
43.1

GTX: The MARCO GSRC Technology Extrapolation System*
http://vlsicad.cs.ucla.edu/GSRC/GTX/

Andrew E. Caldwell, Yu Cao,’ Andrew B. Kahng, Farina Koushanfar, Hua L u , ~
Igor L. Markov, Michael Oliver, Dirk Stroobandt3 and Dennis Sylvester4

UC Berkeley EECS Dept., USA; UCLA CS Dept., USA; UCLA EE Dept., USA;
Ghent University ELIS Dept., Belgium; Synopsys, Inc., USA

{caldwell,abk,farinaz,imarkov,oliver}@cs.ucla.edu; ycao@eecs.berkeley.edu;
hua@ee.ucla.edu; dstr@elis.rug.ac.be; sylvest@synopsys.com

Abstract

Technology extrapolation - the calibration and prediction of
achievable design in future technology generations - drives the
evolution of VLSI system architectures, design methodologies, and
design tools. This paper describes initial experiences with develop-
ment and use of GTX, the MARCO GSRC Technology Extrapola-
tion system. GTX provides a robust, portable framework for inter-
active specification and comparison of modeling choices, e.g., for
predicting system cycle time, die size and power dissipation. We
use GTX to reveal surprising levels of uncertainty (modeling and
parameter sensitivity) in widely-cited cycle-time models that drive
recent roadmaps. We also describe new SO1 and bulk device mod-
els that have been developed for GTX, as well as studies of power
dissipation and delay uncertainty under various implementation as-
sumptions for global interconnects.

Keywords

Technology Extrapolation, VLSI, Expert Systems.

1 Introduction

Leading-edge VLSI system design aggressively exploits new pro-
cess technologies, circuit techniques, design methodologies and de-
sign tools. It is thus difficult to predict the envelope of achievable
design - e.g., with respect to power, speed, area, manufacturing
cost, etc. - for a given behavior or function, in a given (future)
process technology. On the other hand, such technology extrap-
olation activity directly influences the evolution o f future VLSI
system architectures, design methodologies, and design tools. Via

‘This research was supported in part by Cadence Design Systems, Inc., Synopsys,
Inc. and the MARCO Gigascale Silicon Research Center. Dirk Stroobandt is a Post-
doctoral Fellow of the Fund for Scientific Research (F.W.O.) - Flanders; his work on
GTX was performed during his stay at UCLA as a visiting researcher. Andrew Cald-
well is now with Simplex Solutions, Inc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
02000 ACM 1 - 5 8 1 1 3 - 1 8 7 - 9 / 0 0 / ~ . . $ 5 . ~

roadmapping efforts such as the Intemational Technology Roadmap
for Semiconductors (ITRS) [8], technology extrapolation also in-
fluences levels of investment in academic research, career choices
for faculty and graduate students, as well as private-sector en-
trepreneurial activity.

Highly influential technology extrapolation systems, developed
5-10 years ago, are due to Bakoglu and Meindl (SUSPENS) [2],
Sai-Halasz [151, and Hewlett-Packard Laboratories (AIM) [121.
More recent “second-generation” systems include GENESYS [6],
RIPE [14] and BACPAC [17, 181, along with Roadmap-related ef-
forts [8, 71 and innumerable internal projects throughout industry
and academia. Typically, each system provides a plausible “cycle-
time model” and estimates of die size and power dissipation, based
on a small set of descriptors spanning devicdinterconnect technol-
ogy through system architecture. In Section 2.2, we observe that
(i) these systems are often incomparable, (ii) they are “hard-coded‘’
(hence it is difficult to assess their quality and to explore changes
through modeling choices), and (iii) their development has entailed
a near-total duplication of effort. These observations motivate ef-
forts toward an entirely new level of technology extrapolation ca-
pability. Our GSRC Technology Extrapolation (GTX) system has
been developed with the goals offlexibility, quality and prevention
of redundant effort in mind.

The GTX system addresses these goals by providing an open,
portable framework for specification and comparison of alternative
modeling choices. A fundamental design decision in GTX is to sep-
arate model specifications from the derivation engine. This separa-
tion is achieved by a human-readable ASCII grammar. As domain-
specific knowledge is represented independently of the derivation
engine, it can be created and shared by multiple users. Additional
extension mechanisms allow specialized prediction methods, tech-
nology data sets, and even optimization engines to be encapsu-
lated and shared within GTX; this further reduces the amount of
effort that is diverted from actual creation of best-possible predic-
tion models.

Section 2 reviews relevant previous work in VLSI technology
extrapolation and puts the GTX goals in perspective. Section 3 de-
scribes the architecture and implementation of GTX. As an example
of increased possibilities for technology extrapolation, Section 4 as-
sesses the parameter sensitivity and modeling sensitivity of several
widely-referenced cycle-time models. Our analyses reveal surpris-
ing levels of uncertainty and sensitivity to modeling choices. We
also analyze a new model for SO1 and bulk devices and study the
power dissipation and delay uncertainty under various implementa-
tion assumptions for global interconnects.

693

http://vlsicad.cs.ucla.edu/GSRC/GTX
mailto:sylvest@synopsys.com

2 Related Work and GTX Goals

2.1 VLSI Technology Extrapolation

A number of previous systems attempt to forecast and estimate the
performance of microprocessors. Given that GTX can Jlexibly ac-
commodate the addition of new rules and inference chains, a base-
line GTX implementation is intended to encompass these previous
models. Four systems - SUSPENS, GENESYS, RIPE and BAC-
PAC - are especially noteworthy.

SUSPENS [2] is the forerunner for most technology extrapola-
tion systems. SUSPENS predicts the clock frequency, chip area and
power dissipation. It ignores on-chip cache and memory structure,
as well as details of multi-layer interconnect structure and clock
distribution. SUSPENS is also oblivious to such DSM effects as
scaling and noise.

GrENESYS [6] offers both a CUI for MS Windows (95, 98,
NT) and a command-line interface (it has no Web interface). The
GENESYS output file is divided into four main sections: de-
vicehaterial, circuit, interconnect, and system. The device sec-
tion c:ontains information concerning device parameter calculations
such as device capacitance and drain currents. The circuit section
is broken into four parts: area, capacitance, delay and energy. The
interconnect portion provides information on the interconnect struc-
ture of each wiring tier, as well as results of certain repeater inser-
tion optimizations. System-level outputs include throughput, max-
imum clock frequency, CPI, and delay times for random logic and
interconnects.

R.IPE [141 explores the effect of interconnect design and tech-
nology tradeoffs on IC performance. Default input data are ex-
tracte:d from the NTRS roadmap. Memory and the multilayer in-
terconnect structure are taken into account. No estimations of noise
or relliability are available; other limitations are in the modeling
of electromigration, non-ideal scaling, etc. The RIPE executable,
available via Web interface, can be used in two basic modes: (i)
given global wire parameters, RIPE estimates frequency, power dis-
sipation and wiring efficiencies; and (ii) detailed “wiring strategy”.
The user can choose between the two modes, but cannot add new
parameters and rules.

BACPAC [IS] is based on a system-level performance model
that consists of smaller-scale analytical models. The innovations
of BACPAC compared to earlier models include attention to power
dissipation, on-chip memory, process variation, and other effects.
BACIPAC is applicable to both ASICs and microprocessors. It at-
tempts to enhance the accessibility of technology extrapolation via
a Web-based interface; users can enter parameter values and receive
relevant technology predictions. However, the derivation flow is
mostly fixed, and users cannot add new parameters and rules. BAC-
PAC ‘does not capture architectural attributes or system reliability.

Previous work on (general) artificial intelligence systems in-
clude Design Sheet [131, TkSolver [19], and UniCalc [I]. Although
these systems are very powerful, their generality may impose un-
necessary overheads for VLSI technology extrapolation.

2.2 GTX Goals in Perspective

With respect to the previous systems for technology extrapolation,
we make the following observations.

1 . Different systems may predict the same “parameter” (e.g.,
microprocessor clock frequency), yet be incomparable due to dif-
fering sets of inputs and assumptions, as well as lack of documen-
tation and visibility into internal calculations.

2. Each system typically offers exactly one “inference chain”
for any given output of interest (e.g., cycle time). Furthermore, this
inference chain can involve a large spectrum of modeling choices.

The qmlity of such modeling choices cannot be assessed since the
system is “hard-coded”, and no exploration of modeling sensitivity
or robustness is possible.

3. ‘The hard-coded nature of previous systems also means that
they are inflexible: the user cannot define studies of other system
parameters, and interaction with the system is limited.

4. Finally, development of previous systems has entailed near-
total duplication of effort - since each system attempts to bound
the same envelope of achievable design - in gathering, interpreting,
and systematizing data and models. Redundant efforts are made
even though no single entity - EDA vendor, system hou,; <e, or aca-
demic group - can achieve “best-possible modeling” of all aspects
of technology and design.

Th1s.e observations motivate three key goals as we seek a new
level of technology extrapolation capability.

Flexibility. To experimentally determine model :sensitivity
and robustness, users must have the ability to (i) (interactively) edit
available inference chains and collections of “rules,” (ii) define new
parameters and rules, and (iii) request specific types of studies, such
as parameter optimization or trade studies. GTX inherits the flex-
ibility of AI constraint-programming and design support systems,
while retaining VLSI domain-specificity and avoiding unreasonable
implementation complexity. Support for interaction (CUI, session
management, etc.) is an implicit requirement.

GTX seeks adoptability in the sense of having an
easy learning curve and providing much “value” in the form of
high-quality embedded data, embedded models, and user interface.
We airn for a system that can be continuously improved to have
“best-possible models” across the entire scope of technology ex-
trapolation. Since no single group can achieve this alone, we re-
quire an open-source mechanism that is conducive to distributed
ownership and maintenance.

To avoid redundant effort,
GTX i:s meant as a “permanent repository of first choice” for rules
and data (calibration points) related to technology extrapolation.
Beyond the open distribution mechanism noted above, adoptability
(by academics open to collaboration, or by companies with propri-
etary data and firewalls) and maintainabiliry become key concerns.
A lower bound for adoptability is a platform-independent imple-
mentation that subsumes the functionality of all previous “hard-
coded‘’ systems. This recognizes the proprietary nature of user data
and o8’ers usability behind firewalls, with frequent releases to up-
date the state of model/data collection. GTX also applies to any
domain of semiconductors, VLSI or VLSI CAD, and is extensible
to models of arbitrary complexity.

Quiality.

Prevention of redundant effort.

3 The Structure of GTX

GTX establishes a clear separation between knowledge and im-
plemes!tution (Figure 1). Knowledge is represented independently
from its implementation in a serializable public-domain format. It
contains data (parameters), the models (rules) that can operate on
them and studies (rule chains), a collection of rules to obtain a par-

Figure 1: Schematic view of the GTX framework.

694

ticular result. The implementation then consists only of a derivation
engine and a graphical user interface (GUI).’ The engine can load
modules of parameters, rules and a rule chain and automatically
operate on them. The result of the operation is new data. Known
studies are supplied in pre-packaged rule chains; additional mod-
ules can be written and shared by users.

3.1

As previously mentioned, the values of interest are encapsulated in
parameters, and potential inferences between them in rules. Each
rule accepts as inputs a fixed collection of parameters, and its eval-
uation computes a single output parameter. The collection of avail-
able rules and parameters is naturally viewed as a bipartite digraph
in which an edge extends from a rule to a parameter if the param-
eter is the output of the rule, or from a parameter to a rule if the
parameter is an input to the rule.

Two or more rules may compute the same output (i.e., altema-
tive models of the same value), and the above digraph may contain
cycles. However, any particular calculations must avoid such irreg-
ularities to prevent value conflicts and infinite loops. This is sup-
ported through the notion of a rule chain - an acyclic subgraph of
the graph of available rules and parameters such that no two rules
compute the same output.2

Parameters, Rules and Rule Chains

3.1.1 Parameters

Parameters are the common base on which rules of different types
operate. The main attributes of a parameter are its name, data type
and its units. In order to obtain the goal of high reuse-ability of
rules and parameters, the parameter names have to be carefully
chosen so that they are easy to understand. Also, we must ensure
that no physical attribute receives two different names in GTX and
that no GTX parameter name is used for two different physical
attributes. Therefore, we have devised strict rules for the parameter
names [4]. The grammar for parameters is specified at our website
[IO]. Following is a very simple example representing the chip
edge length.

#parameter dl-chip
#type double
#units {m)
#default

le-2
#description

chip edge length
#endparameter

3.1.2 Rules

GTX supports the following types of rules.
ASCII rules provide a closed-form expression language that

allows calculating the output from the input using common mathe-
matical functions or operations, interpolation or table lookup, and
if-then-else. There is no program flow and therefore no iteration
per se, but vector operations are provided that allow common com-
putations such as sums.

External executable rules cause the engine to invoke a speci-
fied executable file (e.g., a PERL script), passing the input values on
the command line or through a file. The external executable saves
its output into a temporary file to be read by the engine. External
executable rules allow the inclusion of executables for which source

‘Currently, engine and GUI form a single executable. However, our implementa-
tions can also be used in an “engine server,’’ supporting multiple GUI clients connecting
to the server over a network.

ZExcept for a constmint. a special kind of rule for calculations with constraints on
the input parameter values. See [4].

code is not available or for computations that cannot be expressed
in ASCII rules.

Code rules are another option for rules too complex for ASCII
rules. However, they are hard-coded into the engine itself and re-
quire recompilation of the engine code. Therefore, they are appro-
priate only when execution speed is an issue.

These types provide a reasonable expressive power and facili-
tate easy updates to GTX with new models. The following is an
example of an ASCII rule computing the chip edge length from
the chip area. The # o u t p u t and # i n p u t s sections declare the
types and units of output and input parameters. The formula in the
#body section specifies the evaluation of the rule.

#rule BACPAC-dl-chip
#description

#output
rule from BACPAC for the chip edge length

double (m) dl-chip; / I chip edge length
#inputs
double {m-2) dra-chip; / / chip area

#body
sqrt(dA-chip)

#reference
BACPAC

#endrule

3.1.3 Rule chains

The GTX user indicates to the engine which of the currently avail-
able rules should be evaluated, by providing a simple list of those
rules. The order in which rules are executed forms the rule chain,
and is decided by the engine based on the relations between the rule
inputs and outputs. If we would have a rule “BACPAC-dA-chip”
that computes the chip area, e.g., as a function of number and size
of the gates, then the chip edge length could be computed by exe-
cuting the following rule chain

BACPAC-&-chip
BACPAC-d lch ip

3.2 Engine Structure and Operation

For each parameter, the engine maintains zero, one or more values.
Values can be set by default, loaded from files, entered by the user
or computed. Multiple values can be computed by sweeping, i.e.,
evaluating rules over multiple combinations of input parameters.
When instructed to evaluate a rule chain, the engine clears values
that can be computed by rules of the chain. For each combination of
values of primary inputs of the chain, the engine evaluates rules in
topological order and adds their output values to respective collec-
tions of values, unless some constraints fail. A faster algorithm is
possible to produce all derivable sets of values, but with our simple
algorithm the inputs of any particular value can be recovered (e.g.,
for minimization along a rule chain).

3.3 Graphical User Interface

The GUI is implemented with the cross-platform toolkit wxWin-
dows; we have run it successfully on Windows 95/98, Windows
NT, Solaris and Linux. At any given time, the user may view (i)
current parameters, or (ii) current rules, or (iii) current rule chain,
or (iv) values of parameters in the current chain. When a particular
parameter or rule is selected, its details are shown and can be edited.
The chain view shows all rules in the chain and helps the user to add
new rules to the chain. The values view shows both inputs to and
outputs of the current chain. The inputs may be edited. This view
permits invoking the chain and observing the output, sweeping over

695

model rl (ps) fr. (ps) fr (MHz)
BACPAC 893 115 74s
Fisher 1162 204 659
SUSPENS 665 - 1.505

Figure 2: Screenshot of GTX CUI.

multiple input values, observing the trace of such a sweep (includ-
ing optimization) and plotting (see Figure 2). In addition to the four
views, the GUI handles extensive file I/O and interactive addition
of new parameters and rules.

4 Results of GTX Studies

The flexibility of GTX makes it particularly useful as a development
tool for adding new rules that model a very particular part of the
design behavior, as an emulation tool for existing estimator tools,
as a comparison tool between different estimation methods and as
an evaluation tool for those methods. In this section, we highlight
some of these abilities of GTX.

4.1

Detailed evaluation and comparison of prediction models starts
with model implementation in GTX. Motivated by their prominence
in roadmapping, our first experiments focus on cycle-time models:
we have implemented the models from SUSPENS [2] (with exten-
sions of Takahashi et al. [20]), BACPAC [l8], and Fisher et al. [7]
within GTX,’ and reproduced published results with each model.
Our implementations are tuned to ensure maximal interchangeabil-
ity of the GTX rules for each model, allowing extensive evaluation
of various model sen~itivities.~

Cur experiments address two basic types of sensitivity: param-
eter sensitivity and model (or rule) sensitiviw. The former describes
the influence of changes in the primary input parameters to the
model, while the latter describes the influence of changes in the
estimation model itself. (We do not aim to make value judgments
about. or compare the models; rather, our goal is to show the value
of being able to try variant estimation methods.) We perform the
following experiments:

1. For the same primary inputs, compare the results for different
models (model sensitivity).

2. For each model, vary the input parameters by +/- 10% and
note iihe difference in the resulting clock frequency (parameter sen-
sitivi ty).

3. For each rule out of one rule chain (model), replace one rule
by a rule from another model that computes the same parameter and
record the difference in clock frequency (model sensitivity).

Sensitivity Analyses of Cycle-Time Models

’We have also used executable rules to link the IPEM executable [SI to GTX.
4A:lthough “we have implemented the models” sounds straightforward, i t is tremen-

dously’difficult to truly reimplement other researchers’ models. This is a difficulty that
the GTX framework seeks to remove once and for all. By enabling the building of new
and variant rules on top of existing ones, GTX permits “reuse without understanding”.
and thus lowers the barrier to entry for those wishing to pursue technology extrapola-
tions.

Table 1 : Logic stage delay t i , global delay t8 and overall clock fre-
quency fc for interconnect models.

BACPAC ~

SUSPENS
0.14

0.12 I Fisher

Clock frequency [GHz]

Figure 3: Parameter sensitivity: BACPAC, Fisher and SIJSPENS.

For all experiments and models, we use a common primary in-
put (Pl) parameter base derived for 0.25 pm technology and mainly
followmg the default parameter values of BACPAC (additional PIS
for other models are tuned to these parameter values). Despite the
common parameter base, our initial model sensitivity assessment of
the SUSPENS, BACPAC, and Fisher models shows very different
values for respective predictions of logic stage delay (ti), global de-
lay (t g) , and overall clock frequency (fc) (see Table l).> A more
detailed type of model sensitivity analysis tests the sensitivity of a
given inodel to “hybridization” with other models. In other words,
we take the rule chain for a single model and replace exactly one
rule by an equivalent rule (or set of rules) from another model. De-
tails of such experiments are in [4].

Parameter sensitivity studies that vary single PI parameter val-
ues in leach model’s evaluation, changing each PI value by +/- lo%,
are also detailed in [4]. More extensive studies simultaneously
change: more than one parameter value, again by +/- 101%. Since
this produces three values for each parameter and since. there are
between 15 (SUSPENS) and 46 (BACPAC) primary inputs, it is not
possibi!e to sweep over all possibilities, and we therefore sweep over
smaller parameter subsets (up to 7 parameters at the same time).
Figure 3 plots the relative occurrence of clock frequency values in
small intervals that result from the sweeping. If we say that a more
“robust” (to changes of its input parameters) model is one with a
narrower and higher peak, then BACPAC would seem to be the most
robust, and SUSPENS the least robust.6

4.2 New Device Models

Apart from reimplementing existing cycle-time models in GTX,
we have also developed new device models, both for bulk Si
and Silicon-on-Insulator (SOI) devices. The SO1 module assumes

sSU!;PENS does not have a model for global delay on chip. We believe this was
compenmted by taking into account more stages but we chose to use a number of
stages equal to that of the other models to maintain interchangeability. While the very
high 1.5 GHz frequency predicted by SUSPENS is largely due to the lack of a global
interconnect model, the logic stage delay is still significantly different from the other
models.

%general, we find BACPAC to he much less sensitive to either hybridization with
other models, or variation of input parameter values. This does not necessarily imply
that BACPAC is a better model (e.g., if a model predicts a clock frequency of 700
MHz independent of any input parameter value, then this is “robust” but not practical
or.correi:t). Note also that sweeping over more than 7 parameters at once will widen
the peaks shown in the plot.

696

Bulk Si so1 0.03 1 I I

14

2 ' 2 -

2 I o -

$ x -

d * -
x

ou 4 -

P(W) % P (w) %
Logic + local wires 26.20 46.18 28.99 43.91
Global interconnects 2.20 3.88 2.60 3.93
I/O drivers +pads 11.71 20.65 13.35 20.22
Clock distribution 7.93 13.98 9.65 14.62
Memory 0.94 1.66 0.86 1.31
Short Circuit 7.68 13.54 10.21 15.47

-

Leakage 0.067 0.12 0.359 0.543
Total power 56.74 100.00 66.03 100.00

Table 2: Different components of power consumption for Bulk
and SO1 microprocessors.

Si

Figure 4:

partially-depleted SO1 (PD-SOI) technology and is based on popu-
lar BSIM3SOI models [3]. The use of these modules will allow
GTX users to more completely explore the future design space.
Both modules have been compared to BSIM3 HSPICE runs, with
results matching within 10%. Again, more details are in [4].

Comparison between Bulk Si and SO1

One of the primary design considerations for PD-SO1 is theJIoating
body effect. In short, since the transistor body is isolated from the
substrate it must be modeled as an additional floating node. De-
pending on the switching history of the device and its capacitances,
the body voltage can fluctuate, which leads directly to changes in
the threshold voltage and subsequent (saturation drain current)
variation.

The SO1 models in GTX calculate a range of possible Id.sut val-
ues, depending on the expected switching activity of the system.
The steady-state body voltage is calculated based on reverse-biased
diode leakage and substrate current due to impact ionization. This
body voltage is then used to calculate a new &h and Id,Tut which are
used in other GTX modules to calculate key parameters such as cy-
cle time, leakage power, etc. Currently, the SO1 module ignores the
impact of capacitive coupling on body voltage.

A second source of variability that we investigate is dynamic
delay. This phenomenon occurs due to the presence of large cou-
pling capacitances between same-layer interconnects. Switching on
adjacent wires can lead to variation in expected stage delay.

Our first study with these new models assesses the influence of
device technology on clock frequency and power. In the best case7
the clock frequency increases from 1.03 GHz for bulk Si to 1.31
GHz for SOI, and in the worst case from 867 MHz (bulk Si) to 1.05
GHz (SOI). The power results presented in Table 2 show a 16%
rise in power for an SO1 system. However, it should be noted that
the SOI-based design exhibits a 24% higher clock frequency than
its bulk Si counterpart (for the nominal case). We would expect a
24% rise in dynamic power but due to smaller SO1 device capaci-
tances, this increase is reduced by a third. The SO1 leakage power
is substantially larger than bulk since a positive body voltage acts
to reduce &h and exponentially increase off-current.

The sensitivity of both device models to their input parameters
is shown in Figure 4. In this figure, several technology related pa-
rameters were varied (including Tox,Vdd, and Le,,,,) by +/- lo%, and
best and worst-case scenarios were examined. A few points should
be clarified. First, SO1 devices seem to have slightly less sensi-
tivity to input parameter changes in this case; this could be due
to the lower &h for SO1 which makes Id,sLlr less dependent on Vdd.
Second, the process spread (between best and worst-case) is larger
for SO1 due to the floating body effect. This increased uncertainty

realizable due to the floating body effect
combined with zero effective coupling capacitance due to dynamic delay. Best case for
bulk only considers dynamic delay effects.

'Best case for SO1 refers to the largest

0.02s 1

Clock frequency [GHz]

Parameter sensitivity for bulk Si and SO1

I .h

device models.

16 c ' ' - I
I

SO1 (NS) /

__.-
sol (S) I _ _ - - -

__.____.____-------

1

,, .. hulk (S)

11 5 I I i 2

Wire widlh [m]

Figure 5: Delay uncertainty for staggered (S) and non-staggered
(NS) repeater topologies using bulk and SOL Results are for a
1.5cm global wire with four lOOX repeaters.

eats into the advantage that SO1 offers. This sort of analysis will
help designers better quantify the price-performance tradeoffs of
SO1 technology. Again, the variation in the case of bulk silicon is
due to dynamic delay only. Other interesting studies using the SO1
module in GTX could explore the delay implications of constrain-
ing power (either leakage or dynamic) to be identical to the bulk Si
case.

4.3 Delay Uncertainty Studies

Our last illustration of GTX capabilities is a delay uncertainty study
that investigates the extent of the variations described above. The
question we pose is: for a global interconnect, what type of repeater
and wire topology is needed to limitheduce the delay uncertainty
due to floating body and dynamic delay effects?

In the study, we maintain a fixed pitch of 2.56 pn and a line
length of 1.5 cm. The wire thickness is set at 1.9 pm and the re-
peaters have a W/L (NMOS) of 100. Delay uncertainty is calculated
as (Twc - T',)/T, where T, is the delay without dynamic delay or
floating body effects, T', is the worst case delay, and ThC the best
case delay. Our study is set up so that the interconnect repeater
interval and line width can be optimized subject to constraints on
delay uncertainty and on peak coupling noise. (For example, a rea-
sonable bound for delay uncertainty in global interconnect design is
10% (too much variation will make static timing results unreliable),
and a peak noise limit of 15% of Vdd is also typically desired.)

In Figure 5 we plot the delay uncertainty against wire width for
four cases: SO1 and bulk Si with and without the use of staggered
repeaters. Staggered repeaters are introduced in [9] and exploit off-
set repeater placement on adjacent global lines to eliminate the im-
pact of dynamic delay. In the bulk case there is no uncertainty (at
least due to the two effects we consider) and in the SO1 case all
delay uncertainty is due to the floating body effect. As wire width
increases, the non-staggered repeater configuration exhibits more
delay uncertainty since the coupling capacitance becomes a greater
portion of the total capacitance. The floating body effect in SO1 is

697

a h seen in Figure 5: the calculated value of about 4% is entirely
due to variation in buffer drive current, and is in line with numbers
reported by IBM for their SO1 technologies [16].

As would be expected, our study also shows that the use of more
repeaters limits dynamic delay uncertainty since the ratio of wiring
capacitance to device capacitance decreases [4]. In general, with a
small number of repeaters and a fixed pitch, reducing the wire width
decreases the delay uncertainty and also leads to reduced power
dissipation with minimal overall delay penalties. The benefits of
staggered repeaters in meeting noise peak constraints are also eas-
ily assessed, e.g., with repeater W/L = 100 and a 20% V& noise
margin constraint, the upper bound on repeater spacing due to the
noise constraint is 2600 pm in the non-staggered case, and 12000
pm in the staggered case. Finally, since buffer insertion has large
power implications, wire sizing combined with staggered repeaters
seeins to be the best strategy to reduce uncertainty. Overall, studies
like this show the utility of GTX in searching over global intercon-
nect solutions given various degrees of freedom (driver sizing, line
width, etc.) and constraints (as in, e.g., [ll]).

5 Conclusions and Ongoing Work

We have described the architecture and implementation of GTX,
the MARCO GSRC Technology Extrapolation system. GTX has
the potential to change how we extrapolate the impact of new pro-
cess and design technology: it can provide a “living roadmap” that
incorporates - and serves as a repository for - essentially unlimited
forms of domain knowledge.

Initial studies with GTX have assessed the modeling sensitiv-
ity and parameter sens i t iv io of several influential cycle-time mod-
els, notably those of BACPAC [18] and Fisher [7]. These analy-
ses reveal surprising levels of uncertainty and sensitivity to mod-
eling choices in the technology extrapolations that drive roadmap-
ping and R&D investment. Our reimplementation of these previ-
ous models reveals the value of not only GTX’s flexibility, but also
its s.tandard mechanisms for interchange of data and models. We
have also developed new models for bulk Si and SO1 devices for
the (GTX context. Easily-implemented studies clearly contrast bulk
versus SO1 in terms of system power, as well as delay uncertainty
for critical paths (i.e., isolating the impact of SO1 variation in drive
current). Other studies point out the reduction in delay uncertainty
and peak noise that accrues from use of a staggered-repeater de-
sign technique for global buses. These experiences demonstrate the
ease with which GTX enables new studies as well as new uses for
existing models.

IPart of our ongoing work seeks to improve the user-friendliness
of CiTX and especially its CUI: we hope to remove all barriers to
development and use of new models in GTX. A key consideration
is the maintainability of parameters and rules. To this end, planned
extensions include (i) a convenient library mechanism for parameter
names, with searching options based on GTX naming conventions;
(ii) name spaces that allow unrelated details of one study (e.g., aux-
iliary or intermediate parameters) to remain hidden within other
studies; (iii) a naming convention for rules, to facilitate exchange
and reuse among different modules; (iv) a platform (grammar) to
define studies in GTX so that users can easily see what a given rule
chain calculates; and (v) a framework for sharing results of studies
in GTX while protecting proprietary IP.

Other current efforts are aimed at applying GTX to elucidate
specific issues in technology extrapolation; examples include (i)
noisle effects on clock jitter and skew, and (ii) routability effects
(e.g., via blockage) on global interconnect distribution. Other en-
hanc:ements to the engine include “smart sweeping” that can sweep
large rule chains less exhaustively, while intelligently retaining out-

put values of interest (e.g., max and min); Monte-Carlo styles of
sweeping are also contemplated. A major enhancement will be the
addition of implicit computations, a new rule type that would have
the output variable in the #body expression and would solve for the
exprc:ssion==O. Improved global optimization and visu,alization of,
e.g., response surfaces are also in the pipeline.

Finally, we are actively seeking collaborations with groups in
industry and academia who are willing to contribute models of par-
ticular aspects of technology and design as well as feedback that
will ;allow us to continually improve both the engine and the CUI.

Acknowledgments

We thank Professors Ken Rose, James Meindl, Scott Wills and Kurt
Keutzer for fruitful discussions, and Dr. Phil Fisher for providing
MS Excel spreadsheets from the ITRS98 effort.

References
[I] A. B. Babichev, 0. B. Kadyrova, T. P. Kashevarova, A. S. Leshchenko

and A. L. Semenov, “UniCalc, A Novel Approach to Solving Systems
of Algebraic Equations,” Intervul Compurutions N2 (199:3), pp. 29-47.

[2] H.B. Bakoglu, Circuit.!, Interconnections, und Puckuging ,for VLSI,
Chapter 9, Addison-Wesley, 1990.

[3] BSIM3SO1, version 2.2, UC Berkeley.
[4] A. E. Caldwell, Y. Cao, A. B. Kahng, E Koushanfar, H. Lu,

1. L. Markov, M. Oliver, D. Stroobandt and D. Sylvester “GTX: The
MARCO GSRC Technology Extrapolation System,” Technical Report
CSD-200006, UCLA CS Dept., March 2000.

[5] J. Cong and D.Z. Pan, “Interconnect Delay Estimation Models for
Synthesis and Design Planning,” ASP-DAC, 1999, pp. 97-100.

[6] J. C. Eble, V. K. De, D. S. Wills and J. D. Meindl, “A Generic Sys-
tem Simulator (GENESYS) for ASIC Technology and Architecture
Beyond 2001,” Proc. ASIC Con$. 1996, pp. 193-196.

[7] P. D. Fisher and R. Nesbitt, “The Test of Time: Clock-Cycle Estima-
:tion and Test Challenges for Future Microprocessors,” IEEE Circuits
,md Devices Muguzine 14(2) (1998), pp. 37-44.

[8] pniconductor Industry Association (SIA), “International
rechnology Roadmap for Semiconductors,” December 1999.
.nttp://vmm.itrs.net/

[9] .A. B. Kahng, S. Muddu, E. Sarto and R. Sharma, “Interconnect Tuning
;Strategies for High-Performance ICs,” Proc. DATE, 1998.

[IO] IMARCO GSRC Technology Extrapolation Initiative,
lnttp://vlsicad.cs.ucla.edu/GSRC/GTX/

[I l l IC. Rahmat, 0. S. Nakagawa, S.-Y. Oh, and J. Moll, “A Scaling
Scheme for Interconnect in Deep-Submicron Processes.” Intl. Elec-
won Devices Meeting. Technicul Digest, 1995, pp. 245-248.

[I21 I? Raje, “A Framework for Insight into the Impact of Interconnect on
0.35-um VLSI Performance,” Hewlett-Puckurd J., 1995, pp. 1-8.

[131 S, Y. Reddy and K. W. Fertig, “Design Sheet: A System for Exploring
Design Space,” Proc. Artificiul Intelligence in Design, 1996, pp. 347-
366.

[141 liensselaer Interconnect Performance Estimator (RIPE),
http:l/latte.cie.rpi.edu/ripe.html

[IS] G.A. Sai-Halasz, “Performance Trends in High-Performance Proces-
s;ors,” Proc. IEEE, Jan. 1995, pp. 20-36.

[I61 G.G. Shahidi et al., “Device and Circuit Design Issues in SO1 Tech-
nology,” Proc. CICC, 1998, pp. 339-346.

[171 D. Sylvester and K. Keutzer, “Getting to the Bottom of Deep Submi-
cron,” Proc. ICCAD, 1998, pp. 203-21 1.

[I81 D. Sylvester and K. Keutzer, “System-Level Performance
Modeling with BACPAC - Berkeley Advanced Chip Per-
formance Calculator,” Proc. SLIP, 1999, pp. 109-1 14,
http://vmm.eecs.berkeley.edu/-dennis/bacpac/

[I91 lJniversal Technical Systems, Inc., http: //m.uts. com.
1201 S . Takahashi. M. Edahiro and Y. Havashi. “A New LSI Performance
L~

Prediction Model for Interconnection Anaiysis of Future LSIs,” Proc.
ASP-DAC, 1998, pp. 51-56.

698

http://nttp://vmm.itrs.net
http:l/latte.cie.rpi.edu/ripe.html
http://vmm.eecs.berkeley.edu/-dennis/bacpac

