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Abstract 

We describe METRICS, a system to recover design productivity 
via new infrastructure for design process optimization. METRICS 
seeks to treat system design and implementation as a science, rather 
than an art. A key precept is that measuring a design process is a 
prerequisite to optimizing it and continuously achieving maximum 
productivity. METRICS (i) unobtrusively gathers characteristics 
of design artifacts, design process, and communications during the 
system development effort, and (ii) analyzes and compares that data 
to analogous data from prior efforts. METRICS infrastructure con- 
sists of (i) a standard metrics schema, along with metrics transmit- 
tal capabilities embedded directly into EDA tools or into wrappers 
around tools; (ii) a metrics data warehouse and metrics reports; and 
(iii) data mining and visualization capabilities for project predic- 
tion, tracking, and diagnosis. We give experiences and insights 
gained from development and deployment of METRICS within a 
leading SOC design flow. 

1 Introduction and Motivations 

Advances in semiconductor process technology now allow entire 
multi-million gate systems to be manufactured on a single chip. 
At the same time, the ability to fabricate silicon has outpaced the 
ability to design it. Designers rely on IP reuse and integration to 
meet turnaround time requirements, and this increases complexity 
of the design process along such axes as cost, testability, etc. Cur- 
rent design processes are less able to meet project goals, in that 
more designs miss time-to-market windows and/or end up substan- 
tially over budget. The resulting increased implementation risk is 
detrimental to both the semiconductor and EDA industries. 

Our work addresses the fundamental issues of understanding, 
diagnosing, optimizing, and predicting the system design process. 
We use the term design process optimization (DPO) to refer to the 
continuous optimization of a design process. In automobile, steel, 
and even semiconductor manufacturing industries, process opti- 
mization is a well-established precept. However, before a process 
can be optimized on a continuous basis, it must first be measured. 
In contrast to other industries, today there are no standards 
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or infrastructure for measuring and recording the semiconduc- 
tor design process. As a result, today’s design processes tend to 
be temporary solutions, unique to individual projects and created 
based on the intuition of senior engineers. Such solutions typically 
last for one project only, while the basic problem of unpredictable 
design success remains unaddressed. In this regime, a product team 
cannot quantify inefficiencies in its design process, and subjective 
opinions are formulated as to why a given project failed or suc- 
ceeded (e.g., failure may be generically blamed on “CAD tools” 
or “inexperienced design team”). Two fundamental gaps prevent 
measurement of the design process: 

Data to be measured is not available. Most visibility 
into EDA tools is via log files that are typically created by 
R&D developers for their own use; these vary wildly across 
different vendors and offer little insight into “what the tool 
is thinking” or what aspects of the input instance were crit- 
ical to successlfailure. If design process information is not 
reported, it is not available to be recorded and analyzed. If 
design process information is not reported with consistent se- 
mantics (and, hopefully, consistent syntax), it cannot be effec- 
tively used to diagnose a (multi-vendor) design Jlow. 

We do not know all the data that should be measured. 
Some metrics of tool performance or design artifacts are “ob- 
vious’’, e.g., number of placeable objects, number of unroutes 
after detailed routing, maximum negative slack over all tim- 
ing paths, etc. Other metrics are less obviously useful, e.g., 
i t  is not clear whether the number of literals after logic op- 
timization has any relationship to the quality of the resulting 
netlist from a physical implementation perspective. Finally, 
some metrics are impossible to discern a priori, e.g., perhaps 
it is the number of years of experience of the RTL designer, 
or the number of spec changes, that is the best predictor of 
project success. 

We see that customers cannot obtain necessary design process 
data because EDA vendor tools do not report the data. On the other 
hand, EDA vendors do not necessarily know which data is useful 
to report. These gaps prevent designers and project managers from 
finding and correcting inefficiencies in their design processes. Re- 
gardless of whether the chicken or  the egg comes first, measurement 
infrastructure is a necessary condition for measuring, then improv- 
ing. The contributions of our METRICS project include: 

a Standard generic tool metrics, as well as standard domain- 
speciJic tool metrics (e.g., for timing optimization or P&R), 
that the EDA industry can standardize on. Unified naming 
and semantics of common metrics allow multiple tool vendors 
to report metrics according to the same conventions. 

‘For example, it is unreasonable to expect a tool user to understand the meaning of 
a “Max weighted HCut” value that is reported by one placer but not by any other plac- 
ers. It is also impossible to map log files of competing tools against each other except 
at the most basic level (runtime, peak memory, ... ). This hampers benchmarking. 
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0 Standard system components such as XML (extended 
Markup Language) based metrics transmitters, an Oracle8i- 
based data warehouse with a standard metrics schema, and 
Java implementation of a metrics server. Our infrastructure 
enables design process data collection in a “no more log 
files” regime: design tools and flow scripts transparently write 
into the design process data warehouse over the interhntranet, 
via METRES-specific standard XML. 

0 Examples of useful analyses and reports that have been devel- 
. oped on top of an existing METRICS system implementation. 

We also discuss a wide variety of data mining, analysis and 
reporting tools that have yet to be developed. 

2 Scope of a METRICS System 

From a project management perspective, a METRICS system offers 
the potential for such results as: (i) accurate resource prediction at 
any point in the design cycle (up-front estimates for people, time, 
technology, EDA licenses, IP reuse, etc. and correct go / no-go 
decisions for projects at the earliest possible point); (ii) accurate 
project post-mortems where everything is tracked, including tools, 
flow, users, notes, etc. (optimization of the next project becomes 
possible based on past results, and no loose data or information is 
left at project end); (iii) return on investment analysis for design 
IP, design tools and design flows; (iv) management consoles for 
monitoring of tools, designs and systems at any point in the project 
lifecycle; and (v) prevention of wasted resources via out of sync 
runs and duplication of data or effort. 

From a tool developer perspective, benefits include: (i) method- 
ology for continuous tracking data over the entire lifecycle of in- 
strumented tools; (ii) more efficient analysis of realistic data, i.e., 
the developer can rely on the collected data because it is from real 
designs (no more extrapolation of tiny artificial “benchmarks”, or 
collection of source files for test cases and re-running in house, is 
needed); (iii) easier identification of key design metrics and effects 
on tools, via standardized vocabulary and schemata for design or 
instance attributes; and (iv) improved apples-to-apples benchmark- 
ing (and guidance as to what the apples are in the first place). 

In some sense, METRICS extends the “Measure, then Im- 
prove” precept to “Collect, Data-Mine, Measure, Diagnose, then 
Improve”. Thus, METRICS is not limited to recording of tools- 
specific or design instance-specific attributes: it includes other de- 
sign process-related metrics, such as communication metrics, tool 
melrics, design artifact metrics, and design flow metrics. For exam- 
ple, basic instrumentation of the design process would record such 
information as which version of what tool was called on what revi- 
sion of what block, by which design engineer at what time on what 
machine, etc. Given this scope of data collection, the possibilities 
for ensuing design process optimizations are literally unbounded, 
as illustrated by the following examples. 
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(a) (b) 
Figure 1: (a) Pattern of email traffic in a failed project. (b) Scatter 
plot of user accesses to on-line manual pages. 

a’ If a user performs the same operation repeatedly with nearly 
the same inputs (minutely changing the values of some pa- 
rameters), the design manager and the tool provider could in- 
fer either that the operation is not working as expected (hence, 

knob-twiddling), or that the quality of the result is unaccept- 
able [14]. 

Figure l(a) shows the pattern of email volume over time in a 
failed design project.’ As the deadline nears and a crisis sit- 
uation sets in, email volume peaks, then drops after the dead- 
line is missed. A second peak occurs in response to a revised 
deadline, but volume then steadily dwindles after the project 
fails a second time and team members disengage. 

Figure l(b) shows a scatter-plot of accesses by mol users to 
particular pages of on-line documentation. Poor documenta- 
tion of tools and their capabilities can affect the quality of the 
design process. A manual page that is opened frequently for 
long periods of time may indicate poor documentation or an 
unclear use model for some tool feature. 

3 Related Work 

We are unaware of any published work on the topic of metrics col- 
lection and diagnosis for semiconductor design process optimiza- 
tion. As noted by panelists at the 1998 Design Automation Confer- 
ence (“Design Productivity: How to Measure It, How to Improve 
It”), various in-house project tracking systems have been developed 
(at LSI Logic, IBM ASIC Division, Siemens Semiconductor (Infi- 
neon), Sony, Texas Instruments, etc.), each with its own proprietary 
measures of designs and the design p roce~s .~  

An in-house system used at Texas Instruments since 1975 was 
discussed in a 1996 DAC Birds of a Feather meeting [3]. This 
Design Activity System (DAS) collects product metrics as well as 
license activity information to assess efficiency of tool usage. DAS 
also provides a standard termination code set for all tools so that de- 
signers can more easily diagnose causes of tool failure. The work 
of [ 1 31 proposes to classify designs based on certain metrics (num- 
ber and complexity of module interfaces, etc.). Software metrics 
(cf., e.g., the Capability Maturity Model for Software Development 
[20]) may also be applied, particularly in the front-end design con- 
text where system design is very similar to software design. We 
note that such efforts do not address the above-noted structural and 
standardization gaps between designer, EDA provider, and process 
diagriosishmprovement infrastructure. 

Additional relevant links include the following. 

(Web-based) design support has been proposed for dis- 
tributedcollaborative design. Distributed web-based design 
environments include Fujitsu’s IPSymphony [9], the Berke- 
ley WELD project [23], and the VELA project [22]. A no- 
table project tracking infrastructure is given by the N-dim 
design support system [6, 19, 171, which collects and main- 
tains design information, and also analyzes this information 
for project management purposes. N-dim tracks changes so 
that design information is always relevant and complete; in- 
formation storage is transparent to possible changes in the 
underlying design process, so that no “loose data” is lost in 
translation to new projects. However, as the N-dim system is 
tightly focused on project data tracking, it does not address 
the issue of improving the design process. 

E-commerce infrastructure now includes models for mar- 
keting and sales of tools and services over the Internet. E- 
commerce efforts toward time- or token-based EDA tool use, 
possibly on external server farms, include Avant!’s EDA Mall 
[8] (which allows users to buy small sessions of Novas Ver- 
iLint), and Synopsys and Lucent FPGA design tools hosted 

*Note that a well-instrumented design process would provide templates for project- 

’In addition. consulting firms such as Collett International offer proprietary metrics 
related communications. record the incidence of group meetings. etc. 

(e.g.. “normalized transistor count”) and design productivity analysis services. 
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by Toolwire [I]. The Synopsys IP Catalyst site sells design 
IP that is priced based on various design metrics. Although 
web and server farm infrastructure is conducive to recording 
of design process metrics, it has so far been directed only to- 
ward “metered” tool licensing and IP sales. 

0 Continuous process improvement (CPI) [2] is a method- 
ology that analyzes a (design) process and optimizes it on a 
continuous basis. CPI is the best known embodiment of the 
“measure, then improve” precept, and is currently applied in 
most manufacturing industries. [ 1 I]  gives a method for iden- 
tifying the most important metrics for collection, to reduce 
the complexity of data gathering. Techniques for identifying 
improvements due to CPI are given by, e.g., [24]. 

0 Data mining [15, 18, IO] entails the AI- and statistics-based 
extraction of predictive information from large databases. In 
recent years, powerful new technologies have emerged that 
allow organizations to mine data warehouses for predictions 
of trends and behaviors, as well as decision  upp port.^ Visual- 
ization [ 161 [ 123 [4] is necessary for human understanding of 
correlations and trends. 

4 METRICS System Architecture 

Transmitter Transmitter Transmitter ~~~~~ 

InterfinIra-ne1 

Metrics Data Warehouse 

Figure 2: METRICS architecture 

The architecture of the METRICS system shown in Figure 2 is 
a specific implementation of a distributed, client server information 
gathering system. The EDA tools, which are the data sources, have 
a thin transmitter client embedded in script wrappers surrounding 
the tool or actually embedded inside the tool’s executable for more 
flexibility. The tools - which can be located anywhere on an in- 
tranet or even the internet - broadcast in real-time as they run using 
standard network protocols to a centralized server which is attached 
to a dura warehouse. The messages transmitted are encoded in 
industry-standard XML format. Data warehouses are now starting 
to read, write, and store XML directly (e.g., our current implemen- 
tation uses Oracle8i), which makes for a more straightforward and 
robust system. An example of a METRICS message in XML for- 
mat is shown in Figure 3. 

lkansmission 

Before metrics can be transmitted, they must be collected from de- 
sign tools. Some aspects of current tools prevent collection of all 
desired metrics. 

4A familiar example is the tracking of customer purchases by grocery stores, and 
mining of this data to optimize shelf placement and promotional efforts. 

<?xml version=“l .U’?> 
<!DOCTYPE metrics-doc [ 
< !ELEMENT metrics 

<!ELEMENT projectID #PCDATA> 
<!ELEMENT flowID #PCDATA> 
< !ELEMENT toolRunID #PCDATA> 
< !ELEMENT name #PCDATA> 
< !ELEMENT value #PCDATA> ] > 

<metria> 

(projectID, flowID, toolRunID, name, value)> 

< metria-doc> 

<projectID> 103 </projectID> 
<flowID> 17 </flowID> 
<toolRunID> 223 </toolRunID> 
<name> wirelength </name> 
<value> 1.97e06 </value> 

</metrics> 
</metrics-doc> 

Figure 3: Sample XML for the METRICS system 

void main(int argc, char* argv[]) 

PlaceParameters plParams(argc argv); 
Netlist netlist(p1Params); 
unsigned PID = grepProjectID(argc, argv); 
unsigned FID = grepFlowID(argc, argv); 
unsigned TID = initToolRun(PID, FID); 
Placer place(netlist, plParams); 
sendMetric(PID, FID, TID, “wirelength”, place.getWL()); 

{ 

... 
terminateToolRun(PID, FID, TID); 
return 0; 

1 
(a) 

($File, $PID, $FID) = ARGV; 
$TID = ‘$initToolRun $PID $FID‘; 
open(LOG, “< $File”); 
while( <LOG>) 

if (/\s+Wirelength\s+(\d+).*/) 
{ 

{ sendMetric($PID, $FID, $TID, “wirelength”,$ I ) ;  } 
... 

1 
close LOG; 
system “terminateToolRun $PID $FID $TID’; 
exit 0: 

Figure 4: Code examples: (a) API call from inside tools, and (b) 
wrapper of tool log files 

0 Currently, log files are the only place from which we can as- 
sume metrics are collectable. Not all tools have APIs and 
extension languages to afford user visibility. 

0 Tools do not provide enough information in their log files, 
e.g., metrics from internal loops are not recorded. 

0 Tools do not have knowledge of the design on which they are 
working, e.g., a place-and-route tool typically does not know 
whether it is laying out a state machine or a datapath. 

0 No project-related metrics are available from tool logs. 

0 Log files may become corrupted, which can lead to incorrect 
values of recorded metrics. 

To improve metrics collection, we create APIs that can be used by 
the tool to transfer metrics directly to the server. Tool vendors can 
insert the APIs into their codes so that as designers use the tools, 
internal data can be transmitted to the server. APIs also remove the 
necessity for log files and promote transparency to tool users. 

To maintain relations among data sent to the database, each 
metric is tagged with a 3-tuple of numbers: project ID,flow ID and 
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rod run ID. Project ID identifies the current project on which the 
tool user is currently working. Flow ID identifies the design flow to 
which the run belongs. Tool run ID identifies the tool run to which 
the reported metrics belong. This 3-tuple gives a unique identifica- 
tion for each tool run; sequencing information is maintained by the 
server. 

APIs for the transmitter are as follows: 

o initproject: Initialize a new project. This function will send a 
request for a new project ID to the server and set all necessary 
information for a new project (e.g. environment setup). 

o initFlow: Initialize a new flow. It is important to distinguish 
among multiple flows inside a given project. This function 
will send a request for a new flow ID with a given project ID 
to the server. Similarly, it will set all necessary information 
for a new flow. This function requires a valid project ID. 

at initToolRun: Initialize a new tool run. This function will 
send a request for a new tool run ID to the server which in- 
dicates that a tool is going to be executed. This function re- 
quires a valid project ID and flow ID. 

o terminateToolRun, terminateFlow, and terminateproject: 
Terminate tool run, flow or project respectively. Each of these 
functions has a parameter that is used to pass the termination 
status of the tool, flow, or project. 

o sendMetrics: Construct an XML message from the input data 
and then send the message to the server. This is the core 
function that transmits data to the server; it must have the 
ability to recover from transmission failure (e.g., by storing 
data locally for later transmittal). This function requires two 
important parameters, the metric name and the value for that 
metric. The metric name, the corresponding value and identi- 
fication (project ID, flow ID and tool run ID) are encoded into 
an XML message similar to that of Figure 3. 

If an EDA vendor is unwilling to expose tool metrics or spend 
developer resources calling our API, we may collect metrics from 
log files using wrapper scripts. Figure 4 gives example codes for (a) 
use of APIs inside the tools, and (b) use of a wrapper that gathers 
data from log files.5 

Tool issues 

Convergence 

“IP Mining” 

Performance 

Project 

Reporting and Data Mining 

Reporting and data mining are another important part of the MET- 
RICS system, giving project managers and designers more visibil- 
ity into current or historical projects and designs. In response to 
user requests, the METRICS system generates various reports and 
posts these as HTML pages. The current implementation employs 
web-based reporting which allows access from any place and from 
any platform. Furthermore, wrappers can be created on top of third- 
panty tools so that data can be transmitted directly to local tools6, 
allclwing plotting and analysis to be performed locally. Example 
third-party tools with appropriate interfaces are Microsoft Excel, 
Lotus Suite, and various data mining tools. In addition to standard 
HTML generation, Java applets may be used to enhance reporting 
capability. These applets give users the flexibility to choose differ- 
ent types of graphs, select different sets of data, use different scal- 
ing factors, etc. Note that with this approach, data is downloaded 
to a1 local machine only once. 

tool aborts 
runtimes per machine 
runtimes per IP 
runtimes per project 
synthesis-area-speed 
synthesis-area-power 
non-tapeout by IP 
synth-speed by IP 
convergence by IP 
IP usage per project 
area vs gates 
gates vs time 
violations vs options 
congestion vs wirelength 
Gantt chart of tool usage 
missed milestones 

’One significant feature of the architecture, aimed at ease of deployment and end 
user use, is the specification of a general purpose network discovery protocol (such as 
that employed by Jini from Sun Microsystem). This avoids forcing the tools to have a 
priori knowledge of server network locations. Another feature aimed at increased sys- 
tem robustness is a handshaking protocol between the client and server which allows 
proper functioning in cases of intermittent and even total network or server failure. 

‘Local tools are the ones that are installed on the client machine. 

peak-memory 
peak-cpu-util-% 
end-cpu-load 
phys-memory-kb 
phys-diskmames 
cpu-type 
host-id 
ip-address 
os-name 
window-mgrmame 
design-identifiers 
end-date-time 
toolmame 
tool-vendor 

peak-disklcb 
start-cpu-load 
machine-t ype 
virtmemory-kb 
mounted-disk-names 

hostaame 
process-exit-status 
os-version 
window-mgr-version 
startdate-time 
runtime-cpu 
tool-version 
used-command-line-args 

#-of-cpus 

- 

5 METRICS Schema 

6 Current Implementations 

A prototype of METRICS has been created by OxSigen LLC for a 
complete ASIC flow at a major European semiconductor company. 
A second prototype, more focused on the back end and closely mir- 
rorin,g the architecture discussed above, has been created at UCLA. 
Figure 7 shows the architecture of the latter, including a mix of Ca- 
dence Design Systems place-and-route tools as well as two UCLA 
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Logic # inputs 
Synthesis # registered pins 

# latches 
# RAM blocks 
max clock freq. 

Placement # macro blocks 
# nets 
row utilization 
estimated wirelength 

Timing max hold violation 
Optimization max setup violation 

# timing violation 

Figure 6: Tool-specific metrics for each tool class. 

# outputs 
# flip-flops 
# gates 
# clock domains 
# critical paths 
# cells 
# rows 
layout area 
die size 
# timing constraints 
# clock trees 
# critical paths 

tools. We use wrappers for the Cadence tools and embedded APIs 
for the UCLA tools. Both prototypes instantiate all parts of a com- 
plete METRICS system. 

\ 

Figure 7: Mixed flow with CadenceKJCLA tools. 

Results 

Figure 8 is an example report from the OxSigen LLC system, show- 
ing the convergence of LVS per block over time. Figure 9 shows 
the percentage of aborts by design tasks; this view of the design 
process allows identification of which flow stages are more or less 
"push-button" than others. Finally, Figure 10 shows a standard cor- 
relation report from the UCLA system; here, the plot shows high 
correlation and a likely direct relationship between number of vias 
and total wirelength. 

We have also performed simple data mining on our METRICS 
datasets. For example, using Cubist [7] we can generate a model 
that predicts total placement CPU time with average error of ap- 
proximately 10%. (In the experiment, we train the data mining tool 
with 56 runs and predict 112 runs. The 168 total runs come from 
four different test cases. Mean CPU time for all runs is 784.87 sec- 
onds, and average absolute error for the prediction of the 112 runs 
is 84.4 seconds.) 

rm m m uI1 90 80 
Im. 

Figure 8: LVS convergence per block. 

P h p C S l  
18% 

Figure 9: Abort percentage by task. 

7 Discussion and Conclusions 

A number of issues arise as we go forward with the concept of 
METRICS. These can be categorized into three types: (i) perfor- 
mance issues, (ii) standardization issues, and (iii) social issues. 

Performance Issues 

Tool speed should not be degraded significantly with the embed- 
ding of METRICS transmitters. Thus, the transmitter should have 
low overhead and the tool should not become blocked in the event 
of transmitter failures. Memory consumption (memory overhead) 
should be At some point, even if we have selected the best 
possible configuration for the transmitter, we must still decide the 
tradeoff between speed, memory, and data availability. E.g., some 
data may need to be continuously updated whenever values become 
available, for "status-at-a-glance" reporting. Security of transmit- 
ted METRICS data must be guaranteed. Transmission should use 
a secure protocol and encryption. 

Standardization Issues 

Scope of the METRICS data must be bounded. Not all data are 
easy to track and capture - e.g., phone traffic, meeting schedules, 
or drawings on whiteboards. Moreover, not all trackable data is 
useful, e.g. the number of hours the designer spends browsing the 
web. API embedding in the tool is the best choice for transmitting 
data, since existing tool logs are such a weak foundation for MET- 
RICS; it is also the least intrusive choice. The final goal for our sys- 
tem is indeed "no more log files". There should be a standardized 

'For example, most available memory is reserved for the main process, which is 
the tool itself. Thus, the transmitter should not request a big chunk of memory that 
may cause memory swaps and degrade tool performance. 
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Social Issues 

Monitoring is perhaps the thorniest social issue facing METRICS, 
since privacy and a non-intrusive design environment are so highly 
prized. “Big Brother” type issues must be spelled out clearly at the 
beginning, and buyin from user advocates must be obtained. All 
data must be anonymized, and any attempt to profile or quantify 
individual performance on a project is dangerous. Interpretation 
of data is far from straightforward. For example, we might mea- 
sure the typing activity of two people, one of whom types actively 
while the other appears idle for hours at a time. The easy infer- 
ence is that the active typist is more productive. But of course, the 
person whose keyboard is idle may actually be working on a piece 
of paper (and thinking how to solve the problem), while the active 
typist is just typing less well-considered content that will have to be 
iteratively debugged. In other words, idleness of the keyboard says 
anything about productivity. Finally, social metrics are as impor- 
tan1 as technical metrics. The ability to improve a design process 
is highly dependent on the willingness of each designer to stay in 
the same group, on the documentation and transfer of “best known 
methods”, and even on the level of morale in the organization. 

8 
p P o  
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Future Research and Infrastructure 

Current efforts are aimed at extending our METRICS system im- 
plementation beyond its current project-tracking focus, so that it  
is more aimed toward true design process optimization. We are 
alsci migrating beyond the current intemal SOC flow context, so 
that METRICS is more universally available (e.g., to EDA vendors, 
other system houses, academic chip design projects, or researchers 
interested in data mining applications for METRICS). We would 
like to improve our current infrastructure as follows. 

as Polishing of the METRICS infrastructure: (i) more fault- 
tolerant server design (e.g., via redundancy), (ii) ensuring 

minimal overhead of the metrics transmission protocol, etc. 

0 Direct participation by EDA vendors, particularly in the sense 
of integrating standard APIs for metrics transmission to a 
standardized data warehouse, and wider participation in stan- 
dardization of a metrics schema (i.e., expansion of the list of 
generic and tool class-specific metrics to include additional 
metrics requested by design teams andor suggested by tools 
developers). 

Our near-term research objectives include the following. 

0 Basic research on required data mining techno1og:y. Once suf- 
ficient metrics have been collected in data warehouses, data 
mining and visualization techniques will likely be required 
for design process optimization. This is the most challenging 
aspect of achieving tool and methodology improvements via 
instrumentation of the design process; METRICS data collec- 
tion per se is a necessary but not sufficient precondition. 

0 Finding sweet spots (“recommended fields of safe or high- 
quality use”) for tools and flows. From these sweet spots, we 
can categorize tools based on the space of possible inputs. 

0 Characterizing of a tool’s input space (since current real de- 
signs are too sparse). Possibly, generation of artificial andor 
variant testcase designs, and batch characterization runs, will 
be required technologies. 
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