Goal: Interval partitioning from Lecture 8; MST cut and cycle properties → Prim, Kruskal greedy algorithms

Euclidean TSP approx (based on MST)
Interval Partitioning

- Interval partitioning.
 - Lecture \(j \) starts at \(s_j \) and finishes at \(f_j \).
 - Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

- This schedule uses 4 classrooms for 10 lectures.
Interval Partitioning

• Interval partitioning.
 – Lecture \(j \) starts at \(s_j \) and finishes at \(f_j \)
 – Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room

• This schedule uses only 3 classrooms for 10 lectures

\[\text{LB} = d \leq p \]

![Diagram showing schedule with 3 classrooms for 10 lectures]
Interval Partitioning: **Lower Bound on Optimal Solution**

- **Definition:** The *depth* of a set of open intervals is the maximum number that contain any given time.

- **Key observation:** Number of classrooms needed ≥ depth.

- **Example below:** Depth of intervals = 3 ⇒ schedule is optimal.

- **Q.** Does there always exist a schedule equal to depth of intervals?
Interval Partitioning: Greedy Algorithm

- Greedy algorithm. Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

```plaintext
Sort intervals by starting time so that \( s_1 \leq s_2 \leq \ldots \leq s_n \).

\[
d \leftarrow 0 \quad \text{number of allocated classrooms}
\]

for \( j = 1 \) to \( n \) {
    if (lecture \( j \) is compatible with some classroom \( k \))
        schedule lecture \( j \) in classroom \( k \)
    else
        allocate a new classroom \( d + 1 \)
        schedule lecture \( j \) in classroom \( d + 1 \)
        \( d \leftarrow d + 1 \)
}
```

no overlap
Interval Partitioning: Greedy Analysis

• Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom.

• Theorem. Greedy algorithm is optimal.

• Proof.
 – Let $d =$ number of classrooms that the greedy algorithm allocates.
 – Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all $d-1$ other classrooms.
 – Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s_j.
 – Thus, we have d lectures overlapping at time $s_j + \varepsilon$.
 – Key observation \implies all schedules use $\geq d$ classrooms.

"If Greed uses d classrooms, then d were needed!" (d is LB)
Trees

• (Page 141 of PDF; Page 129 of hardcopy: Sidebar)
• A tree is connected and acyclic
• A tree on \(n \) nodes has \(n - 1 \) edges
• Any connected, undirected graph with \(|V| - 1 \) edges is a tree
• An undirected graph is a tree if and only if there is a unique path between any pair of nodes

• Fact about trees: Any two of the following properties imply the third:
 – Connected
 – Acyclic
 – \(|V| - 1 \) edges

N.B.: Meta graph was a DAG, not necessarily a tree.
Minimum Spanning Tree

Given a connected graph $G = (V, E)$ with real-valued edge weights, an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimized.

Cayley's Theorem: There are n^{n-2} spanning trees of K_n.

Spanning Tree vs. Steiner Tree

- **EASY**
 - 1
 - \(\frac{1}{2} \sqrt{3} \cdot \frac{2}{3} \cdot \frac{\sqrt{3}}{3} \)
 - "Steiner point"
 - (Easy vs. integer programming)
 - (Easy)

- **HARD**
 - \(1.732 \)
 - 120° and 120°
 - (Hard)
 - 2D vs. 3D Matching
Greedy Algorithms

• Kruskal’s algorithm. Start with $T = \emptyset$. Consider edges in ascending order of cost. Insert edge e in T unless doing so would create a cycle.

• Reverse-Delete algorithm. Start with $T = E$. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.

• Prim’s algorithm. Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T.

Greedy Algorithms

- **Simplifying assumption.** All edge costs c_e are distinct.
- **Cut property.** Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST contains e. \(\Rightarrow \text{Prim} \quad \Rightarrow \text{Kruskål} \)
- **Cycle property.** Let C be any cycle, and let f be the max cost edge belonging to C. Then the MST does not contain f. \(\Rightarrow \text{Kruskål} \)

Cycles and Cuts

- **Cycle.** Set of edges of the form a-b, b-c, c-d, ..., y-z, z-a.

- **Cutset.** A cut is a subset of nodes S. The corresponding cutset D is the subset of edges with exactly one endpoint in S.

Cycle C

$1-2, 2-3, 3-4, 4-5, 5-6, 6-1$

Cut S

$\{4, 5, 8\}$

Cutset D

$\{5-6, 5-7, 3-4, 3-5, 7-8\}$

Illustration

\[O = \text{cut} \]

\[\text{cutset} \]
Intersection of a Cycle and a Cutset

If the cycle leaves the cut via an edge of the cutset, it must re-enter the cut (via a different edge of the cutset).

Fact. A cycle and a cutset intersect in an even number of edges. Why?

- **Picture:**

Cycle $C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1$

Cutset $D = 3-4, 3-5, 5-6, 5-7, 7-8$

Intersection = $3-4, 5-6$

Toward Greedy MST Algs: Cut Property

• Simplifying assumption: All edge costs c_e distinct

• **Cut property.** Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T^* contains e.

Suppose T^* doesn’t contain e.

• Add e to T^*
 ⇒ get a cycle C
 (e is in C)
 • e is in the cutset of S

 • Replacing f by e
 ⇒ lower-cost spanning tree!
Toward Greedy MST Algs: Cut Property

- **Cut property.** Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T^* contains e.

- **Proof.** *(EXCHANGE ARGUMENT)*
 - Assume toward a contradiction that e does not belong to T^*
 - Adding e to T^* creates a cycle C in T^*
 - Edge e is both in the cycle C and in the cutset D corresponding to S ⇒ there exists another edge, say f, that is in both C and D
 - $T' = T^* \cup \{ e \} - \{ f \}$ is also a spanning tree
 - Since $c_e < c_f$, cost(T') < cost(T^*)
 - This contradicts the assumption ⇒ e must be in T^*

Toward Greedy MST Algs: Cycle Property

- Simplifying assumption: all edge costs c_e distinct
- **Cycle property.** Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T^* does not contain f.

Toward Greedy MST Algs: Cycle Property

- Simplifying assumption: all edge costs c_e distinct
- **Cycle property.** Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T^* does not contain f.

Toward Greedy MST Algs: Cycle Property

• **Cycle property.** Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T* does not contain f.

• **Proof.** *(EXCHANGE ARGUMENT)*
 – Assume toward a contradiction that f belongs to T*.
 ⇒ Deleting f from T* creates a cut S in T*
 – Edge f is both in the cycle C and in the cutset D corresponding to S
 ⇒ there exists another edge, say e, that is in both C and D
 – T' = T* ∪ \{ e \} - \{ f \} is also a spanning tree
 – Since c_e < c_f, cost(T') < cost(T*)
 – This contradicts the assumption ⇒ f must not be in T*

Prim’s Algorithm and Correctness

- Prim's algorithm [Jarník 1930, Dijkstra 1957, Prim 1959]
 - Initialize $S = \text{any node}$
 - Apply cut property to S
 - Add min cost edge in cutset corresponding to S to T, and add one new explored node u to S
Implementation of Prim’s Algorithm

- Implementation: use a priority queue (as in Dijkstra)
 - Maintain set of explored nodes S // ~ set “R” in Dijkstra
 - For each unexplored node v, maintain attachment cost $a[v] = \text{cost of cheapest edge } v \text{ to a node in } S$ // ~ temporary label in Dijkstra
 - Complexity: $O(E \log V)$ with a binary heap

```java
Prim(G, c) {
    foreach (v ∈ V) a[v] ← ∞
    Initialize an empty priority queue Q
    foreach (v ∈ V) insert v onto Q
    Initialize set of explored nodes $S ← \emptyset$

    while (Q is not empty) {
        u ← delete min element from Q
        S ← S ∪ { u }
        foreach (edge e = (u, v) incident to u)
            if ((v ∉ S) and (c_e < a[v]))
                decrease priority a[v] to c_e
    }
}
```

Kruskal’s Algorithm and Correctness

- Kruskal’s algorithm. [Boruvka, 1926; Kruskal, 1956]
 - Consider edges in ascending (i.e., sorted) order of weight
 - Case 1: If adding e to T creates a cycle, discard e according to cycle property
 - Case 2: Otherwise, insert $e = (u, v)$ into T according to cut property where $S =$ set of nodes in u’s connected component

Example: Kruskal’s Algorithm
The Union-Find Problem

• Need a fast way to test if adding e_i to T creates a cycle
• At i^{th} iteration, T is a set of trees
 – Initially, each tree contains one node
 – Adding e_i is okay unless u and v are in the same tree

• “Disjoint set UNION-FIND” data structure to support:
 – Make-Set(u): creates a set containing u (for initialization)
 – Find-Set(u): Return representative element of set that contains u
 – Union(u, v): Merge the sets containing u and v (and choose new representative)

• Vertices of the graph = elements to be stored in the sets

Source: slides from Prof. L. Carter, UCSD 2002
Algorithms for Union-Find

• Approach #1: Define array A with $A[u] = \text{representative of } u$
 - Find-Set(u): return $A[u] \rightarrow O(1) \text{ time}$
 - Union(u,v): Let $x = A[u], y = A[v]$; change all x’s to y’s in $A \rightarrow \Omega(|V|) \text{ time}$

Source: slides from Prof. L. Carter, UCSD 2002
Algorithms for Union-Find

• Approach #1: Define array A with A[u] = representative of u
 – Find-Set(u): return A[u] \(\rightarrow O(1) \) time
 – Union(u,v): Let x = A[u], y = A[v]; change all x’s to y’s in A
 \(\rightarrow \Omega(|V|) \) time

• Approach #2: Also keep a list of members for each set
 – Find-Set(u): return A[u] \(\rightarrow O(1) \) time
 – Union(u,v): For each member z of u’s list, add it to v’s list, set A[z] = y
 – Worst case: ???
 – Key idea: Move elements of smaller list to larger
 – No element moves more than \(\lg |V| \) times \(\quad \) // remember, \(\lg = \log base 2 \)
 – Even if Union can take \(O(|V|) \) time, doing \(|V| \) unions takes \(O(|V| \lg |V|) \) time \(\leftrightarrow \) “amortized analysis”

• Kruskal: \(\Theta(|E| \ lg |E|) \) time to sort edges;
 \(|E| \) Find-Set tests;
 \(|V| \) “\(T \cup \{e\} \)” (Union) operations \(\rightarrow \Theta(|E| \ lg |V|) \)
 \(\quad \) // Why is \((E \ lg E) \) the same as \((E \ lg V) \) ???

Source: slides from Prof. L. Carter, UCSD 2002
Implementation of Kruskal's Algorithm

- Use the **union-find** data structure
 - Build set T of edges in the MST
 - Maintain set for each connected component

```java
Kruskal(G, c) {
    Sort edges weights so that \( c_1 \leq c_2 \leq \ldots \leq c_m \).
    T \leftarrow \emptyset

    foreach (u \in V) make a set containing singleton u

    for i = 1 to m
        (u,v) = e_i
        if (u and v are in different sets) {
            T \leftarrow T \cup \{e_i\}
            merge the sets containing u and v
        }
    return T
}
```

EXTRA MATERIAL: DFS in MST

== A Heuristic for the Geometric Traveling Salesperson Problem
Euclidean TSP

- **Euclidean Traveling Salesman Problem**: Let \(C_1, C_2, \ldots, C_n \) be a set of points in the plane. Find a *tour* (= cycle) over all \(n \) points with minimum total edge cost.

- **Fact**: \(\text{cost(MST)} < \text{cost(Tour}_{\text{opt}}) \)
- (1) MST is the minimum-cost graph that connects all vertices, and has only \(n-1 \) edges
- (2) Any TSP tour must also connect all vertices, and will have \(n \) edges
 - *Note*: a tour = a spanning tree (not necessarily a minimum spanning tree) plus another edge
Approximation Algorithm : Euclidean TSP

– Idea: Consider the tour that consists of a DFS traversal of an MST (starting from any city).
– If the tour is about to revisit a city, then skip that city (== “shortcut to the next city”)

– Key observation: If the \textit{triangle inequality} holds, the shortcuts can only reduce the tour cost!
Approximation Algorithm: Euclidean TSP

DSF traversal of MST

Taking shortcut from DSF tour. (e.g. replacing a-b-c-b-a-d, by a-b-c-d)

\[\text{Tour}_{\text{Heur}} \leq 2 \times \text{MST} \leq 2 \times \text{Tour}_{\text{opt}} \]
Concept of “Approximation” Algorithm

- **Approximation algorithm**: An algorithm that returns *near-optimal* solutions (i.e. is "provably good") is called an *approximation algorithm*.

- **Performance Ratio**: An approximation algorithm for a problem has a *performance ratio* of \(\rho(n) \) if for any instance \(I \) of size \(n \), the cost \(C \) of the solution produced by the approximation algorithm is within a factor of \(\rho(n) \) of the cost \(C^* \) of an optimal solution:

\[
\max_{|I|=n}(C/C^*) \leq \rho(n)
\]