is disconnected as the result
of the deletion, then it is merged with another net that is also discon-
nected from the same deletion. All dangling nets (i.e., nets that are
connected to one cell only) are deleted. This perturbation (and its re-
versal) reflects ECO type operations used in performance optimization.

Again we start the reversal-based experiment by running the full
QPlace placement on original instance 10 to obtain the initial solution
SO. Instance 10 is then perturbed by deleting p cells to obtain instance
11. We apply incremental QPlace on 11 with SO as the starting solution;
this yields SI. The process is continued until the last perturbed instance
1, iS created, and from this point we reverse the instance sequence so
that solution for instance Ik+l = Ik-1 is obtained with Sk as the
initial solution.

In the dicing-based experiment, we again set up two independent
runs of the placer. The first run creates a new instance li from original
instance 10 by making a big change in the netlist - i.e., p cells deleted
at once - and incremental QPlace is called to obtain SL. The second run
creates a sequence of instances I1 ,1z1.. . ,Ik that gradually implement
the same perturbation, and with the final instance 1, exactly the same
as I;. Incremental QPlace is called for each instance until we obtain
the final Sk .

Experimental Results

We use two industry standard-cell benchmarks for experiments in
placement domain; their characteristics are shown in Table 5.

Design #Cells #Nets
Test case 1 12133 11828 €333 Test case 2 20577 25634

Table 5: Design test cases for placement and routing experiments.

Design Regular Instance Diced Instance
Wirelength I CPU Wirelength I CPU

. Test case 1 2333165 I 75 secs 2225270 I 8076 secs

We also use three different perturbation sizes (p) : 12, 120 and
1000. Table 6 shows the results of all runs with different perturba-
tion sizes. We again use k = 10 in this domain, which leads to 21
placement solutions Sol.. . ,S20. For the dicing-based experiment, we
delete p = 1200 cells: (1) the first run deletes all 1200 cells at once and
then calls incremental QPlace to place the remaining cells, and (2) the
second run breaks the perturbation into 100 steps with 12 cells deleted
at each step, and incremental QPlace called for each step. Table 7
compares results from both runs.

Table 6: Placement results for all test cases. Experiments are run on
a 300MHz Sun Ultra-10. We see that incremental placement yields
overall improvement in wirelength.

I Testcase2 11 5415380 I 200secs I 5341744 I 18132secs I
Table 7: Dicing-based experiment: Comparison between an incremen-
tal run on a placement instance with large perturbation, and multiple
incremental runs that gradually implement the same perturbation on
the same instance. Wirelength is measured for the final incremental
run and CPU time is the total time for all incremental runs.

Table 6 shows that incremental optimization gives an overall im-
provement in solution quality regardless of the size of instance pertur-
bations. The placement tool’s incremental capability may be too
strong relative to these magnitudes of instance perturbations.

6 Routing

Our instances for routing domain are placed circuit netlists. We use
the Cadence WarpRoute v1.0.22+ router for our full optimizer, and the
same WarpRoute in incremental mode for our incremental optimizer.
The initial instance is the original placed design netlist, and instance
perturbation consists of changes in cell orientations. To obtain instance
l j t l from instance l j , we randomly select p cells and flip them (i.e.,
mirror them about the y-axis, so that they can remain in the same sites
in the same placement row). When a cell is flipped, all routing infor-
mation for incident nets is removed.

The full WarpRoute is applied on the initial instance IO to obtain
an initial solution SO for the reversal-based experiment. Instance IO is
then perturbed by flipping p cells to obtain instance 11, and we apply
incremental WarpRoute to 11 with SO as the starting point, yielding SI.
We continue the process until the last solution s k is obtained. Again,
we reverse the instance sequence so that solution &+I for instance
Ik+l = 1k-l is obtained with Sk as the initial solution.

Again, two independent runs of routing are used for the dicing-
based experiment. The first run creates a new instance I i from original
instance IO by making a big change in the placement (p cells flipped
at once). Incremental WarpRoute is called to get Si. The second run
creates a sequence of instances I1 I2 , . . . , Ik with = I i . Incremental
WarpRoute is called for each instance.

Experimental Results

For our routing experiments, we use the same two design cases shown
in Table 5. Perturbation sizes used for routing experiments are 12, 120
and 1200. We use the same value of k = 10 that yields a sequence of
21 routing solutions. Experimental results for all test cases are shown
in Table 8. For the dicing-based experiment, we also use an instance
that has perturbation size of p = 1200 cells. Just as in the placement
domain, the first run flips all 1200 cells at once and makes a single
call to incremental WarpRoute, while the second run makes 100 small
incremental WarpRoute calls with 12 cells flipped between each call.
The comparison between two runs is given in Table 9.

Figure 2 shows the wirelength difference between a small pertur-
bation with many runs and a large perturbation with one run. It shows
that when performing an incremental updates on the routing instance,
it is probably better to perform the update all at once.

From this experiment we can see that in the routing domain, the
perturbation size should be sufficiently large before we apply in-
cremental optimization. Dicing a large perturbation into smaller ones
will degrade the overall solution.

7 Discussion and Conclusions

In the partitioning domain, we can see that applying instance pertur-
bation will yield a better solution. Table 3 shows that for all perturba-

20

Table 8: Routing results for all test cases. All runs are performed on a
300MHz Sun Ultra-IO machine. Wirelengths for incremental runs are
the final routed wirelengths (except the initial instance) and CPU times
are the total incremental runtime.

Design

Test case 1

Regular Instance Diced Instance
Wirelength I CPU Wirelength I C PU
3469250 I 204secs 3537667 I 8924secs I Testcase2 11 8177713 I 587secs I 8620049 I 18442secs 1

Table 9: Dicing-based experiment: Comparison between an incremen-
tal run on a routing instance with large perturbation, and multiple in-
cremental runs that gradually implement the same perturbation on the
same routing instance.

tion sizes, a better result is obtained compared to the initial solution.
This also shows that the problem-space metaheuristic approach may
be very effective for partitioning - in fact, more effective than realized
by previous investigators who studied problem-space methods for par-
titioning [7]. The authors of [7], as well as the “stable net transition”
technique of [161, both use edge deletion (followed by restoration) as
the instance perturbation (or, “kick move” in the so-called “large-step
Markov chain”4 approach). In contrast, we use edge reweighting as
the instance perturbation, and we automatically achieve the restoration
as a consequence of how we reverse the sequence of perturbations to
retum to the original instance.

In the placement domain, we can see from Table 6 that incremental
runs always yield a better solution. This may be because the incremen-
tal algorithm for the placement is too strong. In addition, the problem
instances we chose may be too easy for the placer, allowing the tool to
find a better solution easily.

In the routing domain, we can see from Table 8 that solutions ob-

4The Large-Step Markov Chain (LSMC) method of [I 11 iteratively performs a descent
using a greedy search engine, and then perturbs the resulting local optimum via a “kick
move” to obtain the starting solution for the next greedy descent.

Figure 2: Difference between one run with a big instance perturbation
and multiple runs with small instance perturbations. Performing in-
cremental optimization with too-small perturbation sizes will lead to
worse solutions.

tained from incremental runs are always worse than the initial solution.
One of the reasons for this is that when we remove routing informa-
tion for some nets, the blockage effect caused by these nets remains
intact. In other words, if a net is routed in a certain way such that it
blocks several other nets and forces those nets to have detours, then
when the routing for this net is removed, those detours will still exist
in the overall solution. However, when we try to re-route this specific
net within such a context, we may encounter difficulties because most
of the spaces have been taken. Thus, interestingly, to achieve conver-
gence in incremental routing, perturbation sizes should be as large as
possible before the incremental optimizer is applied.

Altogether, we believe that our experimental results show that cur-
rent design tools may not be correctly architected to handle incremental
optimizations. Because incrementality is such an important aspect of
today’s deep-submicron design methodologies, it is important for tools
to deliver appropriate incremental optimization capabilities. In addi-
tion, as overall design processes are instrumented to achieve continu-
ous process improvement [6] , it is important to understand the ability
of tools to improve designs via incremental optimization. By under-
standing the potential of mismatch between instance perturbation and
algorithm strength, designers can find the flow tunings that will best
reduce design cycle times and increase designer productivity.

References
C. J. Alpert, “Partitioning Benchmarks for VLSI CAD Community”. Web page,
http://vlsicad.cs.ucla.edu/-cheese/benchmarks.html
C. J. Alpert, “The ISPD-98 Circuit Benchmark Suite”, Pmc. ACM/IEEE
fntl. Symposium on Physicul Design, April 98. pp. 80-85. See errata at
http://vlsicad.cs.ucla.edu/-cheese/errata.html
K. D. Boese, Models for Iterutive Globul Optimizution. Ph.D. Thesis, UCLA Com-
puter Science Dept., 1996.
A. E. Caldwell, A. B. Kahng and I. L. Markov, “Improved Al-
gorithms for Hypergraph Bipartitioning”, Pmc. Asiu und South Pu-
cifc Design Automution Con$, Jan. 2O00, pp. 661-666. available at
http://vlsicad.cs.ucla.edu/GSRC/bookshelf
J. Cong and M. Sarrafzadeh, “Incremental Physical Design”, Pmc. ISPD, 2O00, pp.
84-92.
S. Fenstermaker, D. George, A. B. Kahng. S. Mantik and B. Thielges, “METRICS:
A System Architecture for Design Process Optimization”. Pmc. ACWIEEE Design
Automution Con$, June 2O00, pp. 705-710.
A. S. Fukunaga, J. H. Huang and A. B. Kahng, “On Clustered Kick Moves For
Iterated-Descent Netlist Partitioning”, Pmc. IEEE Intl. Symp. on Circuits and Sys-
tems, May 1996, pp. Nl496-499.
B. Hajek, “Cooling Schedules for Optimal Annealing”, Muthemutics of Operutions
Reseurch 13(2) (1988). pp. 311-329.
D. J. Hathaway, R. R. Habra, E. C. Schanzenbach and S. 1. Rothman, “Circuit Place-
ment, Chip Optimization, and Wire Routing for IBM IC Technology”, J. VLSI Signul
Pmcessing Systems for Signul, Imuge, and Video Technology 16(2-3) (1997). pp.
191-198.
L. N. Kannan, P. R. Suaris and H.-G. Fang, “A Methodology and Algorithms for
Post-Placement Delay Optimization”, Pmc. ACWIEEE Design Automution Con$,
1994, pp. 327-332.
0. C. Martin, S. W. Otto and E. W. Felten, “Large-Step Markov Chains for the Trav-
eling Salesman Problem”, Complex Systems, 5(3), 1991, pp. 299-326.
I. H. Osman and J. P. Kelly, eds., Metu-Heuristics: Theory undApplicutions, Kluwer,
1996.
R. Otten. “Global Wires Harmful?“, Pmc. Intl. Symposium on Physicul Design, 1998,
pp. 104-109.
R. Otten and R. K. Brayton, “Planning for Performance: the Constant Delay
Paradigm”, Pmc. ACWIEEE Design Automution Con$, 1998.
J. C. Shah and S. S. Sapatnekar, “Wiresizing with Buffer Placement and Sizing for
Power-Delay Tradeoffs”. Pmc. Intl. Con$ on VLSI Design, Bangalore. 1996, pp.
346-35 1.
T. Shibuya, I. Nitta and K. Kawamura. “SMINCUT: VLSI Placement Tool Using
Min-Cut”, Fujitsu Scientific und Technicul Journul31(2) (1995). pp. 197-207.
Semiconductor Industry Association, “The National Technology Roadmap for Semi-
conductors: Technology Needs”. December 1997.
R. H. Storer, S. D. Wu and R. Vaccari, “New Search Spaces for Sequencing Prob-
lems With Application to Job Shop Scheduling”, Munugement Science 38 (1992).
pp. 1495-1509.
W. Sun and C. Sechen, “Efficient and Effective Placements for Very Large Circuits”,
Pmc. IEEWACMIntl. Con$ on Computer-Aided Design. 1993, pp. 170-177.
M. Wang, P. Banejee and M. Sarrafzadeh. “Potential-NRG: Placement With Incom-
plete Data”, Pmc. ACWIEEE Design Automution Con$. 1998.

21

http://vlsicad.cs.ucla.edu/-cheese/benchmarks.html
http://vlsicad.cs.ucla.edu/-cheese/errata.html
http://vlsicad.cs.ucla.edu/GSRC/bookshelf

