
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUIT AND SYSTEMS, VOL. 22, NO. 7, JULY 2003 937

Short Papers___

On the Skew-Bounded Minimum-Buffer
Routing Tree Problem

Christoph Albrecht, Andrew B. Kahng, Bao Liu, Ion I. Măndoiu, and
Alexander Z. Zelikovsky

Abstract—Bounding the load capacitance at gate outputs is a standard
element in today’s electrical correctness methodologies for high-speed dig-
ital very large scale integration design. Bounds on load caps improve cou-
pling-noise immunity, reduce degradation of signal transition edges, and
reduce delay uncertainty due to coupling noise (Kahnget al. 1998). For
clock and test distribution, an additional design requirement is bounding
thebuffer skew, i.e., the difference between the maximum and the minimum
number of buffers over all of the source-to-sink paths in the routing tree,
since buffer skew is one of the main factors affecting delay skew (Tellez
and Sarrafzadeh 1997). In this paper, we consider algorithms for buffering
a given tree with the minimum number of buffers under given load cap and
buffer skew constraints. We show that the greedy algorithm proposed by
Tellez and Sarrafzadeh is suboptimal for nonzero buffer-skew bounds and
give examples showing that no bottom-up greedy algorithm can achieve
optimality. The main contribution of the paper is an optimal dynamic pro-
gramming algorithm for the problem. Experiments on test cases extracted
from recent industrial designs show that the dynamic programming algo-
rithm has practical running time and saves up to 37.5% of the buffers in-
serted by Tellez and Sarrafzadeh’s algorithm.

Index Terms—Algorithms, buffer insertion, buffer skew, dynamic pro-
gramming, interconnect design.

NOMENCLATURE

n number of sinks, i.e.,n = jSj;
Cw capacitance of a wire of unit length, which is assumed to be

the same for all wires;
Cb buffer input capacitance, assumed to be the same for all

buffers;1

Manuscript received September 17, 2001; revised April 13, 2002 and
September 27, 2002. This work was supported in part by Cadence Design
Systems, Inc., in part by the Microelectronics Advanced Research Corporation
(MARCO) Gigascale Silicon Research Center, in part by National Science
Foundation Grant CCR-9988331, in part by Moldovan Research and Develop-
ment Association (MRDA) Award MM2-3018, and in part by the U.S. Civilian
Research and Development Foundation for the Independent States of the
Former Soviet Union (CRDF), and the State of Georgia’s Yamacraw Initiative.
This paper was recommended by Associate Editor T. Yoshimura.

C. Albrecht was with the Research Institute for Discrete Mathematics, Uni-
versity of Bonn, 53113 Bonn, Germany. He is now with Synopsys, Inc., Moun-
tain View, CA 94043 USA (e-mail: Christoph.Albrecht@synopsys.com).

A. B. Kahng is with the Department of Computer Science and Engineering
and the Department of Electrical and Computer Engineering, University of Cali-
fornia at San Diego, La Jolla, CA 92093-0114 USA (e-mail: abk@cs.ucsd.edu).

B. Liu was the University of California at San Diego, La Jolla, CA
92093-0114 USA. He is now with Incentia Design Systems, Inc., Santa Clara,
CA 95054 USA. (e-mail: bobliu@incentia.com).

I. I. Măndoiu is with the Department of Electrical and Computer Engineering,
University of California at San Diego, La Jolla, CA 92093-0114 USA (e-mail:
mandoiu@cs.ucsd.edu).

A. Z. Zelikovsky is with the Computer Science Department, Georgia State
University, Atlanta, GA 30303 USA (e-mail: alexz@cs.gsu.edu).

Digital Object Identifier 10.1109/TCAD.2003.814238

1We assume that a single type of buffer is used. Using a single buffer type is
a widely accepted design strategy since it reduces process-variation sensitivity
and facilitates technology migration.

CU given upper-bound on the capacitive load of each buffer and
of the source driver;

cv input capacitance of sink or bufferv;
le length of wire segmente;
ce capacitance of wire segmente, i.e.,ce = Cwle;
Tv subtree ofT rooted atv;
c(Tv) lumped capacitance ofTv , i.e., c(Tv) = �e2T ce +

�
v2leaves(T)

cv ;
l(Tv) maximum number of buffers on a path fromv to a sinks 2

Tv (called longest path in the following);
s(Tv) minimum number of buffers on a path fromv to a sinks 2 Tv

(called shortest path in the following);
�(Tv) l(Tv) � s(Tv) (buffer skew ofTv).

I. INTRODUCTION

For high-speed digital very large scale integration design, bounding
the load capacitance at gate outputs is a standard element in today’s
electrical correctnessmethodologies. Bounds on load caps improve
coupling-noise immunity, reduce degradation of signal transition
edges, and reduce delay uncertainty due to coupling noise [6].2

According to [9], commercial electronic design automation method-
ologies and tools for signal integrity rely heavily on upper-bounding
the capacitive loads on driver and buffer outputs (to prevent very long
slew times on signal transitions). Essentially, the load capacitance
bounds serve asproxiesfor bounds on input rise/fall times at buffers
and sinks (Tellez and Sarrafzadeh [10] formally proves this equiva-
lence using a simple linear model). We assume that such capacitive
load bounds are inherent to any buffered routing-tree design task. It is
natural to propose aminimum-bufferformulation, so as to minimize
changes made to the routing tree in meeting the load bounds.

Buffering to control slew times is also critical toearly timing anal-
ysis. With lookup-table-based modeling of gate delays and output tran-
sition times, very long input slews tend to be propagated inaccurately,
resulting in extremely slow transitions. Static timing analyses that are
based on the associated delay calculations will be utterly compromised
and useless for driving performance optimizations. Thus, early timing
analysis must start with a buffering solution that bounds the capacitive
loads of all buffers and the source driver. Again, aminimum-bufferob-
jective is appropriate.

Finally, we observe that buffering of some large routing trees (e.g.,
for clock and test distribution) is further constrained with respect to
thebuffer skew, i.e., the difference between the maximum and the min-
imum number of buffers over all source-to-sink paths in the routing tree
[10]. This is because buffer skew reflects the actual buffered clock-tree
skew after routing. To accurately estimate tradeoffs between alternative
clock-tree topologies in the early stages of clock distribution design,
the key problem is to bound the number of buffers needed by a given
tree to satisfy given constraints on bothslew rate(input rise/fall times)
andbuffer skew. Good bounds (or good constructions that minimize the
number of buffers, while controlling the buffer skew) will enable ac-
curate estimation and tradeoff of such system resources as power and
area.

2Such bounds also improve reliability with respect to hot-carrier oxide break-
down (hot electrons) [4], [5],AC self-heating in interconnects [8], and facilitate
technology migration, since designs are more balanced.

0278-0070/03$17.00 © 2003 IEEE

938 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUIT AND SYSTEMS, VOL. 22, NO. 7, JULY 2003

From the above context and assumptions, we obtain the following
problem formulation.

Bounded Skew Buffering Problem (BSBP): Given a netN ,
per-unit length wire capacitance, sink and buffer input capaci-
tances, capacitive load bounds for buffers and for the tree source,
and an upper bound� on buffer skew, find a buffering ofN that
satisfies all bounds while using the minimum number of buffers.

The BSBP was first formulated by Tellez and Sarrafzadeh [10], who
suggested a greedy algorithm with runtimeO(n + k), wheren is the
number of sinks in the netN andk is the number of inserted buffers.
In this paper, we make the following contributions.

• We give examples showing the suboptimality of the Tellez-Sar-
rafzadeh algorithm for BSBP with nonzero buffer-skew bounds,
and further, prove that no bottom-up greedy algorithm can
achieve optimality (Section III).

• We give a nontrivial dynamic programming algorithm which
guarantees optimum solutions for BSBP inO(n(� + 1)3NB2)
time, wheren, �, andNB are the number of sinks, the given
skew bound, and an upper-bound on the optimum number of
inserted buffers, respectively (Section IV).

• We present experimental results on test cases extracted from re-
cent industrial designs, showing that the dynamic programming
algorithm has practical running time and inserts up to 37.5%
fewer buffers compared to the algorithm in [10] (Section V).

II. NOTATIONS AND PROBLEM FORMULATION

We start with a few definitions and notations. LetN be anet con-
sisting of asourcer and a set ofsinksS.

• A routing treefor the netN is a binary3 treeT = (r; V; E) rooted
at r such that each sink ofS is a leaf inT .

• A buffered routing treefor the netN is a treeT 0 = (r; V; E;B)
such thatT = (r; V; E) is a routing tree forN andB is a set of
buffers located on the edges4 of T .

• For anyb 2 B [frg, thesubtree driven byb, Db, also referred
to as thestageof b [10], is the maximal subtree ofT which is
rooted atb and has no internal buffers. A buffered routing tree
T = (r; V; E;B) hasjBj + 1 stages including asource stage
driven by the source.

A. Load Constraints

As noted in [10], bounded slew rate can be ensured by
upper-bounding the lumped capacitive load of each buffer and
of the source driver. Thelumped capacitive loadof b 2 B [frg is
given by

c(Db) =
e2D

ce +
v2leaves(D)

cv : (1)

Thus, to ensure bounded slew rate we require that

c(Db) � CU for everyb 2 B [frg: (2)

B. Buffer-Skew Constraints

Tellez and Sarrafzadeh [10] also note that the buffer skew is a
significant factor affecting delay skew. Other sources of delay skew,
such as propagation delays, have been well studied (heuristics and

3In this paper, we restrict ourselves to binary routing trees Every routing tree
can be made binary by duplicating nodes and inserting zero-length edges.

4We assume that buffers have a single input and a single output, and thus, are
inserted only on the edges ofT .

approximation algorithms for constructingunbufferedtrees with zero
or bounded-skew can be found, e.g., in [3] and [12]). To guarantee
bounded delay skew after buffering, we need to ensure that the
difference in the number of buffers of the longest and shortest paths
from the rootr to the sinks is at most a given buffer skew bound�,
i.e.,

�(T) = l(T)� s(T) � �: (3)

A buffering satisfying both the load constraint (2) and the buffer
skew constraint (3) will be calledfeasible. In this paper, we consider
the problem of finding a feasible buffering with minimum number of
buffers, formally defined as follows.

C. BSBP

Given: 1) NetN with sourcer and set of sinksS; 2) binary routing
treeT = (r; V; E) for N ; 3) sink input capacitancescs, s 2 S; 4)
buffer input capacitanceCb; 5) unit-length wire capacitanceCw ; 6)
load upper-boundCU ; and 7) buffer-skew bound�.

Find: BufferingT 0 = (r; V; E;B) of T such that

a) c(Db) � CU for everyb 2 B [frg;
b) �(T 0) � �;
c) the total number of inserted buffersjBj is minimum subject to a)

and b).
For every v 2 V , the branch of v, denoted br(v), is

Tv [(v; parent(v)), (where parent(r) = r). If X is a buffering
of a subtree containing nodev, we denote byXv the bufferingX
restricted to the branchbr(v).

For each bufferingX of a branchbr(v), we denote bynb(X), l(X),
s(X), andcap(X) the total number of buffers, the number of buffers
on the longest path, the number of buffers on the shortest path, and
the residual capacitance (i.e., the capacitance of the stage driven by
parent(v)), respectively. LetX andY be two bufferings of the same
branchB. We say thatY dominatesX if nb(Y) � nb(X), l(Y) �
l(X), s(Y) � s(X), andcap(Y) � cap(X). Note that a bufferingX
of B can be replaced by a bufferingY that dominates it in any context
(i.e., in any buffering of the entire routing tree) without increasing the
number of buffers or creating load/skew violations.

III. W HY GREEDY DOESNOT WORK

The BSBP has been previously studied by Tellez and Sarrafzadeh
[10]. In [10], a greedy algorithm is first presented for minimum
buffering without buffer-skew constraints, and then the algorithm
is modified to handle such constraints. Below, we describe the two
algorithms for the case of binary trees; the description in [10] is given
for arbitrary trees.

When there are no constraints on buffer skew, the algorithm in [10]
starts with an empty bufferingX = ;, and then performs the following
two steps for each nodeu, in bottom-up order.

1) packNode(u): While cap(Xv) + cap(Xw) > CU (wherev
andw are the two children ofu), add a buffer at the topmost
position of the child branch with the largest residual capacitance
(the greedy choice).

2) packEdge(u): While cap(Xu) > CU , add a buffer on the edge
(u; parent(u)), at the highest possible position still meeting the
load cap boundCU .

With buffer skew constraints,packEdgeremains the same, while the
modifiedpackNode-BS(u) consists of the following four steps.

1) BalanceTu as follows. Ifl(Xv) < l(Xw), then swapv andw.
If l(Xv)�s(Xw) > �, then insertl(Xv)�s(Xw)�� buffers
at the topmost position ofbr(w). Exit if cap(Xu) � CU .

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUIT AND SYSTEMS, VOL. 22, NO. 7, JULY 2003 939

(a) (b)

Fig. 1. Counterexample for the greedy BSBP algorithm in [10]. (a) Defined.
(b) Defined.

2) PerformpackNode(u) excluding the child branches with max-
imum longest path, i.e., ifl(Xw) < l(Xv), then add a buffer at
the topmost position inbr(w). Exit if cap(Xu) � CU .

3) Insert buffers at the topmost position of all child branches with
shortest path equal tol(u)�� (in order to maintain buffer skew
at most� when we insert buffers on the longest paths in the next
step). Exit ifcap(Xu) � CU .

4) PerformpackNode(u) considering only child branches with
maximum longest path, i.e., longest path equal tos(u)+�� 1.

The modified greedy algorithm finds the optimum solution of any
given tree when the skew bound� is zero. However, contrary to the
claim made in [10], the modified greedy algorithm may give subop-
timal solutions for� � 1. There are several reasons for its subopti-
mality. One reason is that child branches with maximum longest path
are considered for bufferingafter considering the other branches, re-
gardless of their residual capacitance. This may cause the algorithm to
return a suboptimal solution, e.g., when the skew bound� is so large
that the buffer-skew constraint never becomes tight (in this case the op-
timum is found by always choosing the branch with the largest residual
capacitance inpackNode).

Fig. 1 shows a small instance for which the Tellez–Sarrafzadeh al-
gorithm fails to find the optimal buffering. In this instance, we have
� = 1, Cw = Cb = 0, and sink input capacitances are given by
cu = CU andcx = cv = (3=4)CU . Fig. 1(a) shows the suboptimal
solution computed by the greedy algorithm, while Fig. 1(b) shows one
of the optimal solutions. This instance points to a more basic reason
for the suboptimality of the modified greedy algorithm: the optimum
buffering of a given tree may be suboptimal when restricted to subtrees.

A natural question prompted by the example in Fig. 1 is whether or
not there exists a bottom-up algorithm that computes afixednumber of
solutions for each branch and still guarantees global optimality. Below,
we give two series of examples showing that the answer to this question
is negative.

Claim 1: To guarantee optimality, every bottom-up buffering algo-
rithm may need to compute branch bufferings withm;m+1; . . . ;m+
k buffers, respectively, wherem is the minimum number of buffers for
the branch, andk is arbitrarily large.

Claim 1 follows from the example in Fig. 2, in which� = 1 and
Cw = Cb = 0. Each pair of sibling leaves contains a “u” leaf and a
“v” leaf, with cu = CU andCU=(2

d�2+1) < cv < CU=2
d�2, where

d is the depth ofTa.
The minimum number of buffers for each of the two branches into

a is 2d�2, since buffers are only required by the “u” leaves. If we
start with a minimum number of buffers for both branches intoa, we
will have to insert a buffer right belowa on one of them in order to
meet the load constraints. This, in turn, triggers the insertion of a very
large number of buffers upstream due to the skew constraint. The op-
timum overall solution is to insert buffers right above2d�2 of the “v”

leaves. This leads to buffering one of the branches intoa with at least
(3=2)2d�2 buffers.

Claim 2: To guarantee optimality, every bottom-up buffering algo-
rithm may need to compute branch bufferings with a longest path equal
to l; l+1; . . . ; l+��1, respectively, wherel is the minimum longest
path.

Claim 2 follows from the example in Fig. 3, in which there aren =
� “u” leaves, each with input capacitancecu = CU � 2", and one
additional “v” leaf, with input capacitancecv = 0. We further assume
thatCb = 0 and that the capacitance of every wire segment in the figure
is equal to". Then bufferings shown in Fig. 3 have residual capacitance
equal to0; "; . . . ; (n � 1)", and a longest path length equal ton; n �
1; . . . ; 1, respectively. None of these solutions can be dropped from
consideration by an optimum algorithm since each of then different
tradeoffs between the longest path length and residual capacitance may
be needed upstream.

Indeed, letBk be thekth buffering (counting from the top) in Fig. 3.
Bk has residual capacitance equal to(k � 1)" and the length of the
longest path equal ton�k+1. Suppose the upstream topology consists
of an edge with total capacitancek(CU�"), connectinga to the source
s, and an edge with total capacitance" connecting tos a sinkb with
input capacitancecb = 0. If Bk is used to buffer the subtree rooted
at a, then a feasible buffering is obtained by insertingk � 1 buffers
betweens anda. On the other hand, the following applies.

• If the subtree rooted ata is buffered usingBi, i > k, we will
need one additional buffer in order to compensate for the larger
residual capacitance ofBi.

• If the subtree rooted ata is buffered usingBi, i < k, we still need
all k� 1 buffers betweens anda to satisfy load-cap constraints.
This gives a longest path of(n� i+1)+(k�1) > n, and thus,
k � i more buffers should be inserted on the edge (s, b) in order
to satisfy the buffer-skew constraint.

Thus,Bk is the only buffering from the list in Fig. 3 which can be
extended to an optimum buffering under the above upstream topology.

IV. DYNAMIC PROGRAMMING ALGORITHM

In this section, we use dynamic programming to solve the bounded
skew-buffering problem. The dynamic programming technique has
been applied in the past to timing-driven buffer insertion (see e.g., [1],
[7], and [11]). Its application to BSBP presents nontrivial challenges
due to the specific buffer-skew constraint. In this section, we first give
an exponential time-dynamic programming, then refine it to achieve
polynomial time.

A. Exponential Time-Dynamic Programming

The basic observation enabling dynamic programming is that it suf-
fices to considernormalizedbufferings, i.e., bufferings in which no
buffer can be moved higher (closer to the source) on the tree edge
to which it belongs. LetNB be the number of buffers inserted in the
input tree by the algorithm of Tellez and Sarrafzadeh [10] with the
skew-bound set to zero. Clearly,NB is an upper-bound on the number
of buffers in any optimal buffering with buffer skew� > 0. Thus,
we can always guarantee an optimum buffering if we choose the best
among the normalized bufferings with up toNB buffers. The exponen-
tial time-dynamic programming algorithm, referred to as DP1, com-
putes for each branchbr(u), in bottom-up order, the setL(u) of all
normalized bufferings with up toNB buffers.

For a sink u, L(u) consists of the normalized bufferingZ
of br(u) = (u;parent(u)) with minimum feasible number of
buffersk, plus all bufferings obtained fromZ by adding just below
parent(u) between 1 andNB � k buffers, respectively. For a node

940 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUIT AND SYSTEMS, VOL. 22, NO. 7, JULY 2003

Fig. 2. Proof of Claim 1.

Fig. 3. Proof of Claim 2.

u with children v andw, each buffering ofL(u) is the union of a
bufferingX 2 L(v), a bufferingY 2 L(w), and a buffering of the
edge (u; parent(u)). Each pair of bufferings (X , Y) is combined
with the buffering of (u; parent(u)) with a minimum feasible
number of buffersk, as well as all bufferings having between 1 and
NB�k�nb(X)�nb(Y) extra buffers inserted just belowparent(u).
A pair of bufferings (X , Y) is dropped from consideration if

a) cap(X) + cap(Y) > CU (load cap violation);
b) nb(X) + nb(Y) + k > NB (too many buffers); or
c) maxfl(X)�s(Y); l(Y)�s(X)g > � (skew bound violation).

It is easy to prove by induction thatL(u) contains all normalized
bufferings of br(u) with up to NB buffers. Thus, by returning a
buffering with a minimum number of buffers fromL(r), DP1 guaran-
tees optimality. The main drawback of DP1 is that, in the worst case,
the size ofL(u)’s, and hence, the runtime, grows exponentially.5

5An upper-bound on the size ofL(u) is � k = O(k), wherek de-
notes the number of edges inbr(u).

B. Polynomial Time-Dynamic Programming

In this section, we describe a polynomial time refinement of DP1,
referred to as DP2. In contrast to DP1, DP2 (see Fig. 4) does not add
to L(u) bufferings ofbr(u) with more than one buffer right below
parent(u). More precisely, for each branchbr(u), DP2 adds toL(u)
only nonredundantbufferings, where a bufferingY of br(u) is said
to be redundantif there exists a normalized bufferingX such that
cap(X) � cap(Y), nb(X) = nb(Y) � k, l(X) = l(Y) � k and
s(X) = s(Y) � k, wherek � 1.

For a sink u, L(u) consists of all nonredundant bufferings of
br(u) = (u; parent(u)). There are at most two such nonredundant
bufferings: the bufferingZ of (u;parent(u)) with a minimum
feasible number of buffers, and, ifcap(Z) > Cb, the bufferingZ 0

obtained fromZ by adding one buffer just below parent(u). Note
that the bufferingZ 0 is redundant whencap(Z) � Cb, since then
cap(Z) � cap(Z 0) = Cb, nb(Z) = nb(Z 0)� 1, l(Z) = l(Z 0)� 1,
ands(Z) = s(Z 0) � 1.

For a nodeu with childrenv andw, let X andY be bufferings in
L(v), respectively,L(w). Since redundant bufferings are not explicitly
kept as in DP1, DP2 may insert extra buffers at the top of eitherbr(u)
or br(w) when combiningX andY . Just as DP1, DP2 drops the pair
(X , Y) from consideration whencap(X) + cap(Y) > CU or when
combining the pair (X , Y) with the minimum feasible buffering of the
edge(u; parent(u)) results in more thanNB buffers. If the skew bound
for X [Y is violated, instead of dropping the pair (X , Y), DP2 fixes
the skew by inserting enough buffers at the top of the branch with the
fewest buffers on the shortest path. For example, whenl(X)�s(Y) >
� [see Fig. 5(a)], DP2 insertsl(X)� s(Y)�� buffers at the top of
br(w) [see Fig. 5(b)]. Furthermore, DP2 generates more bufferings by
inserting extra buffers at the top of the branch with fewest buffers on
the shortest path while neither the interval[s(X); l(X)] nor the interval
[s(Y); l(Y)] is fully inside the other.6 For example, for a pair (X , Y)
as in Fig. 5(b), extra buffers are inserted one by one at the top ofbr(w)
until either the shortest or longest paths onbr(v) andbr(w) become
equal [see Fig. 5(c)]. Each of these pairs of augmented bufferings of
br(v)andbr(w) is completed to (at most) two nonredundant bufferings
of br(u) by inserting on the edge(u; parent(u)), the minimum feasible
number of buffers, and (possibly) one extra buffer just below parent(u).

6The bufferings created in this way may be useful since they have smaller
skew thanX [Y . On the other hand, the bufferings obtained by continuing to
insert buffers after one of the intervals[s(X); l(X)] and[s(Y); l(Y)] encloses
the other are dominated by bufferings with these buffers inserted at the top of
(u;parent(u)).

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUIT AND SYSTEMS, VOL. 22, NO. 7, JULY 2003 941

Fig. 4. DP2 algorithm for BSBP.

(a) (b) (c)

Fig. 5. (a) Pair (X , Y) of bufferings for which the skew is greater than�, i.e., l(X) � s(Y) > �.(b) The skew is fixed by addingt = l(X) � s(Y) ��
buffers at the top ofbr(w), after this additionl(X)� s(Y) = �. (c) More useful skews are generated by adding buffers at the top ofbr(w). We stop when either
shortest or longest paths onbr(v) andbr(w) become equal (with the former case represented here).

Finally, DP2 refines the setL(u) by removing all of the dominated
[Step 3(b)] and redundant bufferings [Step 3(c)].7

Correctness of DP2 follows from the following.
Theorem 1: For each bufferingZ of br(u), there exists buffering

Z 0 2 L(u) andk � 0 such thatZ is dominated byZ 0 with k buffers
added at the top.

Proof: The proof is by induction on the depth ofu. The claim is
trivially true whenu is a sink, i.e., a leaf ofT . Assume that the lemma

7This refinement is required since dominated or redundant solutions may be
added toL(u) by combining different pairs (X , Y).

holds for the two childrenv andw of u. LetX andY be the restrictions
of Z to br(v) andbr(w). By induction, there existX 0 2 L(v), Y 0 2

L(w), andi, j � 0, such thatX andY are dominated byX 0 and
Y 0 with i (respectively,j) buffers added at the top of the respective
branches. Additionally, we can assume thati andj are the minimum
numbers of redundant buffers with the above property.

Let Z 0 be the buffering ofbr(u) obtained fromZ by replacingX
andY by X 0 (respectively,Y 0) with i (respectively,j) buffers added
at the top ofbr(v) [respectively,br(w)]. Clearly,Z 0 dominatesZ. To
complete the proof, we need to show thatZ 0 is added by DP2 toL(u).

942 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUIT AND SYSTEMS, VOL. 22, NO. 7, JULY 2003

(a) (b)

Fig. 6. (a) Redundant buffers on the top of both branchesbr(v) andbr(w). (b) Buffering with redundant buffers moved up to the top ofbr(u).

(a) (b)

Fig. 7. (a) Pair of bufferings for whichs(X) < s(Y) + j. (b) After removing excessive redundant buffers we gets(X) � s(Y) + j.

(a) (b)

Fig. 8. (a) Pair of bufferings for whichs(X) � s(Y) + j, but l(X) < l(Y) + j. (b) Buffering obtained after excessive redundant buffers are moved up
from br(w) to the top ofbr(u).

It is easy to see that this is true wheni = j = 0. If both i andj are
positive, then we can replaceZ 0 with the buffering obtained by deleting
minfi; jg redundant buffers from the top of each of the branchesbr(v)
andbr(w), and insertingminfi; jg redundant buffer at the top ofbr(u)
(see Fig. 6). Without loss of generality, in the following, we assume that
i = 0 andj > 0.

If s(X 0) < s(Y 0) + j, thenZ 0 can be replaced by the buffering
Z 00 obtained by removingk = minfj; s(Y 0)+ j� s(X 0)g redundant
buffers from the top ofbr(w), which dominatesZ. Indeed,nb(Z 00) =
nb(Z)� k, l(Z 00) � l(Z), andcap(Z 00) = cap(Z) (because the re-
moved buffers are redundant). Finally,s(Z 00) = s(Z), sinces(X 0) <
s(Y 0) + j (see Fig. 7). Ifk = j, thenZ 00 is added by DP2 toL(u)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUIT AND SYSTEMS, VOL. 22, NO. 7, JULY 2003 943

TABLE I
NUMBER OF BUFFERS(BOLDFACE) AND RUNTIME (IN SECONDS) FOR DP2 AND THE GREEDY ALGORITHM IN [10] FOR

TREESCONSTRUCTEDUSING GREEDY-DME WITH LINEAR DELAY

when combiningX 0 with Y 0 and the proof is complete. Otherwise, we
may assume that the updated numberj of redundant buffers satisfies

s(X 0) � s(Y 0) + j: (4)

Similarly, if l(X 0) < l(Y 0) + j, thenZ 0 can be replaced by the
bufferingZ 00, obtained by movingk = minfj; l(Y 0) + j � l(X 0)g
redundant buffers from the top ofbr(w) to the top ofbr(u).Z 00 domi-
natesZ becausenb(Z 00) = nb(Z), l(Z 00) = l(Z), cap(Z 00) = Cb �

944 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUIT AND SYSTEMS, VOL. 22, NO. 7, JULY 2003

cap(Z), ands(Z00) = s(Z) by (4) (see Fig. 8). Again, ifk = j, then
Z 00 is added by DP2 toL(u) when combiningX 0 with Y 0, and the
proof is complete. Otherwise, we may assume that

l(X 0) � l(Y 0) + j: (5)

We now show that inequalities (4) and (5) imply thatZ 0 is generated
by Step 3(a) of DP2 when combiningX 0 2 L(v) with Y 0 2 L(w).
First, note thatj � t = maxf0; l(X) � s(Y) � �g sinceZ 0 is
feasible and, thus,l(X 0)� s(Y 0)� j � �. Finally, Step 3a(�) of DP2
insertsj buffers at the top ofbr(w), since, by (4) and (5), the intervals
[s(X 0); l(X 0)] and [s(Y 0) + j; l(Y 0) + j] are not strictly containing
one another.

Finally, the theorem follows from the fact that only dominated or
redundant bufferings are deleted in Steps 3(b) and (c) of DP2. Indeed, if
Z 0 is deleted, then there exists a bufferingW 2 L(u) andk � 2, such
thatnb(Z 0) = nb(W)+k, l(Z 0) = l(W)+k, ands(Z 0) = s(W)+k.
Sincenb(Z 0) � 2, it follows that cap(Z 0) � Cb, and thus,Z 0 is
dominated byW with k buffers added at the top ofbr(u).

Lemma 1: For each nodeu of T , the setL(u) computed by DP2
contains at most2(� + 1)NB bufferings.

Proof: Let us call a triple (nb, l, s) of integersrepresentedin
L(u) if there exists a bufferingX 2 L(u) such thatnb(X) = nb,
l(X) = l, ands(X) = s. Since dominated bufferings are removed
in Step 3(b), any triple of parameters (nb, l, s) can be represented at
most once by the bufferings surviving inL(u) (by a buffering with the
smallest possible residual capacitance). We will show that no more than
2(�+ 1)NB triples (nb, l, s) can be represented. Indeed, consider all
triples (nb, l, s) with l�s = � andnb� l = m, i.e., triples of the form
(nb, nb�m, nb�m� �). For every fixed� andm, there areat most
two values ofnb for which (nb, nb�m, nb�m� �) will survive the
deletions in Steps 3(c) of DP2. The lemma follows since all bufferings
generated by the algorithm have0 � � � � and0 � m < NB.

Theorem 2: DP2 returns the optimum buffering in timeO(n(� +
1)3NB2).

Proof: The running time follows by observing that, for each of
then�1 nonsink nodes, DP2 needsO((�+1)3NB2) time to compute
the setL(u). Indeed, the time needed by Step 3(a) isO((�+1)�jL(v)j�
jL(w)j), wherev andw are the two children ofu. Lemma 1 implies
that, at the end of Step 3(a), the size ofL(u) isM = 4(�+ 1)3NB2.
To complete the proof, we need to show that Steps 3(b) and (c) can be
implemented inO(M) time. This is done as follows.

1) For each bufferingX, computem(X) = nb(X) � l(X) and
distributeXs intoNB buckets, each containing bufferings with
the samem;

2) Distribute all bufferings in each bucket between� + 1 sub-
buckets, each containing bufferings with the same skew� 2
f0; 1; . . . ;�g.

3) In one linear traversal, extract from each subbucket two buffer-
ings: a buffering with a minimum number of buffersnb and, sub-
ject to this, a minimum residual capacitance, plus, if it exists, a
buffering withnb+1 buffers and a residual capacitance equal to
Cb (all other bufferings are either dominated or redundant).

V. EXPERIMENTAL RESULTS

Both DP2 and the greedy algorithm of [10] have been implemented
in C. Table I gives the results obtained by running the two algorithms
on six testcases from [2]. In this set of experiments, the initial tree was
computed using the Greedy-DME algorithm of [3] with linear delay.
The unit-wire capacitance wasCw = 0:177 fF=�m and the buffer
input capacitance wasCb = 37:5 fF . The first column of Table I gives
the total wirelength of the Greedy-DME tree (WL) and the minimum,

TABLE II
MIN/MAX SPICE INSERTION DELAY AND SKEW (IN PICOSECONDS)

FOR GREEDY-DME (LINEAR DELAY) UNBUFFEREDTREES AND

THEIR OPTIMUM BUFFERINGSWITH � 2 f0; 1; 2; 3g

TABLE III
MIN/MAX SPICE INSERTION DELAY AND SKEW (IN PICOSECONDS)

FOR GREEDY-DME (ELMORE DELAY) UNBUFFEREDTREES AND

THEIR OPTIMUM BUFFERINGSWITH � 2 f0; 1; 2; 3g

maximum, and total sink input capacitance for each instance (sink ca-
pacitances vary between 2.04fF and 63.57fF in these testcases).
Reported runtimes are for a SUN Ultra 60 running SunOS 5.7.

The first observation is that, although slower than the greedy algo-
rithm of [10] by a factor of up to 20�, DP2 has very practical runtime
(even for the 12 000-sink testcase, DP2 finishes in less than 2 s). The
results suggest that the worst case bound in Theorem 2 is an overly pes-
simistic estimation of actual runtime. Indeed, in our experiments, the
average size ofL(u)’s was always significantly smaller than the bound
given in Lemma 1.

As expected, both algorithms insert the optimum number of buffers
when a buffer skew bound of zero is imposed. For nonzero skew
bounds, DP2 inserts almost always strictly fewer buffers compared
to the greedy algorithm of [10], with savings reaching as much as
37.5%. Table I also shows that a significant reduction in the number of
inserted buffers can be achieved with a small increase in buffer skew,
e.g., when going from zero buffer skew to a buffer skew of one. For
comparison, we have also included in the table a lower bound on the
number of buffers, which is the minimum number of buffers needed
to meet the load-cap constraints while disregarding buffer skew
constraints. This lower bound was computed using the linear-time
algorithm given in [2]. In all but one case, the lower bound is matched
by the optimum buffering with� = 4, and often it is matched with a
buffer skew as small as two.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 7, JULY 2003 945

The effectiveness of the buffer-skew model was verified by SPICE
simulation based on the 130-nm ITRS Predictive Technology Beta Ver-
sion device model. In these simulations, buffers were formed as pairs of
inverters. Interconnect wire segments were represented by a�-model
with 0.076
 unit-wire resistance and equal wire capacitance lumped
at both ends of the segment. Each interconnect was driven by a ramped
input signal with 150-ps slew time under 1.5 V supply voltage. Ta-
bles II and III show the maximum, minimum, and skew of 50% SPICE
insertion delay from the source to each sink for trees constructed using
the Greedy-DME algorithm with linear, respectively, Elmore delay. As
expected, the more accurate Elmore delay leads to much smaller skew
values. Delay skews after buffering are relatively small, and can be fur-
ther reduced by optimizations that do not affect the number of buffers,
e.g., fine tuning of load buffers. Furthermore, the results on both types
of trees exhibit a strong correlation between buffer skew and delay
skew, thus justifying the use of the buffer skew model for early esti-
mation of buffering resources.

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, we have addressed the problem of finding the min-
imum-buffered routing of a given tree under buffer load and skew con-
straints. We have shown that a greedy algorithm previously proposed
for this problem in [10] may fail to find the optimum solution, and
we have proposed an exact dynamic programming algorithm. Exper-
imental results on test cases extracted from recent industrial designs
show that the dynamic programming algorithm has practical running
time and inserts up to 37.5% fewer buffers compared to the greedy
algorithm of [10].

Our future research will address:

1) multiconstraint formulations in which, e.g., input capacitance
and fanout must be upper-bounded simultaneously;

2) minimum inverter insertion in a given tree subject to sink-
polarity constraints, in addition to inverter load and skew
constraints;

3) simultaneous tree construction and buffering under given
buffer load and skew constraints.

REFERENCES

[1] C. Alpert and A. Devgan, “Wire segmenting for improved buffer inser-
tion,” in Proc. ACM/IEEE Design Automation Conf., 1997, pp. 588–593.

[2] C. Alpert, A. B. Kahng, B. Liu, I. I. M̆andoiu, and A. Z. Zelikovsky,
“Minimum-buffered routing for slew and reliability control,” inProc.
IEEE-ACM Int. Conf. Computer-Aided Design, 2001, pp. 408–415.

[3] M. Edahiro, “Delay minimization for zero-skew routing,” inProc.
IEEE-ACM Int. Conf. Computer-Aided Design, 1993, pp. 563–567.

[4] P. Fang, J. Tao, J. F. Chen, and C. Hu, “Design in hot-carrier reliability
for high performance logic applications,” inProc. IEEE Custom Inte-
grated Circuits Conf., 1998, pp. 525–532.

[5] C. Hu, “Hot carrier effects,” inAdvanced MOS Device Physics, N. G.
Einspruch, Ed. New York: Academic, 1989, pp. 119–160.

[6] A. B. Kahng, S. Muddu, E. Sarto, and R. Sharma, “Interconnect tuning
strategies for high-performance ICs,” inProc. Conf. Design Automation
Test Eur., Feb. 1998, pp. 471–478.

[7] J. Lillis, C.-K. Cheng, and T.-T. Lin, “Optimal wire sizing and buffer
insertion for low power and a generalized delay model,”IEEE J. Solid-
State Circuits, vol. 31, pp. 437–447, 1996.

[8] S. Rzepka, K. Banerjee, and E. Meusel, “Characterization of self-heating
in advanced VLSI interconnect lines based on thermal finite element
simulation,” IEEE Trans. Comp., Packag., Manufact. Technol. A, vol.
21, pp. 406–411, Sept. 1998.

[9] L. Scheffer, private communication, Apr. 2000.
[10] G. E. Tellez and M. Sarrafzadeh, “Minimal buffer insertion in clock trees

with skew and slew rate constraints,”IEEE Trans. Computer-Aided De-
sign, vol. 16, pp. 333–342, Apr. 1997.

[11] L. P. P. P. van Ginneken, “Buffer placement in distributed RC-tree net-
works for minimal Elmore delay,” inProc. IEEE Int. Symp. Circuits
Syst., 1990, pp. 865–868.

[12] A. Z. Zelikovsky and I. I. M̆andoiu, “Practical approximation algorithms
for zero- and bounded-skew trees,”SIAM J. Discrete Math., vol. 15, no.
1, pp. 97–111, 2002.

A New Reasoning Scheme for Efficient Redundancy
Addition and Removal

Chih-Wei Jim Chang, Ming-Fu Hsiao, and
Malgorzata Marek-Sadowska

Abstract—Redundancy addition and removal is a rewiring technique
which, for a given target wire , finds a redundant alternative wire .
The addition of makes redundant and, hence, removable without
changing the overall circuit functionality. Incremental logic restructuring
based on this technique has been used in many applications. However,
in the earlier methods, the search for valid alternative wires required
trial-and-error redundancy testing of a potentially large set of candidate
wires. Here, we study the fundamental theory behind this technique and
propose a new reasoning scheme (RAMFIRE), which directly identifies
alternative wires without performing trial-and-error tests. Experimental
results show speedup of up to 15 times than that of the best techniques in
the literature.

Index Terms—Logic restructuring, logic synthesis, physical synthesis,
timing optimization.

I. INTRODUCTION

Redundancy addition and removal (RAR) is a powerful combina-
tional logic restructuring technique [7]. First, a redundant wire is added
to the circuit. As a result, some previously irredundant wires become
redundant and, hence, can be removed without affecting the overall
functionality of the circuit. The underlying engine is based on logic
implication. Many applications of this technique have been developed
in the past, including technology-independent literal minimization [2],
[3], [7], [13], field programmable gate array routing [5], and postlayout
timing optimization [9], [11]. The major advantage of the RAR tech-
nique is that only wires are reconnected while logic gates are preserved.
This property is especially desirable in the deep-submicron age, when
timing estimation obtained during logic synthesis cannot be justified
after placement and routing. Timing can be incrementally corrected
through a sequence of rewiring steps guided by accurate physical in-
formation. Rewiring minimally perturbs layout and helps in achieving
timing closure.

Manuscript received March 6, 2002; revised November 1, 2002. This work
was supported in part by the Semiconductor Research Corporation under Grant
98-DJ-619. This paper was recommended by Associate Editor E. Macii.

C.-W. J. Chang was with the Department of Electrical and Computer Engi-
neering, University of California, Santa Barbara, CA 93106 USA. He is now
with the Department of Electrical Engineering, National Taiwan University,
Taipei 106, Taiwan, R.O.C. (e-mail: emersons@ms6.hinet.net).

M.-F. Hsiao was with the Department of Electrical and Computer En-
gineering, University of California, Santa Barbara, CA 93106 USA. He
is now with Cadence Design Systems, San Jose, CA 95134 USA (e-mail:
cwchang1@yahoo.com).

M. Marek-Sadowska is with the Department of Electrical and Computer En-
gineering, University of California, Santa Barbara, CA 93106 USA.

Digital Object Identifier 10.1109/TCAD.2003.814239

0278-0070/03$17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

