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Abstract 

The incremental, “construct by correction” design methodology has 
become widespread in constraint-dominated DSM design. We study 
the problem of ECO for physical design domains in the general con- 
text of incremental optimization. We observe that an incremental de- 
sign methodology is typically built from afull optimizer that generates 
a solution for an initial instance, and an incremental optimizer that gen- 
erates a sequence of solutions corresponding to a sequence of perturbed 
instances. Our hypothesis is that in practice, there can be a mismatch 
between the strength of the incremental optimizer and the magnitude of 
the perturbation between successive instances. When such a mismatch 
occurs, the solution quality will degrade - perhaps to the point where 
the incremental optimizer should be replaced by the full optimizer. We 
document this phenomenon for three distinct domains - partitioning, 
placement and routing - using leading industry and academic tools. 
Our experiments show that current CAD tools may not be correctly 
designed for ECO-dominated design processes. Thus, compatibility 
between optimizer and instance perturbation merits attention both as a 
research question and as a matter of industry design practice. 

1 Introduction 

With the shift to deep-submicron processes and high-performance 
constraint-dominated designs, achieving satisfactory design solutions 
has become increasingly difficult. Thus, “construct by correction” it- 
erative design methodologies have come to replace “correct by con- 
struction” flows. One indicator of this shift is in commercial EDA 
tools, where placement-based synthesis [ 101, “in-place optimization”, 
“routing-driven synthesis”, etc. all support performance-driven incre- 
mental netlist and layout optimization. A typical iteration consists of 
(1) placement, (2) timing analysis, and (3) netlist reclustering, repeater 
insertion, and driver resizing; the netlist changes are then fed back to 
the placement tool as ECOs (Engineering Change Orders), and the se- 
quence of steps (1)-(3) repeats. A second indicator of this shift lies 
in the architecture of future tool offerings, e.g., integrated RTL floor- 
planning and place-and-route tools that share a common design data 
repository for physical context (physical design library, chip layout 
plan), logic design (gate-level netlist), and analysis results (obtained 
by an “analysis backplane” of parasitic estimation, delay calculation, 
and incremental static timing analysis). Such a tool architecture allows 
backward loops between arbitrary stages within the design flow. For 
example, from detailed routing one might be able to iterate back up to 
placement, back up to logic synthesis, or even back up to RTL design, 
depending on the level at which changes are deemed necessary to si- 
multaneously achieve routing completion, timing and signal integrity. 
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We observe that incremental optimization lies at the heart of the 
iterative, “construct by correction” paradigm. EDA tools that sup- 
port this paradigm will typically provide the user with an “incremental 
mode”, where the solution to a new problem instance is obtained by 
perturbing the solution to the previous problem instance. For example, 
given post-placement changes to the gate-level netlist (due to driver 
resizing and repeater insertion) a previous placement result might be 
used as the starting point for iterative solution (using low-temperature 
simulated annealing) of the placement problem for the new netlist. 
Similarly, given post-routing changes to net criticalities and topology 
directives (due to timing and noise analysis results) a previous routing 
might be used as the starting point for iterative solution (using rip-up 
and reroute) of the routing problem. A number of incremental physical 
design formulations are reviewed in [5] .  

2 Incremental Optimization 

A simple and general model of incremental optimization is: 

0 An original instance, Io, is solved by afull algorithm to yield 
solution SO. 

0 Perturbed instances 11,. . . , In  are generated one by one in se- 
quence. 

0 Each perturbed instance is solved by an incremental algorithm 
which uses s i - ]  as the starting point for finding solution s i ,  i = 
1, ..., n. 

In what follows, we assume that both the full and incremental algo- 
rithms perform iterative optimization (see the definition in [3]), i.e., 
they iteratively generate a new solution from the current solution. If 
the algorithm can start the optimization process from any given initial 
solution, then incremental optimization is always possible with this al- 
gorithm. We also assume that each algorithm retums a local minimum 
solution.’ Our work is motivated by the observation that the full al- 
gorithm is often quite different from the incremental algorithm. For 
example, a full algorithm for row-based placement might use a meta- 
heuristic combination of analytic placement and annealing, while an 
incremental algorithm might use only annealing. 

2.1 A Potential Mismatch: Instance Perturbation vs. Strength of 
Optimizer 

We ask the following question: 

‘This is ageneral model that encompasses greed, simulated annealing, and other heuris- 
tics. (1) A given instance is defined by a finite solution space S and a cost funcdon 
f : S -+ %+. (2) The generation of new candidate solutions from the current solution 
corresponds to a neighborhood structure (i.e., a topology of “possible next-moves”) over 
S. with N(s )  denoting the set of neighbors of solution s. (3) The cost function and the 
neighborhood structure together define the cost surfuce for the instance. (4) We seek a 
glohul minimums’ E S such that f(s’) 5 f(s) Vs E S. (5) A locul minimum d E S satisfies 
f(.+) 5 f(s) v.v E N ( d ) .  
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Can the quality (say, relative to optimal) ofsolution Sn be worse than 
that of solution so? 
And ifso, can the decrease in solution quality be attributed to aspects 
of the sequence l o ,  11 , . . . , 1, (e.g., the “distance ” between successive 
instances) and the incremental algorithm? 

Figure 1: Perturbing the instance will perturb the cost surface. 

(Of course, this question still makes sense even if the full algorithm is 
the same as the incremental algorithm.) The intuition behind our ques- 
tion is as follows (see Figure 1). Each perturbed instance li changes 
the cost surface of the optimization, e.g., from the solid cost surface to 
the dashed surface in Figure 1.  The previous local minimum si-1 (SI 
in the Figure) is in the “basin of attraction” [8] of some local minimum 
si (q in the Figure) for the instance li, which is why the incremental 
algorithm returns si for this instance. But if the new instance li differs 
sufficiently from li-1 - in particular, such that si is not a good solution 
(note the existence of solution sg in the Figure) - then the incremen- 
tal algorithm must escape the “basin of attraction” in order to find a 
good solution. Our hypothesis is that the changes between successive 
instances must be compatible with the strength of the incremental al- 
gorithm: 

A strong incremental algorithm, in combination with small 
changes to the cost surface in successive instances, will maintain 
good solution quality but waste computational resources. 

A weak incremental algorithm, in combination with large 
changes to the cost surface in successive instances, will lead to 
progressively worse solution quality. 

In general, sufficiently large changes in the cost surface require 
sufficiently powerful incremental algorithms that escape stale 
basins of attraction in finding good solutions. 

To the best of our knowledge, this question has not been addressed 
in the literature. The most closely related body of research is that on 
problem-space and heuristic-space methods in the metaheuristics lit- 
erature [18] [12]. Such methods perturb a given instance to allow a 
given optimization heuristic to escape local minima. The perturbations 
induce alternate cost surfaces that one hopes are correlated to the orig- 
inal cost surface (so that good solutions in the new surface correspond 
to good solutions in the original), yet which have sufficiently differ- 
ent structure (so that the optimization heuristic can move away from 
the previous local minimum). While the success of such methods has 
been well-documented, no research has addressed the potential cost - 
in terms of either runtime or solution quality - of mismatches between 
perturbation size and strength of the optimization heuristic. 

2.2 An Experimental Investigation 

Our .contributions stem from experimental analyses which clearly 
demoqtrate that the mismatches noted above can be real. 

We define an experimental framework that allows us to find the 
maximum perturbation size that is consistent with no loss of so- 
lution quality as the incremental optimizer tracks the sequence 
of perturbed instances. This framework is used in three distinct 
domains: partitioning, placement and routing. 

We study incremental partitioning using a good partitioning tool. 
Our results show that applying large perturbations to the instance 
may allow the incremental optimizer to find much-improved so- 
lutions. 

We study incremental placement using a leading industry place- 
ment tool and a realistic model of netlist changes made for per- 
formance optimization. Our results show that current incremental 
optimization approaches, while quite strong, must nevertheless 
be carefully matched against the magnitude of netlist perturba- 
tions. 

We study incremental routing using a leading industry routing 
tool and a realistic model of routing changes for performance op- 
timization. Our results show that the router is not well-suited for 
incremental optimization: a single drastic change with large per- 
turbation size gives better results than an equivalent set of small 
changes with small perturbation size. 

We conclude that the incremental optimization model is of in- 
creasing importance in VLSI CAD applications, and that the 
question of potential mismatch between instance perturbations 
and incremental optimization engines merits further study. 

In the following sections, we will describe our experimental 
methodology and results for hypergraph partitioning, standard-cell 
placement, and standard-cell routing domains. 

3 Experimental Design 

In this section, we describe an experimental framework for assessing 
the potential mismatch between (i) the incremental optimizer capabil- 
ity, and (ii) the magnitude of the instance change. We would like to 
understand (i) if applying the incremental optimizer to the perturbed 
instance will actually improve the overall so1ution;and (ii) if the size of 
the perturbation has any effect on the solution quality. To answer these 
questions, we have devised two simple experiments that test whether 
an incremental optimizer can maintain solution quality. 

Reversal-Based Experiment. We construct a series of in- 
stances IO,. . . , Ik- l  , I k , l k + l , .  . . , Iu; where 10 = 12, 11 = 12k-1, 
etc. In other words, there are k successively perturbed instances 
11,. . . , I k ,  then we reverse the sequence so that the final instance 
Im is the same as the original instance IO. With this experiment 
we can see whether the final solution Su; has better quality than 
the initial solution SO. Thus, this experiment shows us whether 
the incremental optimizer eventually improves or loses solution 
quality. 

Dicing-Based Experiment. We chop up a given perturbation 
into smaller perturbations. Then, we see whether applying the 
incremental optimizer to each of the corresponding perturbed in- 
stances in sequence results in better solution quality (or, better 
solution quality / runtime tradeoff point) than applying the in- 
cremental optimizer to the final perturbed instance alone. This 
experiment shows whether the magnitude of perturbation plays 
an important role in incremental optimization. If the size of the 
perturbation, Al, is too small and the incremental algorithm is 
too strong (a situation which always leads to a better solution), 
or if Al is too big and the incremental algorithm is weak (a situa- 
tion which will lead to worse solutions), then there is a mismatch 
between perturbation size and algorithm strength. 
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We have performed these experiments in three distinct domains of 
physical design: partitioning, placement and routing. The detailed ex- 
perimental setup for each domain is described in the respective sections 
below. Uniformly, we will use p to denote the magnitude of the per- 
turbation, and k to denote the number of perturbed instances generated 
in the reversal-based experiment. 

Solution 

So 
SI 
Sz 
S3 
S4 
S5 
S6 
S7 
su 
sy 
Slo 
5’11 
Si2 

si4 
Si5 
Sic, 
si7 
SIR 
S l y  

SI3 

szo 

4 Partitioning 

Our instances for partitioning domain are netlist hypergraphs. We use 
MLPart (a publicly available (academic) multi-level partitioner [4])* 
for both full optimizer and incremental optimizer. 

Our instance perturbation consists of weight changes for hyper- 
edges. Five discrete values (1, 2, 5, 8 and 10) are allowed for the 
hyperedge weights. Our initial instance is the original hypergraph with 
all hyperedges having identical weight = 5. In generating an instance 
I,+l from instance I j ,  we randomly select p hyperedges whose weights 
are to be changed. For each of these p hyperedges, we toss a coin to de- 
termine whether the hyperedge weight will be increased or decreased 
to the next value from its current value. If a hyperedge has the max- 
imum (minimum) possible weight, incrementing (decrementing) will 
be ignored. 

We start the reversal-based experiment by running the partitioner 
on original instance 10 (again, with all hyperedge weights = 5) to ob- 
tain the initial solution SO. The instance IO is then perturbed to obtain 
instance 11. We apply the partitioner to 11 with SO as the starting point; 
this yields solution SI. We continue this process until we obtain the 
final perturbed instance Ik. From this point, we start to reverse the in- 
stance sequence, i.e., solution for instance Ik+l = Ik-1 is obtained 
with Sk as the initial solution. 

In the dicing-based experiment, we set up two independent runs of 
the partitioner. The first run creates a new instance 1; from the original 
instance 10 by changing the weights for p hyperedges all at once, then 
runs the partitioner to obtain Si. The second run creates a sequence of 
instances 11,12, . . . , Ik that gradually implement the p weight changes, 
and with the final instance Ik being exactly the same as 1;. The parti- 
tioner is called for each instance until we obtain the final S k .  

Experimental Results 

We use four industry standard benchmarks from the IBM-intemd cir- 
cuits released in the ISPD-98 Benchmark Suite [ l ,  21. Characteristics 
of these benchmarks are shown in Table 1. We run three sets of exper- 

p =  14 
497 (36) 
489(32) 
487(34) 
482(34) 
481 (33) 
480(33) 
480(33) 
480(33) 
479 (34) 
478 (34) 
476 (33) 
475 (32) 
474(32) 

472(30) 
473 (32) 
472(31) 
472 (30) 
472(30) 
471 (29) 

474(33) 

471 (28) 

Design 11 #TerminalNodes I #CoreNodes I #Nets 
ibmOl I1 246 I 12506 I 14111 

Design 

ihmOl 
ihmO2 
ihmO3 
ihm04 

U Cul Ne% (CPU) 

240 zw247n15(~ .21 )  zz7n4ynis (Y.25) z17/243/215 (9.21) 
303 183/304n50(17.8) Z m 1 4 n 4 Y  (17.7) z m 6 5 n 4 Y  (17.2) 
ini6 676n571681(20.6) m 0 7 / 6 2 Y  (z0.Y) 67uIYl1635(20.6) 
550 471/523/441(23.5) 480/548/443(22.7) u)41441i718(22.Y) 

hllial P =  14 ~ = 1 4 0  ~ = 1 4 w  

iments with different p values: 14, 140 and 1400. Each run uses 10% 
for the partitioning balance tolerance, and actual cell areas for node 
weights. For the reversal-based experiment, we generate a sequence of 
ten perturbed instances (k = IO), i.e., we have 21 partitioning solutions 
(SO, SI,. . . , S ~ O ) .  Table 2 shows a representative sequence of perturba- 
tions with the corresponding results for the ibm04 test case. Table 3 
shows results for all partitioning runs. Each value in this table is an 
average over 30 runs (maximum and minimum values, with runtime in 
seconds (Sun Ultra- 1) in parentheses). 

Design Regular Instance Diced Instance 

ibmO1 253 10.85 secs 216 1082.44 secs 
ibm02 268 20.03 secs 257 2012.73 secs 
ibm03 718 24.55 secs 697 2366.12 secs 
ibm04 520 26.37 secs 496 2597.42 secs - 

# Cut Nets CPU #CutNets CPU ~ 

‘See http: //vlsicad. cs .ucla. edu/GSRC/bookshelf / and 
http : / /www. openEDA. org for free source codes. The partitioner can take an 
initial solution and perform the coarsening phase of multilevel Fiduccia-Mattheyses 
partitioning while respecting this solution (i.e., clusters must always group nodes from the 
same partition). However, in the uncoarsening phase the partitioning can diverge from the 

ibm02 
ibm03 
ibm04 

259 19342 19584 
283 22853 27401 
287 27220 31970 

k Cut Net: 

518 (38) 
508 (33) 
504 (32) 
499 (33) 
497 (33) 

p=140 

496 (33) 
492 (33) 
492 (34) 
493 (34) 
492 (35) 
483 (34) 
482 (34) 
482 (34) 
483 (34) 
482 (34) 
481 (32) 
481 (32) 
480 (32) 
480 (34) 
480 (34) 
480 (34) 

p =  1400 
507 (62) 
498 (62) 
495 (62) 
494 (61) 
493 (62) 
493 (63) 
494 (63) 
493 (63) 
493 (63) 
495 (63) 
494 (62) 
495 (62) 
493 (62) 
491 (63) 
489 (62) 
488 (62) 
487 (61) 
487 (62) 
486 (62) 
485 (62) 
484 (60) 

Table 2 A sequence of perturbations and incremental optimizations 
for the ibm04 test case. Values are average net cut over 30 runs, with 
standard deviation in parentheses. 

In the dicing-based experiment, our first experimental run uses 
p = 1400, which changes 1400 hyperedge weights. The second ex- 
perimental run uses the same hyperedge weight changes but with the 
overall perturbation broken down into 100 small steps, each with 14 
weight changes. Table 4 compares results from both runs; again, val- 
ues are averages over 30 runs. 

Table 4 Comparison between an incremental run on a partitioning 
instance with a single large perturbation, and incremental runs on the 
same instance with a “diced” perturbation. 

Table 3 shows the improvement obtained by the instance perturba- 
tions. Incremental partitioning runs give a substantial improvement in 
overall solution quality”. This shows that the problem-space meta- 
heuristic approach may be more effective for partitioning. We note 
that our conclusion holds even for runtime-equalized comparisons ver- 
sus multistart execution of the multilevel partitioner. In general, re- 

initial solution. 

at http://vlsicad.cs.ucla.edu/GSRCmookshelf ). 
3Qunlitatively similar results are obtained for flat FM (FMPan, also publicly available 
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sults of (S~O) runs are extremely good when compared with the best 
published solutions for these test cases. 

5 Placement 

Our instances in the placement domain are circuit netlists. The full 
optimizer is the Cadence QPlace 5.0.46 placer (all settings for maxi- 
mum quality), and the incremental optimizer is the same QPlace placer, 
invoked in incremental mode. The initial instance is the original 
unplaced netlist, and instance perturbations comprise netlist changes 
which remove or insert cells and nets. To create instance l j + l  from in- 
stance I , ,  we randomly select p cells and delete them from the netlist. 
If a net on which cells have been removed is disconnected as the result 
of the deletion, then it is merged with another net that is also discon- 
nected from the same deletion. All dangling nets (i.e., nets that are 
connected to one cell only) are deleted. This perturbation (and its re- 
versal) reflects ECO type operations used in performance optimization. 

Again we start the reversal-based experiment by running the full 
QPlace placement on original instance 10 to obtain the initial solution 
SO. Instance 10 is then perturbed by deleting p cells to obtain instance 
11. We apply incremental QPlace on 11 with SO as the starting solution; 
this yields SI. The process is continued until the last perturbed instance 
1, iS created, and from this point we reverse the instance sequence so 
that solution for instance Ik+l = Ik-1 is obtained with Sk as the 
initial solution. 

In the dicing-based experiment, we again set up two independent 
runs of the placer. The first run creates a new instance li from original 
instance 10 by making a big change in the netlist - i.e., p cells deleted 
at once - and incremental QPlace is called to obtain SL. The second run 
creates a sequence of instances I1 ,1z1.. . ,Ik that gradually implement 
the same perturbation, and with the final instance 1, exactly the same 
as I;. Incremental QPlace is called for each instance until we obtain 
the final Sk .  

Experimental Results 

We use two industry standard-cell benchmarks for experiments in 
placement domain; their characteristics are shown in Table 5. 

Design #Cells #Nets 
Test case 1 12133 11828 €333 Test case 2 20577 25634 

Table 5: Design test cases for placement and routing experiments. 

Design Regular Instance Diced Instance 
Wirelength I CPU Wirelength I CPU 

. Test case 1 2333165 I 75 secs 2225270 I 8076 secs 

We also use three different perturbation sizes (p) :  12, 120 and 
1000. Table 6 shows the results of all runs with different perturba- 
tion sizes. We again use k = 10 in this domain, which leads to 21 
placement solutions Sol.. . ,S20. For the dicing-based experiment, we 
delete p = 1200 cells: (1) the first run deletes all 1200 cells at once and 
then calls incremental QPlace to place the remaining cells, and (2) the 
second run breaks the perturbation into 100 steps with 12 cells deleted 
at each step, and incremental QPlace called for each step. Table 7 
compares results from both runs. 

Table 6: Placement results for all test cases. Experiments are run on 
a 300MHz Sun Ultra-10. We see that incremental placement yields 
overall improvement in wirelength. 

I Testcase2 11 5415380 I 200secs I 5341744 I 18132secs I 
Table 7: Dicing-based experiment: Comparison between an incremen- 
tal run on a placement instance with large perturbation, and multiple 
incremental runs that gradually implement the same perturbation on 
the same instance. Wirelength is measured for the final incremental 
run and CPU time is the total time for all incremental runs. 

Table 6 shows that incremental optimization gives an overall im- 
provement in solution quality regardless of the size of instance pertur- 
bations. The placement tool’s incremental capability may be too 
strong relative to these magnitudes of instance perturbations. 

6 Routing 

Our instances for routing domain are placed circuit netlists. We use 
the Cadence WarpRoute v1.0.22+ router for our full optimizer, and the 
same WarpRoute in incremental mode for our incremental optimizer. 
The initial instance is the original placed design netlist, and instance 
perturbation consists of changes in cell orientations. To obtain instance 
l j t l  from instance l j ,  we randomly select p cells and flip them (i.e., 
mirror them about the y-axis, so that they can remain in the same sites 
in the same placement row). When a cell is flipped, all routing infor- 
mation for incident nets is removed. 

The full WarpRoute is applied on the initial instance IO to obtain 
an initial solution SO for the reversal-based experiment. Instance IO is 
then perturbed by flipping p cells to obtain instance 11, and we apply 
incremental WarpRoute to 11 with SO as the starting point, yielding SI. 
We continue the process until the last solution s k  is obtained. Again, 
we reverse the instance sequence so that solution &+I for instance 
Ik+l = 1k-l is obtained with Sk as the initial solution. 

Again, two independent runs of routing are used for the dicing- 
based experiment. The first run creates a new instance I i  from original 
instance IO by making a big change in the placement ( p  cells flipped 
at once). Incremental WarpRoute is called to get Si. The second run 
creates a sequence of instances I1 I2 ,  . . . , Ik with = I i .  Incremental 
WarpRoute is called for each instance. 

Experimental Results 

For our routing experiments, we use the same two design cases shown 
in Table 5.  Perturbation sizes used for routing experiments are 12, 120 
and 1200. We use the same value of k = 10 that yields a sequence of 
21 routing solutions. Experimental results for all test cases are shown 
in Table 8. For the dicing-based experiment, we also use an instance 
that has perturbation size of p = 1200 cells. Just as in the placement 
domain, the first run flips all 1200 cells at once and makes a single 
call to incremental WarpRoute, while the second run makes 100 small 
incremental WarpRoute calls with 12 cells flipped between each call. 
The comparison between two runs is given in Table 9. 

Figure 2 shows the wirelength difference between a small pertur- 
bation with many runs and a large perturbation with one run. It shows 
that when performing an incremental updates on the routing instance, 
it is probably better to perform the update all at once. 

From this experiment we can see that in the routing domain, the 
perturbation size should be sufficiently large before we apply in- 
cremental optimization. Dicing a large perturbation into smaller ones 
will degrade the overall solution. 

7 Discussion and Conclusions 

In the partitioning domain, we can see that applying instance pertur- 
bation will yield a better solution. Table 3 shows that for all perturba- 
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Table 8: Routing results for all test cases. All runs are performed on a 
300MHz Sun Ultra-IO machine. Wirelengths for incremental runs are 
the final routed wirelengths (except the initial instance) and CPU times 
are the total incremental runtime. 

Design 

Test case 1 

Regular Instance Diced Instance 
Wirelength I CPU Wirelength I C PU 
3469250 I 204secs 3537667 I 8924secs I Testcase2  11 8177713 I 587secs I 8620049 I 18442secs 1 

Table 9: Dicing-based experiment: Comparison between an incremen- 
tal run on a routing instance with large perturbation, and multiple in- 
cremental runs that gradually implement the same perturbation on the 
same routing instance. 

tion sizes, a better result is obtained compared to the initial solution. 
This also shows that the problem-space metaheuristic approach may 
be very effective for partitioning - in fact, more effective than realized 
by previous investigators who studied problem-space methods for par- 
titioning [7]. The authors of [7], as well as the “stable net transition” 
technique of [ 161, both use edge deletion (followed by restoration) as 
the instance perturbation (or, “kick move” in the so-called “large-step 
Markov chain”4 approach). In contrast, we use edge reweighting as 
the instance perturbation, and we automatically achieve the restoration 
as a consequence of how we reverse the sequence of perturbations to 
retum to the original instance. 

In the placement domain, we can see from Table 6 that incremental 
runs always yield a better solution. This may be because the incremen- 
tal algorithm for the placement is too strong. In addition, the problem 
instances we chose may be too easy for the placer, allowing the tool to 
find a better solution easily. 

In the routing domain, we can see from Table 8 that solutions ob- 

4The Large-Step Markov Chain (LSMC) method of [ I  11 iteratively performs a descent 
using a greedy search engine, and then perturbs the resulting local optimum via a “kick 
move” to obtain the starting solution for the next greedy descent. 

Figure 2: Difference between one run with a big instance perturbation 
and multiple runs with small instance perturbations. Performing in- 
cremental optimization with too-small perturbation sizes will lead to 
worse solutions. 

tained from incremental runs are always worse than the initial solution. 
One of the reasons for this is that when we remove routing informa- 
tion for some nets, the blockage effect caused by these nets remains 
intact. In other words, if a net is routed in a certain way such that it 
blocks several other nets and forces those nets to have detours, then 
when the routing for this net is removed, those detours will still exist 
in the overall solution. However, when we try to re-route this specific 
net within such a context, we may encounter difficulties because most 
of the spaces have been taken. Thus, interestingly, to achieve conver- 
gence in incremental routing, perturbation sizes should be as large as 
possible before the incremental optimizer is applied. 

Altogether, we believe that our experimental results show that cur- 
rent design tools may not be correctly architected to handle incremental 
optimizations. Because incrementality is such an important aspect of 
today’s deep-submicron design methodologies, it is important for tools 
to deliver appropriate incremental optimization capabilities. In addi- 
tion, as overall design processes are instrumented to achieve continu- 
ous process improvement [6] ,  it is important to understand the ability 
of tools to improve designs via incremental optimization. By under- 
standing the potential of mismatch between instance perturbation and 
algorithm strength, designers can find the flow tunings that will best 
reduce design cycle times and increase designer productivity. 
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