
43.3

METRICS: A System Architecture for Design Process Optimization *

Stephen Fenstermakert, David George1 , Andrew B. Kahng,
Stefanus Mantik and Bart Thielgest

UCLA Computer Science Dept., Los Angeles, CA 90095-1596
tOxSigen LLC, San Jose, California

{abk,stefanus}@cs.ucla.edu {fen,dg,bart}@oxsigen.com

Abstract

We describe METRICS, a system to recover design productivity
via new infrastructure for design process optimization. METRICS
seeks to treat system design and implementation as a science, rather
than an art. A key precept is that measuring a design process is a
prerequisite to optimizing it and continuously achieving maximum
productivity. METRICS (i) unobtrusively gathers characteristics
of design artifacts, design process, and communications during the
system development effort, and (ii) analyzes and compares that data
to analogous data from prior efforts. METRICS infrastructure con-
sists of (i) a standard metrics schema, along with metrics transmit-
tal capabilities embedded directly into EDA tools or into wrappers
around tools; (ii) a metrics data warehouse and metrics reports; and
(iii) data mining and visualization capabilities for project predic-
tion, tracking, and diagnosis. We give experiences and insights
gained from development and deployment of METRICS within a
leading SOC design flow.

1 Introduction and Motivations

Advances in semiconductor process technology now allow entire
multi-million gate systems to be manufactured on a single chip.
At the same time, the ability to fabricate silicon has outpaced the
ability to design it. Designers rely on IP reuse and integration to
meet turnaround time requirements, and this increases complexity
of the design process along such axes as cost, testability, etc. Cur-
rent design processes are less able to meet project goals, in that
more designs miss time-to-market windows and/or end up substan-
tially over budget. The resulting increased implementation risk is
detrimental to both the semiconductor and EDA industries.

Our work addresses the fundamental issues of understanding,
diagnosing, optimizing, and predicting the system design process.
We use the term design process optimization (DPO) to refer to the
continuous optimization of a design process. In automobile, steel,
and even semiconductor manufacturing industries, process opti-
mization is a well-established precept. However, before a process
can be optimized on a continuous basis, it must first be measured.
In contrast to other industries, today there are no standards

* Work at UCLA was supported by a grant from Cadence Design Systems, Inc. and
by the MARC0 Gigascale Silicon Research Center.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
DAC 2ooO. Los Angeles, California
02OOO ACM 1-581 13-187-9/00/0006..$5.00

or infrastructure for measuring and recording the semiconduc-
tor design process. As a result, today’s design processes tend to
be temporary solutions, unique to individual projects and created
based on the intuition of senior engineers. Such solutions typically
last for one project only, while the basic problem of unpredictable
design success remains unaddressed. In this regime, a product team
cannot quantify inefficiencies in its design process, and subjective
opinions are formulated as to why a given project failed or suc-
ceeded (e.g., failure may be generically blamed on “CAD tools”
or “inexperienced design team”). Two fundamental gaps prevent
measurement of the design process:

Data to be measured is not available. Most visibility
into EDA tools is via log files that are typically created by
R&D developers for their own use; these vary wildly across
different vendors and offer little insight into “what the tool
is thinking” or what aspects of the input instance were crit-
ical to successlfailure. If design process information is not
reported, it is not available to be recorded and analyzed. If
design process information is not reported with consistent se-
mantics (and, hopefully, consistent syntax), it cannot be effec-
tively used to diagnose a (multi-vendor) design Jlow.

We do not know all the data that should be measured.
Some metrics of tool performance or design artifacts are “ob-
vious’’, e.g., number of placeable objects, number of unroutes
after detailed routing, maximum negative slack over all tim-
ing paths, etc. Other metrics are less obviously useful, e.g.,
i t is not clear whether the number of literals after logic op-
timization has any relationship to the quality of the resulting
netlist from a physical implementation perspective. Finally,
some metrics are impossible to discern a priori, e.g., perhaps
it is the number of years of experience of the RTL designer,
or the number of spec changes, that is the best predictor of
project success.

We see that customers cannot obtain necessary design process
data because EDA vendor tools do not report the data. On the other
hand, EDA vendors do not necessarily know which data is useful
to report. These gaps prevent designers and project managers from
finding and correcting inefficiencies in their design processes. Re-
gardless of whether the chicken or the egg comes first, measurement
infrastructure is a necessary condition for measuring, then improv-
ing. The contributions of our METRICS project include:

a Standard generic tool metrics, as well as standard domain-
speciJic tool metrics (e.g., for timing optimization or P&R),
that the EDA industry can standardize on. Unified naming
and semantics of common metrics allow multiple tool vendors
to report metrics according to the same conventions.

‘For example, it is unreasonable to expect a tool user to understand the meaning of
a “Max weighted HCut” value that is reported by one placer but not by any other plac-
ers. It is also impossible to map log files of competing tools against each other except
at the most basic level (runtime, peak memory, ...). This hampers benchmarking.

705

mailto:abk,stefanus}@cs.ucla.edu
mailto:fen,dg,bart}@oxsigen.com

0 Standard system components such as XML (extended
Markup Language) based metrics transmitters, an Oracle8i-
based data warehouse with a standard metrics schema, and
Java implementation of a metrics server. Our infrastructure
enables design process data collection in a “no more log
files” regime: design tools and flow scripts transparently write
into the design process data warehouse over the interhntranet,
via METRES-specific standard XML.

0 Examples of useful analyses and reports that have been devel-
. oped on top of an existing METRICS system implementation.

We also discuss a wide variety of data mining, analysis and
reporting tools that have yet to be developed.

2 Scope of a METRICS System

From a project management perspective, a METRICS system offers
the potential for such results as: (i) accurate resource prediction at
any point in the design cycle (up-front estimates for people, time,
technology, EDA licenses, IP reuse, etc. and correct go / no-go
decisions for projects at the earliest possible point); (ii) accurate
project post-mortems where everything is tracked, including tools,
flow, users, notes, etc. (optimization of the next project becomes
possible based on past results, and no loose data or information is
left at project end); (iii) return on investment analysis for design
IP, design tools and design flows; (iv) management consoles for
monitoring of tools, designs and systems at any point in the project
lifecycle; and (v) prevention of wasted resources via out of sync
runs and duplication of data or effort.

From a tool developer perspective, benefits include: (i) method-
ology for continuous tracking data over the entire lifecycle of in-
strumented tools; (ii) more efficient analysis of realistic data, i.e.,
the developer can rely on the collected data because it is from real
designs (no more extrapolation of tiny artificial “benchmarks”, or
collection of source files for test cases and re-running in house, is
needed); (iii) easier identification of key design metrics and effects
on tools, via standardized vocabulary and schemata for design or
instance attributes; and (iv) improved apples-to-apples benchmark-
ing (and guidance as to what the apples are in the first place).

In some sense, METRICS extends the “Measure, then Im-
prove” precept to “Collect, Data-Mine, Measure, Diagnose, then
Improve”. Thus, METRICS is not limited to recording of tools-
specific or design instance-specific attributes: it includes other de-
sign process-related metrics, such as communication metrics, tool
melrics, design artifact metrics, and design flow metrics. For exam-
ple, basic instrumentation of the design process would record such
information as which version of what tool was called on what revi-
sion of what block, by which design engineer at what time on what
machine, etc. Given this scope of data collection, the possibilities
for ensuing design process optimizations are literally unbounded,
as illustrated by the following examples.

Time

.....
’. , .__.. : . i : . i

. . . .
. .

. . .

(a) (b)
Figure 1: (a) Pattern of email traffic in a failed project. (b) Scatter
plot of user accesses to on-line manual pages.

a’ If a user performs the same operation repeatedly with nearly
the same inputs (minutely changing the values of some pa-
rameters), the design manager and the tool provider could in-
fer either that the operation is not working as expected (hence,

knob-twiddling), or that the quality of the result is unaccept-
able [14].

Figure l(a) shows the pattern of email volume over time in a
failed design project.’ As the deadline nears and a crisis sit-
uation sets in, email volume peaks, then drops after the dead-
line is missed. A second peak occurs in response to a revised
deadline, but volume then steadily dwindles after the project
fails a second time and team members disengage.

Figure l(b) shows a scatter-plot of accesses by mol users to
particular pages of on-line documentation. Poor documenta-
tion of tools and their capabilities can affect the quality of the
design process. A manual page that is opened frequently for
long periods of time may indicate poor documentation or an
unclear use model for some tool feature.

3 Related Work

We are unaware of any published work on the topic of metrics col-
lection and diagnosis for semiconductor design process optimiza-
tion. As noted by panelists at the 1998 Design Automation Confer-
ence (“Design Productivity: How to Measure It, How to Improve
It”), various in-house project tracking systems have been developed
(at LSI Logic, IBM ASIC Division, Siemens Semiconductor (Infi-
neon), Sony, Texas Instruments, etc.), each with its own proprietary
measures of designs and the design p roce~s .~

An in-house system used at Texas Instruments since 1975 was
discussed in a 1996 DAC Birds of a Feather meeting [3]. This
Design Activity System (DAS) collects product metrics as well as
license activity information to assess efficiency of tool usage. DAS
also provides a standard termination code set for all tools so that de-
signers can more easily diagnose causes of tool failure. The work
of [1 31 proposes to classify designs based on certain metrics (num-
ber and complexity of module interfaces, etc.). Software metrics
(cf., e.g., the Capability Maturity Model for Software Development
[20]) may also be applied, particularly in the front-end design con-
text where system design is very similar to software design. We
note that such efforts do not address the above-noted structural and
standardization gaps between designer, EDA provider, and process
diagriosishmprovement infrastructure.

Additional relevant links include the following.

(Web-based) design support has been proposed for dis-
tributedcollaborative design. Distributed web-based design
environments include Fujitsu’s IPSymphony [9], the Berke-
ley WELD project [23], and the VELA project [22]. A no-
table project tracking infrastructure is given by the N-dim
design support system [6, 19, 171, which collects and main-
tains design information, and also analyzes this information
for project management purposes. N-dim tracks changes so
that design information is always relevant and complete; in-
formation storage is transparent to possible changes in the
underlying design process, so that no “loose data” is lost in
translation to new projects. However, as the N-dim system is
tightly focused on project data tracking, it does not address
the issue of improving the design process.

E-commerce infrastructure now includes models for mar-
keting and sales of tools and services over the Internet. E-
commerce efforts toward time- or token-based EDA tool use,
possibly on external server farms, include Avant!’s EDA Mall
[8] (which allows users to buy small sessions of Novas Ver-
iLint), and Synopsys and Lucent FPGA design tools hosted

*Note that a well-instrumented design process would provide templates for project-

’In addition. consulting firms such as Collett International offer proprietary metrics
related communications. record the incidence of group meetings. etc.

(e.g.. “normalized transistor count”) and design productivity analysis services.

706

by Toolwire [I]. The Synopsys IP Catalyst site sells design
IP that is priced based on various design metrics. Although
web and server farm infrastructure is conducive to recording
of design process metrics, it has so far been directed only to-
ward “metered” tool licensing and IP sales.

0 Continuous process improvement (CPI) [2] is a method-
ology that analyzes a (design) process and optimizes it on a
continuous basis. CPI is the best known embodiment of the
“measure, then improve” precept, and is currently applied in
most manufacturing industries. [1 I] gives a method for iden-
tifying the most important metrics for collection, to reduce
the complexity of data gathering. Techniques for identifying
improvements due to CPI are given by, e.g., [24].

0 Data mining [15, 18, IO] entails the AI- and statistics-based
extraction of predictive information from large databases. In
recent years, powerful new technologies have emerged that
allow organizations to mine data warehouses for predictions
of trends and behaviors, as well as decision upp port.^ Visual-
ization [161 [123 [4] is necessary for human understanding of
correlations and trends.

4 METRICS System Architecture

Transmitter Transmitter Transmitter ~~~~~

InterfinIra-ne1

Metrics Data Warehouse

Figure 2: METRICS architecture

The architecture of the METRICS system shown in Figure 2 is
a specific implementation of a distributed, client server information
gathering system. The EDA tools, which are the data sources, have
a thin transmitter client embedded in script wrappers surrounding
the tool or actually embedded inside the tool’s executable for more
flexibility. The tools - which can be located anywhere on an in-
tranet or even the internet - broadcast in real-time as they run using
standard network protocols to a centralized server which is attached
to a dura warehouse. The messages transmitted are encoded in
industry-standard XML format. Data warehouses are now starting
to read, write, and store XML directly (e.g., our current implemen-
tation uses Oracle8i), which makes for a more straightforward and
robust system. An example of a METRICS message in XML for-
mat is shown in Figure 3.

lkansmission

Before metrics can be transmitted, they must be collected from de-
sign tools. Some aspects of current tools prevent collection of all
desired metrics.

4A familiar example is the tracking of customer purchases by grocery stores, and
mining of this data to optimize shelf placement and promotional efforts.

<?xml version=“l .U’?>
<!DOCTYPE metrics-doc [
< !ELEMENT metrics

<!ELEMENT projectID #PCDATA>
<!ELEMENT flowID #PCDATA>
< !ELEMENT toolRunID #PCDATA>
< !ELEMENT name #PCDATA>
< !ELEMENT value #PCDATA>] >

<metria>

(projectID, flowID, toolRunID, name, value)>

< metria-doc>

<projectID> 103 </projectID>
<flowID> 17 </flowID>
<toolRunID> 223 </toolRunID>
<name> wirelength </name>
<value> 1.97e06 </value>

</metrics>
</metrics-doc>

Figure 3: Sample XML for the METRICS system

void main(int argc, char* argv[])

PlaceParameters plParams(argc argv);
Netlist netlist(p1Params);
unsigned PID = grepProjectID(argc, argv);
unsigned FID = grepFlowID(argc, argv);
unsigned TID = initToolRun(PID, FID);
Placer place(netlist, plParams);
sendMetric(PID, FID, TID, “wirelength”, place.getWL());

{

...
terminateToolRun(PID, FID, TID);
return 0;

1
(a)

($File, $PID, $FID) = ARGV;
$TID = ‘$initToolRun $PID $FID‘;
open(LOG, “< $File”);
while(<LOG>)

if (/\s+Wirelength\s+(\d+).*/)
{

{ sendMetric($PID, $FID, $TID, “wirelength”,$ I) ; }
...

1
close LOG;
system “terminateToolRun $PID $FID $TID’;
exit 0:

Figure 4: Code examples: (a) API call from inside tools, and (b)
wrapper of tool log files

0 Currently, log files are the only place from which we can as-
sume metrics are collectable. Not all tools have APIs and
extension languages to afford user visibility.

0 Tools do not provide enough information in their log files,
e.g., metrics from internal loops are not recorded.

0 Tools do not have knowledge of the design on which they are
working, e.g., a place-and-route tool typically does not know
whether it is laying out a state machine or a datapath.

0 No project-related metrics are available from tool logs.

0 Log files may become corrupted, which can lead to incorrect
values of recorded metrics.

To improve metrics collection, we create APIs that can be used by
the tool to transfer metrics directly to the server. Tool vendors can
insert the APIs into their codes so that as designers use the tools,
internal data can be transmitted to the server. APIs also remove the
necessity for log files and promote transparency to tool users.

To maintain relations among data sent to the database, each
metric is tagged with a 3-tuple of numbers: project ID,flow ID and

707

rod run ID. Project ID identifies the current project on which the
tool user is currently working. Flow ID identifies the design flow to
which the run belongs. Tool run ID identifies the tool run to which
the reported metrics belong. This 3-tuple gives a unique identifica-
tion for each tool run; sequencing information is maintained by the
server.

APIs for the transmitter are as follows:

o initproject: Initialize a new project. This function will send a
request for a new project ID to the server and set all necessary
information for a new project (e.g. environment setup).

o initFlow: Initialize a new flow. It is important to distinguish
among multiple flows inside a given project. This function
will send a request for a new flow ID with a given project ID
to the server. Similarly, it will set all necessary information
for a new flow. This function requires a valid project ID.

at initToolRun: Initialize a new tool run. This function will
send a request for a new tool run ID to the server which in-
dicates that a tool is going to be executed. This function re-
quires a valid project ID and flow ID.

o terminateToolRun, terminateFlow, and terminateproject:
Terminate tool run, flow or project respectively. Each of these
functions has a parameter that is used to pass the termination
status of the tool, flow, or project.

o sendMetrics: Construct an XML message from the input data
and then send the message to the server. This is the core
function that transmits data to the server; it must have the
ability to recover from transmission failure (e.g., by storing
data locally for later transmittal). This function requires two
important parameters, the metric name and the value for that
metric. The metric name, the corresponding value and identi-
fication (project ID, flow ID and tool run ID) are encoded into
an XML message similar to that of Figure 3.

If an EDA vendor is unwilling to expose tool metrics or spend
developer resources calling our API, we may collect metrics from
log files using wrapper scripts. Figure 4 gives example codes for (a)
use of APIs inside the tools, and (b) use of a wrapper that gathers
data from log files.5

Tool issues

Convergence

“IP Mining”

Performance

Project

Reporting and Data Mining

Reporting and data mining are another important part of the MET-
RICS system, giving project managers and designers more visibil-
ity into current or historical projects and designs. In response to
user requests, the METRICS system generates various reports and
posts these as HTML pages. The current implementation employs
web-based reporting which allows access from any place and from
any platform. Furthermore, wrappers can be created on top of third-
panty tools so that data can be transmitted directly to local tools6,
allclwing plotting and analysis to be performed locally. Example
third-party tools with appropriate interfaces are Microsoft Excel,
Lotus Suite, and various data mining tools. In addition to standard
HTML generation, Java applets may be used to enhance reporting
capability. These applets give users the flexibility to choose differ-
ent types of graphs, select different sets of data, use different scal-
ing factors, etc. Note that with this approach, data is downloaded
to a1 local machine only once.

tool aborts
runtimes per machine
runtimes per IP
runtimes per project
synthesis-area-speed
synthesis-area-power
non-tapeout by IP
synth-speed by IP
convergence by IP
IP usage per project
area vs gates
gates vs time
violations vs options
congestion vs wirelength
Gantt chart of tool usage
missed milestones

’One significant feature of the architecture, aimed at ease of deployment and end
user use, is the specification of a general purpose network discovery protocol (such as
that employed by Jini from Sun Microsystem). This avoids forcing the tools to have a
priori knowledge of server network locations. Another feature aimed at increased sys-
tem robustness is a handshaking protocol between the client and server which allows
proper functioning in cases of intermittent and even total network or server failure.

‘Local tools are the ones that are installed on the client machine.

peak-memory
peak-cpu-util-%
end-cpu-load
phys-memory-kb
phys-diskmames
cpu-type
host-id
ip-address
os-name
window-mgrmame
design-identifiers
end-date-time
toolmame
tool-vendor

peak-disklcb
start-cpu-load
machine-t ype
virtmemory-kb
mounted-disk-names

hostaame
process-exit-status
os-version
window-mgr-version
startdate-time
runtime-cpu
tool-version
used-command-line-args

#-of-cpus

-

5 METRICS Schema

6 Current Implementations

A prototype of METRICS has been created by OxSigen LLC for a
complete ASIC flow at a major European semiconductor company.
A second prototype, more focused on the back end and closely mir-
rorin,g the architecture discussed above, has been created at UCLA.
Figure 7 shows the architecture of the latter, including a mix of Ca-
dence Design Systems place-and-route tools as well as two UCLA

708

Logic # inputs
Synthesis # registered pins

latches
RAM blocks
max clock freq.

Placement # macro blocks
nets
row utilization
estimated wirelength

Timing max hold violation
Optimization max setup violation

timing violation

Figure 6: Tool-specific metrics for each tool class.

outputs
flip-flops
gates
clock domains
critical paths
cells
rows
layout area
die size
timing constraints
clock trees
critical paths

tools. We use wrappers for the Cadence tools and embedded APIs
for the UCLA tools. Both prototypes instantiate all parts of a com-
plete METRICS system.

\

Figure 7: Mixed flow with CadenceKJCLA tools.

Results

Figure 8 is an example report from the OxSigen LLC system, show-
ing the convergence of LVS per block over time. Figure 9 shows
the percentage of aborts by design tasks; this view of the design
process allows identification of which flow stages are more or less
"push-button" than others. Finally, Figure 10 shows a standard cor-
relation report from the UCLA system; here, the plot shows high
correlation and a likely direct relationship between number of vias
and total wirelength.

We have also performed simple data mining on our METRICS
datasets. For example, using Cubist [7] we can generate a model
that predicts total placement CPU time with average error of ap-
proximately 10%. (In the experiment, we train the data mining tool
with 56 runs and predict 112 runs. The 168 total runs come from
four different test cases. Mean CPU time for all runs is 784.87 sec-
onds, and average absolute error for the prediction of the 112 runs
is 84.4 seconds.)

rm m m uI1 90 80
Im.

Figure 8: LVS convergence per block.

P h p C S l
18%

Figure 9: Abort percentage by task.

7 Discussion and Conclusions

A number of issues arise as we go forward with the concept of
METRICS. These can be categorized into three types: (i) perfor-
mance issues, (ii) standardization issues, and (iii) social issues.

Performance Issues

Tool speed should not be degraded significantly with the embed-
ding of METRICS transmitters. Thus, the transmitter should have
low overhead and the tool should not become blocked in the event
of transmitter failures. Memory consumption (memory overhead)
should be At some point, even if we have selected the best
possible configuration for the transmitter, we must still decide the
tradeoff between speed, memory, and data availability. E.g., some
data may need to be continuously updated whenever values become
available, for "status-at-a-glance" reporting. Security of transmit-
ted METRICS data must be guaranteed. Transmission should use
a secure protocol and encryption.

Standardization Issues

Scope of the METRICS data must be bounded. Not all data are
easy to track and capture - e.g., phone traffic, meeting schedules,
or drawings on whiteboards. Moreover, not all trackable data is
useful, e.g. the number of hours the designer spends browsing the
web. API embedding in the tool is the best choice for transmitting
data, since existing tool logs are such a weak foundation for MET-
RICS; it is also the least intrusive choice. The final goal for our sys-
tem is indeed "no more log files". There should be a standardized

'For example, most available memory is reserved for the main process, which is
the tool itself. Thus, the transmitter should not request a big chunk of memory that
may cause memory swaps and degrade tool performance.

709

302(KIO

Social Issues

Monitoring is perhaps the thorniest social issue facing METRICS,
since privacy and a non-intrusive design environment are so highly
prized. “Big Brother” type issues must be spelled out clearly at the
beginning, and buyin from user advocates must be obtained. All
data must be anonymized, and any attempt to profile or quantify
individual performance on a project is dangerous. Interpretation
of data is far from straightforward. For example, we might mea-
sure the typing activity of two people, one of whom types actively
while the other appears idle for hours at a time. The easy infer-
ence is that the active typist is more productive. But of course, the
person whose keyboard is idle may actually be working on a piece
of paper (and thinking how to solve the problem), while the active
typist is just typing less well-considered content that will have to be
iteratively debugged. In other words, idleness of the keyboard says
anything about productivity. Finally, social metrics are as impor-
tan1 as technical metrics. The ability to improve a design process
is highly dependent on the willingness of each designer to stay in
the same group, on the documentation and transfer of “best known
methods”, and even on the level of morale in the organization.

8
p P o

-

Future Research and Infrastructure

Current efforts are aimed at extending our METRICS system im-
plementation beyond its current project-tracking focus, so that it
is more aimed toward true design process optimization. We are
alsci migrating beyond the current intemal SOC flow context, so
that METRICS is more universally available (e.g., to EDA vendors,
other system houses, academic chip design projects, or researchers
interested in data mining applications for METRICS). We would
like to improve our current infrastructure as follows.

as Polishing of the METRICS infrastructure: (i) more fault-
tolerant server design (e.g., via redundancy), (ii) ensuring

minimal overhead of the metrics transmission protocol, etc.

0 Direct participation by EDA vendors, particularly in the sense
of integrating standard APIs for metrics transmission to a
standardized data warehouse, and wider participation in stan-
dardization of a metrics schema (i.e., expansion of the list of
generic and tool class-specific metrics to include additional
metrics requested by design teams andor suggested by tools
developers).

Our near-term research objectives include the following.

0 Basic research on required data mining techno1og:y. Once suf-
ficient metrics have been collected in data warehouses, data
mining and visualization techniques will likely be required
for design process optimization. This is the most challenging
aspect of achieving tool and methodology improvements via
instrumentation of the design process; METRICS data collec-
tion per se is a necessary but not sufficient precondition.

0 Finding sweet spots (“recommended fields of safe or high-
quality use”) for tools and flows. From these sweet spots, we
can categorize tools based on the space of possible inputs.

0 Characterizing of a tool’s input space (since current real de-
signs are too sparse). Possibly, generation of artificial andor
variant testcase designs, and batch characterization runs, will
be required technologies.

References
[I] R. Adhikari, “ASP’S Pay-Per-Use Tool”, PlunetlT, February 2000.
[2] P. S. Adler and K. B. Clark, “Behind the Learning Curve: A Sketch of the Learn-

ing Process”, Munugement Science. vol. 37 (3). 1991, pp. 267-28 I .
[3] ,S. Baeder, Notes from DAC’96 Birds of a Feather meeting, persnnul communi-

,cution, 2000.
[4] S. S. Bhowmick, S. K. Madria, W. -K. Ng and E. P. Lim, “Data Visualization in.

:I Web Warehouse”, Proc. A h . in Dutuhuse Technologies, 1999. pp. 68-80.
[SI .I_ S. Busby, “Effective Practices in Design Transfer”, Reseurch in Engineering

Design. vol. 10 (3), 1998, pp. 178-188.
[6] iittp: //w.ndim.edrc.cmu.edu
[7] littp://www.rulequest.com/cubist-info.htm1
[8] littp: / /w. edamall . com
[9] 13. Fuller, “Fujitsu Shows Browser-based Design Methodology”, 1ETime.v. April

1999.
[IO] Ivl. L. Gargano and B. G . Raggad, “Data Mining - A Powerful Information Cre-

ating Tool”, 0CLCSystem.v & Services, vol. IS (2), 1999, pp. 81-90.
[I 11 A, -P. Hameri and J. Nihtila, “Computerized Product Process: Measurement and

Continuous Improvement”, Reseurch in Engineering Design, vol. 10 (3). 1998,
pp. 166-177.

[121 Id. Jem, “Information Drill-Down using Web Tools”, Pme. of Vkuulizution in
:icientifc Computing, April 1997, pp. 9-20,

[13] Id. Keating, “Measuring Design Quality by Measuring Design Complexity”,
h i e . Internutionul Symposium on Quuliry Electronic Design, March 2000.

[I41 W. Maly, personal communication, 1998.
[IS] C. 1. Meneses and G. G. Grinstein, “Categorization and Evaluation of Data Min-

ing Techniques”, Proc. of Inti. Conf on Datu Mining, Sept. 1998. pp. 53-80.
[161 S . 0. Rezende. R. B. T. Oliveira. L. C. M. Felix and C. A. 1. Rocha, “Visualiza-

tion for Knowledge Discovery in Database”, Proc. oflntl. Con$ on Datu Mining,
September 1998, pp, 81-95

[I71 1. L. Robertson. E. Subrahmanian. M. E. Thomas and A. W. Westerberg, “Man-
agement of the Design Process: The Impact of Information Modeling”. available
athttp://www.ndim.edrc.cmu.edu/papers/manodespro.pdf.

[I81 !/I. S. Sousa, M. L. Q. Mattoso and N. F. F. Ebecken, “Data Mining: A Database
F‘erpective”, Proc. ojlnt l . Con$ on Datu Mining, September 1998, pp. 413-431.

[I91 E;. Subrahmanian, Y. Reich. S. L. Konda, A. Dutoit. D. Cunningham, R. Patrick,
M. E. Thomas and A. W. Westerberg, “The N-Dim Approach to Creating Design
S:upport Systems”, Proc. rfASME Design Technicul Con$, September 1997.

[20] http://www.sei.cmu.edu
[21] 1). M. Upton and B. Kim, “Alternative Methods of Learning and Process Im-

provement in Manufacturing”, Journal of Operutimu Munugement, vol. 16.
1998, pp. 1-20.

1221 http://www,cbl.ncsu.edu/vela
[23] t:ttp://www-cad.eecs.berkeley.edu:80/Respep/F.esearch/weld
[24] W, 1. Zangwill and P. B. Kantor, “Toward a Theory of Continuous Improvement

and the Learning Curve”, Munugement Sei., 44(7) (1998). pp. 910-920.

710

http://w.ndim.edrc.cmu.edu
http://www.sei.cmu.edu
http://www,cbl.ncsu.edu/vela

