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ABSTRACT
Wire sizing, repeater insertion and repeater sizing are neces-
sary to limit delay in on-chip interconnections. When these
techniques are applied to nets that are already routed, the
results heavily depend on the routing layer chosen for the
wire. In this paper, we present a layer assignment method
that assigns wires to the layer that is best �t. The method is
based on a consistent target delay constraint and uses wire
sizing and repeater insertion and sizing. It also considers a
repeater area constraint and takes the impact of vias into
account. A greedy optimization approach is used with the
number of layers needed for the wiring as its cost function.
Our layer assignment method can be used in conjunction
with a priori wirelength estimation models so that it applies
both as a guide for the router as well as for placement tools.
Our model suggests that vias can severely impact the solu-
tion when tight delay constraints are applied, and that this
actually sets an upper bound to the number of wires that
can be accommodated in any layer stack. Empirical results
provide some answers as to the best form of the layer stack.
Layer stacks with monotonically increasing wire height on
the layers are optimal for tight delay constraints. If longer
delays are allowed, the addition of a low-level layer on top
of the layer stack might be bene�cial.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuits|Placement and
routing ; J.6 [Computer Applications]: Computer-Aided
Engineering|CAD ; I.6.5 [Computing Methodologies]:
Simulation and Modeling|Model Development

General Terms
Layer assignment, routing, delay, via impact, wire length.
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1. INTRODUCTION
Deep submicron (DSM) routing tools are not only concerned
with connectivity, but must also take into account delay
constraints, yield, power, etc. Current routing schemes are
based on wire tapering, repeater insertion and repeater siz-
ing [1; 2; 3].
Simply �nding a routing layout that results in the minimum
overall wiring area is already intractable. Additionally, de-
lay constraints require wire sizing and repeater insertion, on
a wire by wire basis, i.e., given the wire's length (or even
location) and given the wiring layer(s) where it is routed.
If the routing solution to which such techniques are applied
is obtained by conventional routing, we may end up with
inferior overall results. In particular, the decision to assign
a wire to a certain layer (or layers) is becoming increasingly
important.
In this paper, we present a layer assignment method that (i)
uses the optimal wire size and optimal number and size of re-
peaters for each wire, (ii) ensures that delay constraints are
met, (iii) takes into account a total repeater area constraint,
and (iv) accounts for the impact of vias. The model uses a
priori estimation techniques. It can therefore be applied to
obtain a layer assignment prediction before any layout step
(including placement) is performed. With more information
(e.g., the exact wire length distribution after placement),
the model can a�ord more accurate layer assignment pre-
dictions. In general, our layer assignment model has such
potential applications as: (i) improving CAD layout tools,
(ii) studying the e�ects of technological parameters on the
routing solution, and (iii) optimizing the fabrication process
(e.g., to de�ne the best wire width and spacing parameters
for each layer). Indeed, the model and studies that we de-
scribe are easily integrated within such a framework as is
provided by the recent GTX technology extrapolation sys-
tem [4].
Section 2 introduces the layer assignment problem and the
various models used. Our layer assignment method is out-
lined in Section 3 and Section 4 explains it in more detail.
In Section 5, we derive an upper bound (due to the via im-
pact) for the number of wires that can be accommodated
on a �nite layer stack. Empirical veri�cation shows that the
conventional technique of providing fat wires at the highest
layers outperforms other layer schemes but that for some
examples another scheme might be preferable.

2. PROBLEM DEFINITION AND MODELS
The problem we address is the following: �nd the optimal
assignment of wires to wiring layers subject to delay con-
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straints and constraints on the total area used for the re-
peaters. The optimization objective is the total number of
layers needed to route all wires.
Our degrees of freedom in this problem are (i) choice of layer
parameters, (ii) wire width, (iii) number of repeaters, and
(iv) size of repeaters. In the next subsections, we explain
the models that de�ne how these parameters in
uence layer
selection.

2.1 Layer assignment model
We assume a layer assignment model in which wires are
assigned to tiers (pairs of layers) with one layer for the hor-
izontal and one layer for the vertical wire segments [5; 6].
Tiers are grouped in tier types. All layers (tiers) of the same
tier type have the same technological parameters, i.e., a �xed
wire height, a �xed wire spacing and a minimum and max-
imum value for the wire widths. Also the type of routing
material (Al, Cu, . . . ), uniform dielectric permittivity, and
the dielectric thickness above and below the wires are �xed.
The total number of layers in a group of tiers of the same
type is to be decided by the layer assignment method but it
has to be an even number. Indeed, we need to ensure that
there is an equal amount of space reserved for horizontal
and vertical connections. In an environment where, e.g., the
design has not yet been placed, we can omit this requirement
and use the layer assignment result to guide the placement
(and the routing) to make e�cient use of the directional
di�erences.
The layer assignment method takes as input an arbitrary
number of tier types, with technological parameters per type.
The order of the tier types (bottom to top) is user-de�ned.
It is thus possible to apply schemes other than the tradi-
tional fat-wires-on-top approach. The method searches for
the optimal number of layers for each tier type (this can
include zero layers) and returns the wires that have to be
routed on each tier (we assume each wire uses only one tier).
We use the following terminology: a tier i is lower (higher)
than a tier j if the layers of tier i are below (above) the ones
of tier j. A tier i is fatter than a tier j if its wire height is
larger.

2.2 Delay equation and repeater model
The delay model is important since the method is driven by
the delay constraint. We use Sakurai's delay equation [7]

Td = 0:377RwCw + 0:693 (Ro (Cj +Ci) +RoCw +RwCi) ;
(1)

with Rw and Cw the wire resistance and capacitance, Ro

the (e�ective) output resistance of the gate that drives the
wire and Cj and Ci the junction and input capacitances of
the gate that is driven by the wire.
The delay can be minimized by tuning several parameters. It
depends on the wire length ` and wire width W through the
wire resistance Rw and wire capacitance Cw. The BACPAC
model [8; 9] provides the following relations (the capacitance
model includes fringing capacitances)

Rw �
`

W
; Cw = `

�
aW + b� c e

�dW
�
; (2)

with a, b, c and d technology-derived constants for a given
tier type. With the length of the wire and the layer choice
�xed, the delay can be lowered by increasing the wire width.
We assume wires are sized uniformly over their entire length.
We do not consider wire tapering, not only because it makes

the solution of our problemmuchmore di�cult to obtain but
also because it is less compatible with modern-day routers
and because it is not so valuable when repeaters are already
used [10].
Gate sizing can also be used to minimize delay, using the
following dependencies on the gate width

Ro �
1

Wg
Cj �Wg Ci �Wg: (3)

If repeaters are inserted to reduce the delay, Equation (1)
changes. For the sake of simplicity, we assume that the
repeaters are inserted at equal distances and that a repeater
is also inserted at the beginning of the line to drive the line.
With these assumptions, the time delay is broken up into
Nr parts of equal delay

1 (with Nr the number of repeaters)

Td =Nr

�
0:377

Rw

Nr

Cw

Nr

+ 0:693
�
Ro (Cj + Ci) +Ro

Cw

Nr

+
Rw

Nr

Ci

��
(4)

where Ro, Cj and Ci are now parameters of the repeaters
driving the wire segments. They have the same dependen-
cies on the repeater width as in Equations (3).
Tuning wire widths and number and size of repeaters not
only a�ects delay, but also impacts area. The layer as-
signment solution in fact trades o� between delay and area.
Apart from the direct e�ect of increasing the wire and re-
peater parameters, the number of repeaters also indirectly
a�ects area usage on other layers due to the via impact (re-
peaters break up wires into multiple segments, and each
must be connected to the wiring layer). We therefore also
need a via impact model.

2.3 Via impact model
The impact of vias on routing, while increasingly important,
has always been crudely estimated, e.g., each layer reduces
the e�ective area that can be used for wiring on all layers
below it by 15% [11]. More recent models [6; 12] try to as-
sess via impact by observing that there are two types of vias
[12]. Turn vias are used to switch wires between layers with
di�erent routing directions and do not take up additional
space beyond that used for the routing of the wires. Ter-
minal vias, on the other hand, are used to guide a wire to
its tier (in our layer assignment model a wire uses only one
tier). These vias take up space on all underlying tiers and
block wires on those tiers. The model of Chong and Bray-
ton [6] takes only the actual via area into account. The total
wiring area reduction on a layer is then estimated to equal
Nv Av where Nv is the number of terminal vias on that layer
and Av is the area a single via takes. The via impact factor
(wiring area reduction factor due to via blockage) is then

f =
Nv Av

A
; (5)

with A the originally available area for wiring. Chen et al
[12] acknowledge the via blockage e�ect more realistically,
with a larger via blockage factor

f =

r
Nv Av

A
: (6)

1We do not take into account possible di�erences between
the input capacitance of a repeater and that of the gate
driven by the wire.
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Both models have been extensively studied in [13] and com-
pared to actual routing results. While [13] shows that there
is room for improvement to these models, we will use the
best model available to date, Equation (6). Our layer as-
signment model relies only on the fact that f is an increasing
function of Nv (which should be true in all via impact mod-
els) and better alternatives can be easily substituted once
they become available.

2.4 Interconnection length distribution
In our layer assignment model, all wires are classi�ed ac-
cording to their lengths. We thus need a wire length distri-
bution that describes the number of wires for each length.2

Our model does not require any knowledge on how this wire
length distribution is obtained. It could be the result of a
measurement of distances between placed gates if the model
is used after placement. It could also be predicted by an a
priori wire length estimation method such as described in
[14; 15; 16; 17], based on the Rent exponent [18] that de-
scribes the topological complexity of designs. An overview
of such methods is presented in [19].

3. LAYER ASSIGNMENT WITH CONSIS-
TENT STAGE DELAYS

Our layer assignment method takes the following inputs:
1. Technological parameters for capacitances/resistances.
2. For each layer i: the wire height Hi, spacing Si and min-
imum Wmin and maximum Wmax wire width.
3. Die area Adie (�xed die) including the maximal area to
be used for repeater insertion (fraction fA of the area) as
well as the routing e�ciency factor �r (see below).
4. Target delay Ttarget (maximal allowed delay for a wire).
5. The complete wirelength distribution (or necessary inputs
to estimators, such as Rent exponent and number of gates).
6. Implementation-related parameters (error bound for iter-
ation, maximum number of \best" moves to be performed
in one pass, etc.).

3.1 Cost function
The objective function (cost function) to be minimized by
the layer assignment method is the total number of layers,
de�ned as

C =

NtX
i=1

Li; (7)

with Nt the total number of tier types and Li the number of
layers at tier type i. The number of layers Li on tier type i
should be an (even) integer. However, this would mean that
the cost function only changes in discrete steps whenever
a layer is (nearly) fully occupied. Such a cost function is
not very conducive to �nding a good solution using iterative
improvement. Therefore, in a �rst phase, we let the number
of layers be a real number that re
ects the amount of space
e�ectively used on a layer. The cost function then becomes

C =

NtX
i=1

Li =

NtX
i=1

Ai

A
; (8)

with Ai the actual area needed for wiring on tier type i and
A the wiring area available on a single layer (equal for all

2Multi-terminal nets are broken up into separate source-sink
paths.

layers). The available area is not necessarily equal to the
total layer area because several e�ects make it impossible to
fully pack all layers with wires [13]. We combine all those
e�ects into a single factor �r (often called the routing e�-
ciency factor because it is largely dependent on the quality
of the router). If Adie represents the actual die area, then
the e�ective wiring area is A = �r Adie.
The actual area used on tier type i can be divided into a
part Aw;i used for the actual wiring and a part Avia;i `lost'
due to vias needed for wires on higher layers:

Ai = Aw;i +Avia;i: (9)

The area taken up for the wiring of a wire k on tier type
i is given by Aw;i(k) = `(k) (W (k) + Si) where `(k) is the
wirelength of wire k, W (k) is its width and Si is the wire
spacing on tier type i. With Ii the set of all wires on tier
type i we can write

Aw;i =
X
k2Ii

`(k) (W (k) + Si): (10)

The part of the cost function that takes care of the via im-
pact is given by3

Avia;i =

LiX
j=1

Afi(j); (11)

with fi(j) the via impact factor on layer j of tier type i. This
factor depends on all wires on layers higher than j (both in
tier type i and all tier types that are above i). Using the via
impact model of Equation (6) and denoting by Jj the set of
all wires on layers above layer j, we have

fi(j) =

vuutX
k2Jj

Nv(k)Av;i(k)

A
; (12)

with Nv(k) being the number of vias due to wire k and
Av;i(k) being the area each via occupies on layer i. For
calculating the via area Av;i(k) on a tier of type i for a
wire k, we assume that (i) vias occupy a square area with
side equal to the minimumwire width of their corresponding
layer (below), (ii) a line (1-dimensional array) of such vias is
used for wires that are wider than the minimum wire width,
(iii) the number of vias in the line covers the entire wire
width, and (iv) for the part of the via stack on the lower
layers, the via sizes scale with the minimal wire width on
the corresponding layers but the number of vias in the line
remains the same. These assumptions lead to (the line of
vias is considered a single via in Equation (12))

Av;i(k) = (Wm;i + Si)
2 W (k)

Wm;k

; (13)

where Wm;i (Wm;k) is the minimal wire width on tier type i
(on tier type of wire k) and W (k) is the wire width of a wire
k. The term Si was introduced to include the via spacing.4

The number of terminal vias on layer j due to a wire k on a
higher tier can be estimated using the number of repeaters

3Note that the summation only makes sense for integer val-
ues of Li. However, we will average out all vias on tier i over
its layers and, afterwards, again allow real values for Li.
4Note that we used spacing around all vias in the line. For
large di�erences of Wm;i and Wm;k, the vias might be far
enough apart to let another wire pass in between them.
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Gate

Repeater

Layer on tier type 1

Layer on tier type 2

Wire on tier type 2

Figure 1: The number of terminal vias on all layers of tier
types 1 and 2 for a wire on tier type 2: with two repeaters
and without repeaters. Because wires are not assigned to a
speci�c layer within a tier type, we average them out over
all layers and assume turn vias to connect the pieces and a
single terminal via stack to connect the other line end.

Nr(k) since each repeater (except for the driver) adds two
vias per layer that is lower than its own layer and the two
endpoints of the connection add another two (left wire in
Figure 1)

Nv(k) = 2Nr(k): (14)

If there are no repeaters, thenNr(k) in Equation (14) should
be replaced by 1 (not 0) because the endpoints of the wire
still need two terminal vias per layer (right wire in Figure 1).
Because we do not (yet) distinguish between the layers of a
tier type, we assume that equal portions of a wire on tier
type i are routed on all of the tier's layers.5 Each layer on
tier type i (except for the top one { but we disregard this
anomaly for simplicity) then contains one terminal via and
the average number of terminal vias on any layer of tier type
i is

Nv(i; k) = Nr(k): (15)

Again, if no repeaters are used, Nr(k) has to be substi-
tuted by 1. Substituting Equations (14), (15) and (13) into
Equation (12) yields (on a single layer j of tier type i; the
dependency on j is averaged out)

fi=

vuuut(Wm;i + Si)
2

A

0
@2
X

k2JnIi

Nr(k)
W (k)

Wm;k

+
X
k2Ii

Nr(k)
W (k)

Wm;k

1
A:

(16)
The number of layers on tier type i can then be found by
combining Equations (8) through (11):

Li =
1

A

X
k2Ii

`(k) (W (k) + Si) + Li fi; (17)

Li =
1

A (1� fi)

X
k2Ii

`(k) (W (k) + Si): (18)

In [20], we single out the change in the cost function (Equa-
tion (8)) if only a single wire k changes.

3.2 Layer assignment method
To be able to optimize one wire at a time without having to
worry about the in
uence on other wires, the cost function
(and thus the number of layers per tier type) has to be a

5One can check that this assumption leads to the same result
as assuming that wires are distributed randomly on all layers
and averaging out all resulting vias over all the layers.

real number instead of an integer. Because the �nal solu-
tion has to be integer, we propose a method in two phases:
(i) optimize the layer assignment with the cost function of
Equation (8), and (ii) �nd the best way of rounding the real
numbers to integers so as to minimize the total number of
layers and re-assign wires accordingly. In this paper, we fo-
cus on Phase 1; any actual layer/tier assignment requires
some heuristic for Phase 2 (see [20]).

Phase 1

Is Ar,min smaller than the
repeater area constraint?

No solution for area constraints.
Solution known for area
constraint = Ar,min.

the minimal possible delay and the corresponding optimal
values for W, Nr and Wr.

Calculate, for each wire length l and for each tier type i,

The maximum of all delay values obtained is the
minimum delay value Tmin.

Is Tmin smaller than the target delay? Set target delay equal to Tmin

Calculate minimal possible repeater area Ar,min

Y

N

Y

N

Calculate the additional cost for moving a single wire to any

other tier while optimizing W and Nr on the other tier.

and Nr and minimal W. Set chunk size K.

Sort additional costs in increasing order. Repeat for all wires.

Y

N
Solution found.

Allow the K best negative cost moves and recalculate the

total cost.

Reduce K by a small factor (for convergence)  and repeat.

Smallest additional cost negative?

Create initial solution on "fattest" tier type with optimal Wr

Figure 2: Phase 1 of the layer assignment method.

Phase 1 of the layer assignment method is outlined in Fig-
ure 2. It optimizes the wire width W , the number Nr and
size Wr of the repeaters, and the tier type to which the wire
is assigned. The method is based on a greedy approach in
which theK moves that result in the largest reduction of the
cost function are performed �rst. K is called the chunk size.
At any time, the delay constraint is met by all wires and
the remaining degrees of freedom are used to minimize the
number of layers (cost function). The solution that is pro-
duced by the algorithm of Figure 2 does not yet guarantee
that it lies within the constraints for the repeater area. In
fact, the optimal repeater width (for minimal delay) is used
throughout this algorithm. However, we check that a solu-
tion exists that obeys the area constraint. A post-processing
step checks the outcome of the algorithm against the area
constraint and, if the constraint is not met, gradually re-
duces the repeater area (see [20] for details).
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4. DETAILED MODEL DESCRIPTION
In this section, we clarify selected parts of the algorithm
that is outlined in Figure 2. More details are in [20].

4.1 Calculation of the minimal delay
Since the delay equation monotonically increases with the
wire length `, the longest wires de�ne the value for the best
(minimum) delay we can obtain. The delay equation is a
quadratic function of Nr and Wr, hence optimal values for
these parameters to minimize delay are easily found [20].
The equation is much harder to solve for W because of the
exponential terms (Equation (2)). However, using the re-
sults for Nopt

r and W opt
r , the delay equation is proportional

to the square root of Rw Cw, which is given by

Rw Cw = A+
B

W
�

C

W
e
�DW

; (19)

with A, B, C and D positive constants.
If B > C, which always holds due to the physics of the
problem, Equation (19) is a decreasing function of W .6 The
minimal delay Tmin is thus found for W = Wmax. The
target delay Ttarget, provided by the user, must be larger
than or equal to Tmin in order to have a solution to the
layer assignment problem. The further the target delay is
from Tmin, the more freedom we have to optimize the cost
function. (Notice that a tight delay constraint forces an
area-ine�cient solution).

4.2 Aiming at a target delay
With a target delay larger than Tmin, more choices of W ,
Nr, andWr meet the delay constraint; we use this 
exibility
to improve the cost function. Given a target delay, the delay
equation can again be solved easily to obtain values for the
number and size of the repeaters. The quadratic function
has either two positive solutions (of which we choose the
smaller) or none. For the wire width W , the delay equation
can be written (using Equation (19)) as

Td = U+
V

W
+XW�

Y

W
e
�DW

�Z e
�DW

� Ttarget; (20)

with all constants positive and independent of W . Written
as

e
�DW

�
Y

W
+ Z

�
� U � Ttarget +

V

W
+XW (21)

this equation has a left hand side (LHS) that is a decreas-
ing function of W , and a right hand side (RHS) that has a
minimum at

W
0 =

r
V

X
: (22)

Since 0 � exp (�DW ) � 1 (for 0 � W ), a necessary condi-
tion for a solution is�

Y

W
+ Z

�
� U � Ttarget +

V

W
+XW ,W1 �W �W2

with W1 and W2 the solutions of the quadratic equation.
If the discriminant of the quadratic equation is negative or
the intervals W1 � W � W2 and Wmin � W � Wmax

do not overlap, there is no solution that meets the target
delay constraint (this means the choices for Nr andWr were

6This might no longer be true when inductance is included
into the delay model.

RHS

LHS’LHS1

LHS2

W1

W2

W’

W

Figure 3: Iteration for obtaining Wmin with target delay.

insu�cient). Otherwise, we have the following possibilities
(see Figure 3):
1. W1 < W 0 ) both LHS and RHS of Equation (21) are
decreasing functions of W around W1, and LHS < RHS
(because the exponential function is smaller than 1, and
we solved W1 from RHS = LHS' without the exponential
factor). Calculating the LHS for W =W1, solving the RHS
for W with the calculated value and iteratively improving
the value in the LHS with the value for W obtained in the
RHS will converge to the solution if one exists. This is shown
in Figure 3 if the LHS is given by the curve LHS1. If the RHS
does not have a solution for a certain W obtained through
iteration, then there is no solution to Equation (21), as is
shown in the �gure for curve LHS2.
2. W1 � W 0 ) the RHS of Equation (21) is an increasing
function of W for all W > W1, and RHS > LHS: there is no
solution.
If a solution is found but it is larger than Wmax, then there
is no solution within our restrictions on the wire width. If
the value for W is lower than Wmin then there are again
two possibilities: if LHS(Wmin) � RHS(Wmin) then Wmin

is the best solution (and the delay is lower than the target
delay), otherwise there is no solution (Wmin is larger than
the second solution of LHS=RHS).

4.3 Initial solution
To ensure the largest degree of freedom (with regard to the
delay constraint), we assume all wires are initially located at
the \fattest" tier. We choose the optimal values for number
of repeaters and repeater size that achieve minimal delay.
The lowest W for each wire is then calculated according
to the previous subsection. Because our initial solution uses
the \fattest" (i.e., best) tier, a solution will always be found.
After this step, the initial total cost function is calculated.

4.4 Move wires to optimal tier
In the next step, we compute the cost change �C for a
change of each wire (length) separately and for all move-
ments from a tier s to a tier t (s and t might be equal; this
allows internal optimization on a tier). The cost is calcu-
lated for the best new situation on the new tier, i.e., the
optimal W -Nr combination on that tier.
All possible best moves are ordered by increasing cost and
the K best ones are actually performed. The parameter K,
the chunk size, is user-de�ned. K is automatically reduced
during the subsequent optimization steps to promote con-
vergence (when wires change subsequently, the cost function
changes with every wire change so that all costs need to be
recomputed frequently to obtain the correct �C). The opti-
mization algorithm ends when no more wires can be moved
to reduce the cost.
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After this optimization step, we obtain an optimal solution
that adheres to the delay constraint. However, the repeater
area has been kept at the optimal value (for minimal delay).
If the total repeater area exceeds the area we allowed, we
have to reduce it [20].

4.5 Repeater area constraint
The details of the calculations for checking the repeater area
constraint can be found in [20]. If the constraint is easily
met (which is the assumption we adopt in the result section
of this paper), we will have no problem in optimizing the
number of layers. If, however, the area constraint is very
tight, this will not leave much room for cost improvement
and we will end up with many layers. (Imagine if all wires
were forced to be twice as wide { a very modest assumption,
{ increasing the number of layers from 6 to 12!) More impor-
tantly, the wire area increase will also result in a signi�cant
increase of the via impact, as will be described next. Hence,
repeater area constraints should be carefully considered and
our model enables the user to explore the implications of
such limits.

5. DISCUSSION AND RESULTS

5.1 Via limit
Equation (18) has a solution only if fi < 1. Hence, the via
impact must be bounded. Let us look at the implications
of this, in the simpli�ed context of all wires on a single tier.
From Equation (16), the constraint fi < 1 implies

(Wm;i + Si)
2

A

X
k

Nr(k)
W (k)

Wm;k

< 1: (23)

Even if the target delay is chosen such that we do not need
repeaters and such that all wires can have the minimal wire
width, there is some via impact and the total number of
wires Nw that we can allow is bounded by

Nw <
A

(Wm;i + Si)
2
: (24)

Equation (24) quite sensibly indicates that the total number
of connections in the design must be less than the e�ective
routing area divided by the area occupied by a single via.
For the example 250nm design in [8] (with 10,000,000 tran-
sistors and a logic area of 54.08mm2) on a tier with 4�m
wire pitch, the bound would be around 7 million wires. This
might seem a large number at �rst sight but one has to keep
in mind that this means a very large number of routing lay-
ers. Also, several factors will lower the bound signi�cantly.
In order to obtain Equation (24), we assumed that all wires
have minimum wire width and that no repeaters would be
used. This would only be possible for very relaxed delay
constraints. Wiring limits are much worse if we bound the
total number of layers by Lmax; writing Equation (18) as

Li = Lw
1

1� fi
< Lmax; (25)

with Lw the number of layers used for wiring alone, the
bound on fi suddenly reduces to

fi < 1�
Lw

Lmax
: (26)
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Figure 4: Tier assignment with wire width, number of re-
peaters and delay obtained for each wire length.

With Lmax a conservative 10 layers and Lw taking eight
of them, fi would already be reduced to 0:2, reducing the
number of wires we can allow to less than 300,000.
The actual bound on the number of wires that follows from
via impact should be computed from Equation (23), taking
into account the delay constraints and the best solution that
obeys them. The above reasoning, however, already shows
that we cannot rely on an increasing number of wiring layers
to route more interconnections on the same-area die.

5.2 Empirical observations

5.2.1 Target delay influence
In Figure 4, the result of our layer assignment method is
plotted for a design consisting of three tiers with parameters
as in Table 1 (layer stack A). These parameters, as well as
the parameters de�ning resistances and capacitances, are
the same as the default parameters for a 250nm process
technology in the recent estimation tool BACPAC [8; 9].
The length distribution we used is a theoretical distribution,
decaying with `2 p�3 [14] with a Rent exponent p = 0:6.
Wire lengths between 20�m and 30mm are considered in
intervals of 20�m. The number of wires of length 20�m
was chosen to be 100,000 (total number of wires approx.
187,000). The total available wiring area per layer is chosen
to be 20mm2 and the routing e�ciency �r = 0:5.
From Figure 4, we can draw the following conclusions:
1. Longer wires are optimally assigned to higher tiers.
2. The shortest wires obey the target delay easily with min-
imal wire width. From the moment the target delay is met
exactly, the wire width increases to keep meeting the delay.
From the moment a threshold wire width is passed, repeaters
are inserted and the wire width can be lowered. It then rises
again until the next threshold. A second threshold occurs
when the wire is moved to a higher tier. Because the wire
height then increases, both the wire width and the number
of repeaters can decrease. It is bene�cial to move wires to
a higher tier even if there is some degree of freedom left for
the delay constraint. This general scheme can be observed
for all examples; only the threshold values change.
Although we have no formal proof that our method �nds
the optimal result in terms of the number of layers, we have
empirically veri�ed that the result is optimal. We disabled
the choice of the best cost for every wire tier change (i.e.,
the choice is made between all improvements at random)
and obtained exactly the same results as in the original ex-
periment. We even allowed a gradually decreasing number
of moves that increase the cost without any e�ect on the
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Figure 5: Tier assignment for di�erent delay constraints.

result (except for the fact that it took much longer to �nd
the optimal solution). This clearly shows that our cost func-
tion is \smooth" and that the probability of being trapped
in a local optimum is nonexistent or at least very small.
This was also veri�ed by increasing the \chunk size," i.e.,
the number of moves allowed without recomputing the cost
function; with no e�ect on the solution.7

Of course, the delay constraint has a large e�ect on the
result. In Figure 5, the results for three di�erent delay
constraints are plotted. For lower (i.e., tighter) delay con-
straints, the upper tiers are used for more wires since wire
widths must increase starting from shorter lengths (lower
set of curves in Figure 5). From the �gure, it seems the
threshold for moving to a higher tier (big dips in the curves)
is only dependent on the wire width value.

5.2.2 Optimal layer stack
Our layer assignment method allows an interesting study
of the optimal layer stack. In a �rst study, we investigate
the di�erence between a uniform layer stack (all tiers have
the same type) and two non-uniform ones. Parameters for
three di�erent layer stacks B, C and D are given in Table 1.
The resulting numbers of layers per tier type are presented
in Table 2. It is interesting to note that the uniform layer
stack B does not result in all wires being at the bottom tier
type. This is due to the fact that the via impact on a tier
type i is found to be Li fi (Equation (17)). While it is true
that the via impact on the lower tiers is larger when more
wires are moved up, the number of layers that \feel" this
impact decreases. At the same time, the upper tiers have
less via impact so an increase in the number of layers does
not hurt that much. This results in many wires residing on
the higher tier type.
Adding non-uniformity to the tier stack allows shorter wires
to move down (to pro�t from the decrease in wire widths).
As can be seen from Table 2, increasing the non-uniformity
decreases the total number of layers needed. Of course, at
some point, smaller wire widths on lower tiers will no longer
help because the delay constraint prevents us from using
these widths. At the same time, larger wire widths at the
upper tiers will reduce the number of wires that are op-
timally routed there until none will be routed. Our layer
assignment method thus enables a search for the optimal
layer stack architecture, for a given length distribution and

7Our experiments use chunk size K = 100 (with no reduc-
tion in consecutive iteration steps). We have tried various
values of K = 1; 5; 10 etc. and obtained exactly identical
solutions from the model. Hence, K is nothing more or less
than a means to expedite model evaluation.

Stack Tier type H S T Wmin Wmax

A 0 0.5 0.325 0.65 0.325 10
1 0.9 0.6 0.9 0.6 10
2 2.5 2 1.4 2 10

B 0 1.3 0.6 1.3 0.6 20
1 1.3 0.6 1.3 0.6 20
2 1.3 0.6 1.3 0.6 20

C 0 1.1 0.5 1.1 0.5 20
1 1.3 0.6 1.3 0.6 20
2 1.5 0.7 1.5 0.7 20

D 0 0.9 0.4 0.9 0.4 20
1 1.3 0.6 1.3 0.6 20
2 1.7 0.8 1.7 0.8 20

E 0 2.5 2 1.4 2 10
1 0.9 0.6 0.9 0.6 10
2 0.5 0.325 0.65 0.325 10

F 0 2.5 2 1.4 2 10
1 0.9 0.6 0.9 0.6 10
2 2.5 2 1.4 2 10

G 0 0.9 0.6 0.9 0.6 10
1 2.5 2 1.4 2 10
2 0.9 0.6 0.9 0.6 10

Table 1: Technological parameters (wire height H and spac-
ing S, dielectric thickness T , and minimal Wmin and max-
imal Wmax wire width, all in �m) for di�erent layer stacks
with three tier types each.

Stack L0 L1 L2 L00 L01 L02 Ltot
A 1.44 2.03 1.72 1.58 2.10 1.76 5.4436
B 0.56 1.27 5.67 0.69 1.40 5.94 8.0251
C 1.93 0.44 4.23 2.25 0.46 4.39 7.1053
D 1.57 0.45 3.93 1.77 0.46 4.08 6.3134
E 5.59 2.40 0.88 15.67 2.77 0.93 19.3665
F 0 4.34 1.86 0 5.21 1.92 7.1285
G 1.77 1.64 2.79 2.13 1.97 2.89 7.0002

Table 2: Layer assignments for the three di�erent layer
stacks of Table 1 (Lx is the number of layers used for wiring
on tier type x, L0x the number of layers needed with inclusion
of the via impact).

per-stage target delay. The method can also easily handle
di�erent delay constraints on di�erent wires, i.e., a 2-D dis-
tribution of wire lengths and required wire performances.
(Possibly, there are scaling properties of both lengths and
required delay performances of wires in well-optimized { de-
lay slack-budgeted, gate-sized, bu�er-clustered, remapped,
etc. { placed circuits. One might even speculate as to the
nature of applicable \temporal Rent parameters" that cap-
ture such properties and provide compact descriptions of the
2-D length-delay distribution for placed circuits.)
An interesting question to ask is whether the traditional
approach of putting tiers with increasingly fat wires higher
in the stack, is in fact optimal. We investigated three other
layer stacks (E, F and G) with parameters given in Table 1.
Layer stack E is the inverse of layer stack A, i.e., with \fat"
wires on the bottom. Clearly, this layer stack is less optimal
in terms of number of layers needed than the original one
(see Table 2), mainly because of the huge via impact on the
lower tiers. We can also investigate non-monotonic layer
stacks such as F, which has a \fat" tier type on the bottom
and a \conventional" layer stack on top of that. As could
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be expected, the bottom tier type is not used at all. This
indicates that the conventional approach is indeed better.
However, a conventional layer stack with a \non-fat" tier
type at the top (G) does not result in a vacant top tier.
Indeed, the results show it is bene�cial to move some of the
wires to the top tier type! The reason is again that the
number of layers needed because of via impact is given by
Li fi. Although the bottom and top tier types have identical
parameters, and the via impact is lower if wires are moved
down, the increase in the number of layers on the bottom
tiers annihilates the cost gain. Thus, in some cases, the
conventional layer stack con�guration might not be the best
one. Note, however, that the di�erence in total cost is small
(compare Ltot for stacks F and G in Table 2) and that this
non-conventional layer stack is a particular situation. When
we decrease the target delay from 400 ps to 300 ps, the top
tier is no longer used because the tighter delay constraint
requires more repeaters and increases the via impact. For a
higher delay constraint however, the top tier was used to a
large extent (in the limiting case of no delay constraint at all,
the \fat" tier is no longer used and the solution degenerates
to the uniform case with only two tier types).

6. CONCLUSION
The assignment of wires to wiring layers will soon become
one of the most critical design (and process) optimizations.
In this paper, we have presented a method for assigning
wires to layers that uses a uniform stage delay constraint and
optimizes the number of layers needed for the wires subject
to this constraint. The model includes uniform wire sizing,
repeater insertion and repeater sizing and also takes the via
impact into account, as well as a constraint on the total
repeater area. It is shown that the via impact can severely
increase the required routing area, especially when delay
constraints are very tight. The via impact limits the number
of wires that one can accommodate on any arbitrarily large
number of layers.

Our layer assignment method can also handle di�erent de-
lay constraints on di�erent wires, i.e., a 2-D distribution of
wire lengths and required wire performances, possibly based
on what we call \temporal Rent parameters" that capture
scaling properties of both lengths and required delay perfor-
mances of wires in well-optimized placed circuits.

Our layer assignment method provides, apart from an e�ec-
tive algorithmic solution, some interesting conclusions:

1. The maximum wire width used on a certain tier type
does not depend on the delay constraint but only on the
interaction between the layer stack parameters..

2. A monotonic non-uniform layer stack is better than a
uniform one, provided that the \fattest" layers are on top
of \less fat" layers. An optimal layer stack can be found.

3. Non-monotonic layer stacks are worse than monotonic
layer stacks (with \fattest" layers on top) for tight delay
constraints. For a higher delay constraint, a non-monotonic
layer stack with a \non-fat" layer on top might be better.

Our layer assignment model can easily be used to investigate
di�erent layer stack solutions and to search for the optimal
layer stack parameters. Further investigation might reveal
the threshold values for input parameters that allow us to
make such conclusions beforehand and ensure the optimality
of a monotonic layer assignment so as to make the layer
assignment task more \trivial".
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