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1
PRELIMINARIES

1.1 PREFACE

This book discusses problems of \optimal interconnection" and describes e�-
cient algorithms for several basic formulations. Our domain of application is
the computer-aided design (CAD) of very large-scale integrated (VLSI) circuits,
wherein interconnection design is now one of the most actively studied areas.
However, much of what we develop can be applied to other domains ranging
from urban planning to the design of communication networks. Because most
formulations that we study are intractable, the term \optimal" in some sense
is a misnomer: rather, our focus is on the reasoned and principled development
of good heuristics.

This book is an outgrowth of the 1992 Ph.D. dissertation of Gabriel Robins
[203] at the UCLA Computer Science Department. As such, it retains a highly
personal perspective: it gives a retrospective of our own research, and it is col-
ored by our research interests and our background in discrete algorithms and
optimization. Our treatment also attempts to convey a sense of history { how
our �eld has co-evolved with an emerging \science of VLSI design". With recent
years having seen VLSI designs become increasingly performance-dominated,
and thus interconnect-dominated, VLSI interconnections are indeed a rich do-
main for this historical view. In particular, our research on interconnection
design has spanned the �eld's rapid transition from purely geometric formula-
tions to more \physically-motivated" formulations.

Although we do not attempt an encyclopedic treatment, we do describe key
relevant works, and the discussion is largely self-contained. We envision that
this book will be useful as a reference for researchers and CAD algorithm de-

1



2 Chapter 1

velopers, or as reading for a seminar on VLSI CAD, heuristic algorithms, or
geometric optimization. Our own codes, which are cited throughout the book,
are freely available to interested parties; see our contact information below.

1.2 THE DOMAIN OF DISCOURSE: ROUTING IN VLSI

PHYSICAL DESIGN

Let us �rst outline the context for our particular sub�eld of VLSI CAD, namely,
the global routing phase of physical design. For more complete reviews of VLSI
design, and physical design in particular, the reader is referred to [168, 182, 194,
216].

The goal of VLSI CAD is to transform a high-level system description into a
set of mask geometries for fabrication. This is typically accomplished by the
following sequence of stages (see Figure 1.1).

Design Speci�cation: Starting from a real-world requirement (e.g. \se-
cure communication"), a high-level system description (e.g., the \DES"
data encryption standard) is developed which includes such parameters as
architecture, performance, area, power, cost and technology.

Functional Design: The design is transformed into a behavioral speci�-
cation which captures the system I/O behavior using mathematical equa-
tions, timing diagrams, instruction sets and other devices.

Logic Design: The functional design is represented in logical form, typ-
ically via Boolean expressions which may be subsequently optimized to
reduce the complexity of the system description.

Structural Design: The logic design is represented as a circuit using
components from an available library of modules (e.g., NAND and NOR
gates, standard cells, or building-block macros); this may also involve tech-
nology mapping steps.

Physical Design: The structural design is transformed into the mask
geometry for fabrication while adhering to underlying design rules for the
chosen technology.

The last stage in this process, physical design, contains our area of interest.
Physical design consists of two major steps. First, the placement step maps
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c(m) = m   mod np

w
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      Design 

Requirements

Functional Design
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-z = x + y w

Figure 1.1 The VLSI design process.

functional units (modules) onto portions of a layout region, e.g., the surface of
a chip. Second, the routing step interconnects speci�ed sets of terminals, i.e.,
the signal nets of the design, by wiring within routing regions that lie between
or over the functional units. (A signal net consists of a module output terminal
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together with the various module input terminals to which the output signal
must be delivered.)

Within the �eld of physical design, prevailing objectives have evolved over the
years in response to advances in VLSI technology. When system operating
frequencies were dominated by device switching speeds, placement and routing
optimizations centered on reduction of total routing area. Subsequent advances
in fabrication technology have increased packing densities, allowing more and
faster devices to be placed on larger ICs. Leading-edge fabrication technology
now goes well into submicron feature sizes, and circuit speeds are approaching
gigahertz frequencies. The reduced feature size implies more resistive inter-
connects, and increased system complexity implies larger layout regions. Thus,
minimizationof interconnection delay has become the major concern in physical
design.

In light of this trend, performance-driven physical design has seen much re-
search activity within the past �ve years. Early works focused on performance-
driven placement, with the standard objective being the close placement of
modules belonging to timing-critical paths. However, performance-driven place-
ment algorithms will achieve their intended e�ect only when the associated
routing algorithms can realize the full potential of a high-quality placement.
Thus, the emphasis in routing objectives has shifted from area minimization
to delay minimization, and more recently to the control of interconnect delay
(e.g., by limiting skews or delays at particular terminals). This range of routing
objectives { area, delay, skew and beyond { de�nes the scope of this book.

Once an objective has been established, the actual routing of a given signal
net can be decomposed into global and detailed routing. The global routing

phase is a higher-level process during which the routing topologies of signal
nets are de�ned over the available routing regions. Then, the detailed routing

phase produces the actual geometries which realize the required connectivity
on the fabricated chip. Our work applies to the global routing phase of physical
design.1

We assume that during the global routing phase, all module and terminal lo-
cations have already been �xed in the plane, so that we need only ensure

1This traditional taxonomy may seem ambiguous. We do not address standard \detailed

routing" topics such as switchbox routing or river routing. However, optimizing routing

area and performance requires a concern with the speci�c geometry of the routing. In our

discussion, we will de�ne a routing topology by specifying for each edge its length and width,

and the location of its endpoints; our work addresses \global routing" in that the particular

detailed embedding of an edge between its endpoints does not matter.



Preliminaries 5

electrical connectivity of the signal nets. With standard-cell or gate-array de-
sign methodologies, which have many small functional modules, global rout-
ing may be viewed as taking place in Manhattan geometry, i.e., distances be-
tween terminals are given by rectilinear distance. In other words, these design
methodologies possess su�ciently high porosity that the routing problem can
be formulated in the geometric plane. On the other hand, building-block design
methodologies involve larger functional blocks or macro cells. Since these are
often treated as obstacles, the routing problem is formulated with respect to a
weighted routing graph that represents the available routing area. A standard
model is the channel intersection graph (CIG), where each edge represents a
channel(i.e., the empty rectangular space between adjacent modules) and each
vertex corresponds to the intersection of two orthogonal channels [193] (see
Figure 1.2). The edge weights of the CIG can be used to model channel width
or congestion.

Figure 1.2 A channel intersection graph induced by a set of mod-
ules, and a routing tree that connects the highlighted terminals.
The source is shown by a hollow dot.
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A \true" global router processes multiple signal nets simultaneously using such
techniques as simulated annealing, multicommodity ow or mathematical pro-
gramming. However, many existing codes are sequential, or \net-at-a-time", in
that they establish a heuristic ordering of nets for routing and use ripup-and-
retry techniques when the routing fails. (There are also even more �ne-grain
methods which route individual two-terminal subnets of signal nets.) With
either type of global router, the key operation is to compute a good routing
topology over a single signal net: hence, this book deals exclusively with meth-
ods that route a single net at a time.

As with previous routing constructions that have formed the basis of new global
routers (e.g., \Steiner min-max trees"), each method that we develop can be
transparently integrated into existing global routing approaches. In the math-
ematical programming approach, �nding a routing solution for a given net
generates a new entering basis column within a primal-dual iteration. In the
sequential approach, routing solutions are found for the highest-priority nets
�rst, leaving lower-priority nets to encounter more congestion and blockage.
After each net is routed, the routing region costs (e.g., CIG edge weights) can
be updated before the next net is processed.

We conclude this section with a review of basic conventions and terminology
used throughout the book. We de�ne a terminal to be a given location in the
layout region. A signal net S = fs0; s1; s2; : : : ; sng is a set of n + 1 terminals,
with one terminal s0 2 S a designated source and the remaining terminals sinks.
A routing solution is a set of wires that connects, i.e., spans, the terminals of a
net so that a signal generated at the source will be propagated to all the sinks.

The rectilinear wiring technology implies an underlying \Manhattan" geome-
try, where the distance between points a and b is d(a; b) = jax� bxj+ jay� byj,
i.e., the sum of the di�erences in their x- and y-coordinates. A segment is
an uninterrupted horizontal or vertical wire, and any connection between two
terminals will consist of one or more wire segments. VLSI and printed circuit
board technologies admit multiple routing layers, where a preferred-direction
routing methodology is used to facilitate design, manufacturability and reliabil-
ity. In other words, the available wiring layers are partitioned, with horizontal
wire segments preferentially routed on certain layers, and vertical wire seg-
ments routed on the other layers. A connection between two wire segments
from di�erent layers is called a via.

Sometimes it is convenient to embed S in an underlying routing graph G =
(V;E), consisting of a set of vertices V and a set of edges E � V � V . Thus,
the set of terminals is some S � V . A subgraph of G is a graph G0 = (V 0; E0)
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with V 0 � V and E0 � E, and E0 � V 0 � V 0. A routing solution is a subgraph
of G that spans S. A path between two vertices x; y 2 V is a sequence of k
edges of the form (x; vi1); (vi1 ; vi2); : : : ; (vik ; y), where (vim ; vim+1 ) 2 E for all
1 � m � k � 1. A graph is connected if there exists a path between each pair
of vertices. A graph is a tree if it is connected but the removal of any edge
will disconnect it. Since a tree topology uses the fewest edges of any spanning
graph over the signal net, i.e., jSj � 1 = n edges, routing formulations typically
seek a tree topology.

A weighted graph has a non-negative real weight assigned to each of its edges.
The cost of a weighted graph is the sum of its edge weights. A shortest path in
G between two vertices x; y 2 V , denoted by minpathG(x; y), is a minimum-
cost path connecting x and y. In a tree T , minpathT (x; y) is simply the unique
path between x and y. For a weighted graph G we use distG(x; y) to denote
the cost of minpathG(x; y). The distance from the source to a given sink si in
a tree is denoted as li = distT (s0; si).

Because a signal net is inherently oriented from its source to its sinks, we use
the special notation Ri to denote the cost of the shortest s0-si path in G, i.e.,
Ri = distG(s0; si). We use R to denote the maximum Ri value over all sinks
si, and say that R is the radius of the signal net. The radius of a routing tree
T is r(T ) = max

1�i�n
li. Additional terminology will be developed throughout the

following chapters, as needed. The reader is referred to, e.g., [67] or [92] for a
more rigorous development of basic graph-theoretic concepts.

As noted at the outset, most problems encountered in VLSI CAD, including
all of the interconnection formulations that we address, are intractable. While
we resort to heuristic solutions, a basic precept in our work is to prove that our
proposed heuristics perform well. For example, we often strive to show that
the heuristic solution cost in the worst case (or average case) is no more than a
constant factor from optimal. Since the practical relevance of a heuristic may
hinge on issues beyond asymptotic time and space complexity, we also augment
our performance bounds with empirical simulations using standard test cases
from the literature, e.g., those maintained by ACM SIGDA (currently available
by anonymous ftp to <mcnc.org>).
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1.3 OVERVIEW OF THE BOOK

Beyond its sketch of our application domain of VLSI routing, the present chap-
ter also surveys the main results contained in this book. Chapters 2, 3 and 4
are respectively entitled Area, Delay, and Skew. These form the core of the
book, and address three fundamental routing objectives: (i) minimization of
total wirelength, (ii) minimization of signal delay, and (iii) minimization of
skew among signal arrival times. Chapter 5 provides new frameworks for the
simultaneous optimization of multiple competing objectives; one such frame-
work allows various uni�cations of the techniques developed in the preceding
three chapters. The following subsections summarize the key developments of
each chapter.

1.3.1 Minimum Area: The Steiner Minimal Tree Problem

VLSI design rules dictate a minimum separation between wires, and therefore
the area occupied by the routing on a chip is roughly proportional to the total
wirelength of the routing. Added wirelength generally increases signal delay
and power consumption due to increased resistance and capacitance. Other
system cost measures, e.g., those based on fabrication cost, yield and reliability,
also increase with chip area. Thus, a fundamental objective is to minimize the
total wirelength required to connect a prescribed set of points in the plane, i.e.,
the terminals of a given signal net. The subject of Chapter 2 is the Steiner

minimal tree (SMT) problem, which for a given net S asks for a set S0 of Steiner
points such that the total edgelength of the minimum spanning tree (MST)
over S [ S0 is minimized. The main insight is that the points of S0 will serve
as internal nodes of the tree { \intermediate junction points" { which reduce
the interconnection cost. Without introducing such points, the minimum-cost
solution would simply be a minimum spanning tree over S.

The SMT problem is well-studied in combinatorial optimization and network
design; see the monographs [138] and [139]. The geometry of VLSI, which
usually allows only vertical and horizontal wiring directions, has motivated
studies of the rectilinear version of the problem, typically for the wirelength
estimation and global routing phases of layout design. With only a few highly
constrained exceptions, existing variants of the SMT problem are NP-complete.
Most SMT heuristics in the literature have analogies to classic minimum span-
ning tree constructions; this is in part due to the MST being a constant-factor
approximation to the SMT, with performance ratio 3

2 in the rectilinear metric.
However, the �rst result of Chapter 2 de�nes a general class of \MST-based"
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SMT heuristics, and shows that such methods cannot have performance ratio
better than that of the simple MST approximation.

The focus of Chapter 2 lies in developing the Iterated 1-Steiner (I1S) heuris-
tic, which iteratively �nds optimal Steiner points that are added directly into
the set S. The I1S construction thus avoids traditional analogies to minimum
spanning tree solutions, and in practice achieves good performance even on
inputs that are pathological for previous heuristics. For random 8-point planar
instances, I1S solution costs are optimal for 90% of all instances, and average
within 0:25% of optimal overall. (The I1S approach also applies to graph in-
stances and higher-dimensional geometric instances.) The chapter describes a
straightforward, e�cient implementation of I1S, along with such enhancements
as a parallel implementation that achieves near-linear speedup. Similarities
between I1S and the recent method of Zelikovsky are also discussed.

Finally, Chapter 2 develops the result that any pointset in the Manhattan plane
has an MST with maximumdegree 4, and that in three-dimensional Manhattan
space the maximumMST degree is 14 (the best previous bounds were 6 and 26,
respectively); this improves I1S runtimes and is also of independent theoretical
interest. The chapter concludes with a discussion of the Steiner problem in
graphs.

1.3.2 Minimum Delay: Toward Optimal-Delay Routing Trees

Chapter 3 considers minimization of signal delay, which is synonymous with
\performance-driven" system design. As VLSI technology scales to smaller fea-
ture sizes and larger layout areas, signal delays become interconnect-dominated,
i.e., signal delay through interconnects increasingly dominates delay through
devices. In leading-edge technologies, minimum-delay wiring topologies can
di�er substantially from minimum-area (SMT) wiring topologies.

The signal delay objective takes us from the unoriented pointset of the Steiner
minimal tree problem to an oriented collection of terminals in the layout plane.
Such a collection of terminals, which we call a signal net, has one identi�ed
source terminal; the remaining terminals are sinks. Typically, the source ter-
minal is the output of a gate, and the sinks are the fanins for that output signal
at inputs of other gates.

The discussion of Chapter 3 centers on four issues which have guided re-
cent progress in minimum-delay routing heuristics. First, there is the issue
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of technology-dependence in the routing construction, e.g., a simple analysis of
Elmore delay in distributed RC trees shows that routing objectives should be
dependent on parameters of the prevailing interconnect technology. We thus
give a taxonomy of methods based on their tunability to speci�c technology
parameters and signal net criticalities, and demonstrate the advantages of such
tunable methods as the \Elmore routing tree" approach and the Prim-Dijkstra
tradeo�.

Second, the chapter compares \actual delay", versus geometric, routing objec-
tives. To a �rst-order approximation, signal delay from the source to a given
sink is proportional to the source-sink pathlength in the routing tree. This lin-
ear delay approximation suggests minimizing the maximum source-sink path-
length in the routing tree (i.e., a geometric \minimum-radius" criterion). On
the other hand, reducing the total cost of the routing tree will reduce its lumped
capacitance (i.e., a geometric \minimum-cost" criterion). We review how early
works employed geometric criteria to achieve tractability in both the design
and the analysis of routing heuristics. Of particular interest is a \bounded-
radius, bounded-cost" (BRBC) approach which seeks a minimum-cost routing
tree subject to a given bound on tree radius; we describe an algorithm which
simultaneously minimizes both tree cost and tree radius to within constant
factors of optimal. The BRBC approach and its analysis generalize to Steiner
routing and to routing in arbitrary weighted graphs that capture the variation
of routing costs over the layout region. The chapter gives details of recent meth-
ods, notably the \Elmore routing tree" variants which obtain reduced signal
delays by optimizing higher-order delay estimates directly.

Third, we discuss minimization of sink-dependent delay, as opposed to net-

dependent delay. Here, the key observation is that timing-driven placement and
routing are typically iterated with static timing estimation, so that critical-path
information is available during the routing tree construction. With this in mind,
the traditional objective of minimizingmaximum sink delay is \net-dependent"
in that it ignores available path-dependent information. An approach which
optimizes delay to identi�ed critical sinks, such as that given in 1993 by Boese,
Kahng and Robins [34], seems better matched to modern design methodologies.
More recent work of Boese et al. provides an interesting addendum to the
earlier SMT discussion: it generalizes Hanan's theorem to Elmore delay-optimal
Steiner trees and gives a new \peeling" decomposition for optimal Steiner trees.

Finally, Chapter 3 addresses the issue of demonstrable quality for minimum-
delay routing heuristics. Analogous to the empirical studies of the I1S SMT
heuristic in Chapter 2, we present empirical studies showing near-optimality of
a construction for minimumElmore delay at prescribed critical sinks. The chap-
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ter concludes with a review of two other recent advances in performance-driven
interconnect design; these involve wiresizing and non-tree routing techniques.
An Appendix provides the basic theory behind several e�cient delay estimates,
and also discusses measures of accuracy and �delity for the linear, Elmore, and
two-pole delay approximations.

1.3.3 Minimum Skew: The Zero-Skew Clock Routing Problem

In a high-performance VLSI design, circuit speed is limited not only by the
signal propagation within and between circuit elements, but also by the skew

between signal arrival times. The form of skew most often studied is clock

skew, i.e., the di�erence between longest and shortest arrival times of a clock
signal at synchronizing elements of the circuit. Clock skew minimization, and
in particular the \zero-skew clock routing" problem, has become a central issue
in the design of leading-edge systems. However, it should be noted that skew
control for arbitrary signal nets is also of increasing importance, as are related
problems of prescribed-skew or bounded-skew routing.

Chapter 4 discusses clock tree construction to minimize skew and wirelength as
a combination of two processes: topology generation, and geometric embedding

of the topology. We present methods which accomplish each of these processes
using either the linear or Elmore delay model to guide the construction. Our
discussion focuses on so-called \exact zero skew" clock routing constructions.

The �rst part of Chapter 4 uses the linear delay model to motivate a pathlength-
balanced tree problem formulation, which seeks a minimum-cost tree with all
source-sink pathlengths of equal length. We describe a simple approach, based
on iterative geometric matching, for generating a clock tree topology while
simultaneously embedding it in the layout region.

The second part of the chapter describes the Deferred-Merge Embedding (DME)
algorithm, which embeds any prescribed connection topology (i.e., a binary tree
with the clock sinks at the leaves), so as to create a clock tree with zero skew
while minimizing total wirelength. The algorithm runs in linear time, and
always yields exact zero skew trees with respect to a given monotone delay
model such as linear or Elmore delay. The DME method achieves substantial
cost reductions over earlier constructions, and can be combined with previous
methods that concentrate on generation of the clock tree topology.
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Finally, the third part of the chapter uni�es the topology generation and geo-
metric embedding of exact zero-skew clock trees. Under the linear delay model,
the two phases of the DME algorithm (bottom-up identi�cation of loci for \zero-
skew balance points", followed by top-down selection of these balance points
within a minimum-delay zero-skew embedding) can be replaced by a single top-
down phase. Where DME would nominally require a prescribed topology as
input, this top-down construction allows the clock tree topology to be deter-
mined dynamically and exibly while being optimally embedded at the same
time. A natural outgrowth is a DME-like algorithm for single-layer, exact
zero-skew clock routing; such a construction is increasingly sought to minimize
signal attenuation through vias, simplify bu�ering optimizations, and maximize
process-variation independence.

Chapter 4 also describes extensions of these clock routing methods to \min-
max" delay constraints and bounded-skew routing for general signal nets. The
chapter concludes by noting additional issues and problem formulations, includ-
ing optimal bu�ering hierarchies for minimum phase delay, and multiple-level
clock trees for multi-chip module packaging.

1.3.4 Multiple Objectives

The last chapter of the book, Chapter 5, discusses frameworks and techniques
which enable the simultaneous optimization of multiple competing objectives.
Section 5.1 notes that beyond the nominal total wirelength, the grid-based
structure of VLSI routing resources provides additional information for deter-
mining the impact of a given routing solution on layout area. The discussion
explores a new minimum density objective for spanning and Steiner tree con-
structions, which seeks to balance the use of horizontal and vertical routing
resources. We describe two heuristic constructions for low-density spanning
trees whose outputs are within small constants of optimal with respect to both
tree cost and density. (The proof techniques suggest a constructive lower bound
scheme which a�ords tighter estimates of solution quality for a given problem
instance.) Of particular interest is that the minimum density objective can
be transparently combined with, e.g., minimum radius or minimum skew {
without a�ecting asymptotic solution quality with respect to these competing
objectives.

While previous chapters each focus on a fundamental routing criterion (i.e.,
area, delay or skew), many secondary objectives may exist, including con-
gestion avoidance, jog minimization, reliability, etc. Section 5.2 develops a
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general framework of multi-weighted graphs, in which multiple competing ob-
jectives can be simultaneously optimized. This is accomplished by assigning
to each edge a vector of weights, corresponding to the various optimization
criteria; graph searches are then guided by the weighted average of the edge
weights according to designer-speci�ed tradeo� parameters. This framework is
applicable to graph-based routing regimes, such as building-block design and
�eld-programmable gate array layout.

Finally, we describe optimization within the framework of a continuously-

weighted layout region, which can be induced by the simultaneous consideration
of multiple criteria (e.g., reliability, thermal density, and routing congestion).
Within this framework, we consider a problem which has applications ranging
from circuit board routing to vehicle navigation, namely, �nding a minimum-
cost prescribed-width path connecting a given source and destination [131].
Previous path routing approaches such as Dijkstra's algorithm implicitly as-
sume that the path is of zero width, but this assumption is usually not realistic
(e.g., consider routing a wide bus, or traces on a circuit board). Section 5.3
develops a network-ow based approach to prescribed-width routing in a con-
tinuously weighted region. Interestingly, the extension to higher dimensions
can solve a discrete version of Plateau's problem, which seeks a minimum-area
surface that spans a given closed curve [130].
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