
IEEE TRANSACTIONS ON ROBOTICS A N D AUTOMATION, VOL. 9, NO. 6, DECEMBER 1993 775

Optimal Robust Path Planning in General
Environments

T. C. Hu, Andrew B. Kahng, and Gabriel Robins

Abstract-We address robust path planning for a mobile agent
in a general environment by finding minimum cost source-des-
tination paths having prescribed widths. The main result is a
new approach that optimally solves the robust path planning
problem using an efficient network flow formulation. Our al-
gorithm represents a significant departure from conventional
shortest-path or graph search based methods; it not only han-
dles environments with solid polygonal obstacles, but also gen-
eralizes to arbitrary cost maps that may arise in modeling in-
complete or uncertain knowledge of the environment. Simple
extensions allow us to address higher dimensional problem in-
stances and minimum-surface computations; the latter is a re-
sult of independent interest. We use an efficient implementation
to exhibit optimal path-planning solutions for a variety of test
problems. The paper concludes with open issues and directions
for future work.

I. INTRODUCTION
0 EFFECT its goals, an autonomous mobile agent T will execute a sequence of source-destination navi-

gational tasks in the agent’s configuration space. For each
navigational task, the motion planning problem asks for a
minimum-cost feasible path [8], [1 11, [25 J , [37]. The cost
of a given solution may depend on many factors, includ-
ing distance traveled, time or energy expended, and haz-
ard probabilities encountered along the path. In practice,
additional constraints might arise from a dynamic envi-
ronment (e.g., moving obstacles), incomplete knowledge
of the terrain and a concomitant need to reason under un-
certainty, or such physical considerations as gravity, fric-
tion, and the dynamics of the robot agent. A large body
of work has addressed the motion planning problem; for
a survey, the reader is referred to Latombe [25] or Mitch-
ell [31]. We begin our exposition by reviewing several
major problem formulations and solution methods.

The basic motion planning problem involves kinematic
path planning for a rigid-body mobile agent that moves in
an environment populated by static polygonal obstacles.

Manuscript received January 13, 1992; revised September 21, 1992.
This work was supported in part by the National Science Foundation under
Grant MIP-9110696, by NSF Young Investigator Award MIP-9257982, by
Army Research Office Contracts DAAK-70-92-K-0001 and DAAL-03-92-
G-0050, and by an IBM Graduate Fellowship.

T. C. Hu is with the Computer Science and Engineering Department,
University of California at San Diego, La Jolla. CA 92093-01 14.

A. B . Kahng is with the Computer Science Department, University of
California at Los Angeles, Los Angeles, CA 90024-1596.

G. Robins is with the Department of Computer Science, University of
Virginia, Charlottesville, VA 22903.

IEEE Log Number 9212607.

In this simple paradigm, the agent’s path is defined by a
sequence of translations and rotations of the rigid body.
Motion planning then entails computing a path from a
source to a destination that avoids collisions between the
agent and the obstacles, i.e., the path must lie entirely in
the so-called free space. This basic kinematic formulation
has been augmented in several ways. For example, mul-
tiple agents may be present: this yields an environment
with moving obstacles, and motivates the concept of con-
jguration space-time [30]. The solution space may also
be limited based on joint articulation, or the physical
characteristics of control structures. Various classes of
holonomic and non-holonomic kinematic constraints are
discussed by Alexander [2], Alexander and Maddocks [3],
Barraquand and Latombe [5], [6], Canny [8], Canny,
Donald, Reif, and Xavier [9], Laumond [26], [27], Li,
Canny, and Sastry [29], and Nelson [34]. An entirely dis-
tinct field of study incorporates robot dynamics to estab-
lish additional constraints on (kinematically planned) path
solutions [25]. For example, gravity and friction coeffi-
cients will constrain both the path solution and the the
speed of traversal when the agent must avoid tip-over,
sliding, and other undesirable phenomena. Note that our
present work does not model the dynamics of the agent:
rather, we address a kinematic path planning formulation
that captures important practical constraints.

In general, kinematic path planning has been widely
studied (see, e.g., [8], [25], [37] for surveys); a number
of special cases have been well solved, and several com-
plexity bounds have been established. If the path solution
is not constrained to lie on a grid, Canny [8] showed that
path planning problems are NP-hard when the dimension
of the configuration space exceeds three. In the same
work, Canny also developed the exponential-time road-
map (or silhouette) method for general kinematic motion
planning. Exact path planning algorithms for polygonal
objects navigating among polygonal obstacles were given
by Avnaim, Boissonnat, and Faverjon [4]. Papadimitriou
[36] proposed an algorithm that finds a path with cost
within a factor of 1 + E of optimal, and runs in time
polynomial in both 1 / E and the total number of vertices.
Shortest path planning for a point moving on the boundary
of a polyhedron has been studied in the computational ge-
ometry literature as the discrete geodesic problem (e.g.,
[33] and the related work in [32]). One readily observes
that kinematic planning approaches fall into two main

3042-296X/93$03.00 0 1993 IEEE

~

776 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 6, DECEMBER 1993

classes: efficient algorithms that have an underlying
“shortest-path” approach, and exponential-time algo-
rithms that rely on implicit enumeration techniques, Be-
fore presenting a more detailed taxonomy of kinematic
planning solutions, we mention the motivating consider-
ations that have led to our new combinatorial approach to
kinematic planning.

Our work focuses on kinematic planning subject to two
practical extensions: i) the need to incorporate uncertainty
into a motion planning formulation and ii) the require-
ment of an error-tolerant solution. These, respectively,
yield the notion of a general cost function in a given ter-
rain, along with the notion of a robust path solution (we
use the term “robust path” to indicate a path that main-
tains a prescribed minimum width); Section I1 gives a for-
mal development of these two concepts. While the com-
plexity of kinematic planning generally increases as more
constraints are added to the basic formulation, any strat-
egy that addresses the basic formulation will usually gen-
eralize to handle the more complicated formulations (such
is the case for the new approach given in this paper). Con-
sequently, we find that approaches in the literature fall
naturally into only a few main categories.

The most straightforward path planning algorithms are
based on graph search approaches. Such methods use the
vertices of a graph to represent feasible points in the
agent’s configuration space; edges in the graph represent
optimum subpaths (also called canonical paths) between
these configurations. Variations include retraction meth-
ods based on Voronoi decomposition [35], and approxi-
mate cell decomposition [30]. For simple problem for-
mulations, e.g., a point agent and convex polygonal
obstacles, computational geometry techniques along with
shortest-path algorithms afford efficient solutions, as sur-
veyed by Schwartz er al. in [37]. Obviously, the com-
plexity of any variant is dependent on the number of paths
computed and the ease of computing each optimum sub-
path. With a number of formulations, exhaustive graph
search methods such as depth-first branch-and-bound or
A* constitute the only known optimal algorithms. As
noted by Latombe [25], such enumerative approaches
typically have exponential time complexity, and therefore
efficient heuristics must be employed.

A common heuristic for reducing search complexity is
the hierarchical solution method based on 2k-trees (espe-
cially quadtrees and octtrees) or dissections into triangu-
lar or rectanguloid cells [lo], [25]. Unfortunately, the hi-
erarchical solution approach cannot guarantee optimal
solutions [4 11. Alternatively, physical analog methods
might be employed; these commonly involve a potential
jield that forces the agent to move toward the goal config-
uration while avoiding contact with obstacles [7], [151,
[24]. Path finding may then be accomplished by varia-
tional methods (e.g., [38]), or by classical gradient or
subgradient algorithms. Other work has essentially hy-
bridized analogs of graph search algorithms (notably the
best-first and depth-first approaches) with either hierar-

chical or physical analog formulations. The fundamental
problem with such methods is that the output can be a
locally minimum solution that is not globally optimum;
no efficient variants of the physical analog approach that
can guarantee a global optimum solution appear possible

The main contribution of this paper is a new algo-
rithmic approach to optimal robust path planning in en-
vironments with arbitrary cost maps. Essentially, we dis-
card the usual mix of shortest-path algorithms and graph
search techniques, and instead employ a more general
combinatorial approach involving network flows [121. The
crucial observation is that a minimum-cost path that con-
nects two locations s and t corresponds to a minimum-
cost cut-set that separates two other locations s’ and t’ .
We obtain our new motion planning methodology by us-
ing efficient network flow algorithms to exploit this dual-
ity between connecting paths and separating sets.

Our approach is guaranteed to find optimum solutions
to the minimum-cost path and minimum-cost robust path
problem formulations that we define below. A primary
attraction is that our algorithm runs in polynomial time;
in fact, it can be implemented in O(d2 . N 2 . log N) time
where N is the number of nodes in a discrete mesh rep-
resentation of the environment and d is the prescribed path
width. Experimental results confirm that we can effi-
ciently find optimal robust paths where current combina-
torial methods are prohibitively expensive and where
variational or gradient heuristics only return locally opti-
mum solutions. Our new approach also has several other
desirable features:

1) the intrinsic planarity and geometry of robot motion
planning yields a layered, bounded-degree network
representation, resulting in added implementation
efficiency ;

2) via incremental flow techniques, the method is suit-
able for dynamic or on-line problems, as well as
situations where early knowledge of partial solu-
tions is helpful (i.e., requiring an anytime algorithm
[14]); and

3) the method generalizes to provide a solution to the
classical Plateau problem on minimal surfaces [39],
a result which is of independent interest [22], [23].

Given these advantages, we believe that our approach
may well provide a new, practical basis for certain classes
of autonomous agent path planning problems.

The remainder of this paper is organized as follows. In
Section 11, we formally define the problem of robust mo-
tion planning in a terrain with arbitrary cost function. Sec-
tion I1 also develops our solution of robust motion plan-
ning via network flows, and describes an efficient
implementation. Section 111 gives experimental results
showing optimal width-d paths in environments ranging
from random cost maps to the more traditional class of
maps with solid polygonal obstacles. We conclude in Sec-
tion I V with several directions for future research.

1251.

HU er a l . : ROBUST PATH PLANNING IN GENERAL ENVIRONMENTS 711

11.

We
ROBUST PATH PLANNING BY NETWORK FLOWS
begin this section by establishing notation and ter-

minology. Our development focuses on the connection-
separation duality that motivates the network flow ap-
proach.

A . Problem Formulation B
We say that a subset of the plane is simply connected

if it is homeomorphic to a disk (i.e., contains no holes);
a subset of the plane is compact if it is closed and
bounded.

Dejinition: A region is a simply-connected, compact
subset of ‘3’.

Given a region R , we know by the Jordan curve theo-
rem [13] that the boundary B of R partitions the plane into
three mutually disjoint sets: B itself; the interior of R ; and
the exterior of R . We consider the problem of computing
a path in R from source S to destination T , where S and T
are disjoint connected subsets of the boundary B . A path
is defined as follows.

DeJinition: Given a region R with boundary B, a path
between two disjoint connected subsets S C B and T C
B is a non self-intersecting continuous curve P C R that
connects some point s E S to some point t E T.

Clearly, the path P partitions R into three mutually dis-
joint sets: i) the set of points of R lying strictly on the left
side of P , which we denote by R, (we assume that P is
oriented in the direction from s toward t) ; ii) the set of
points of R lying on the right side of P, denoted by R,;
and iii) points of P itself. This is illustrated in Fig. 1. It
is possible for at most one of RI and R, to be empty, and
this happens exactly when P contains a subset of B be-
tween S and T. More precisely, R, (respectively, R,) is
empty if P 2 B, (respectively, P 2 Br), where B, and B,,
respectively, denote the subsets of the boundary B lying
clockwise and counterclockwise between S and T, i.e., B,

As noted above, the goal of our work is to optimally
solve motion planning when two practical constraints are
incorporated: an arbitrary cost function defined over the
region, and a robust path requirement. An arbitrary cost
function corresponds to a general environment, which is
in many ways more realistic than an environment con-
sisting only of solid polygonal obstacles, and which
moreover follows very naturally from the mobile agent
having imperfect (probabilistic, fuzzy, or incomplete)
knowledge of its surroundings. The imperfection of
knowledge can be due to a variety of factors, including
errors in positioning or orientation of the agent, staleness
of information, and physical limitations of sensors. As an
example, consider the following scenario: given proba-
bilistic information about terrain difficulty (e.g., rivers,
swamps, fields of landmines) and the locations of hostile
entities, an agent wishes to travel with minimum proba-
bility of incurring a casualty or other damage. In this
scenario, each point in the region will have an associated

= (B n RJ - (S U T) and B, = (B n R,) - (S U T I .

S
Fig. 1. A path P between two points s E S and f E T , where S and T are

disjoint subsets of the boundary B of a region R.

weight, or cost of traversal, corresponding to the level of
danger. (In what follows, we use the terms “weight” and
“cost” synonymously.) Multiple objectives may also be
captured via this formulation: if the agent must reach his
destination quickly, then the weight function will take into
account both danger level and the time required to travel
through each point. Note that this formulation subsumes
the binary cost function of a basic environment with solid
polygonal obstacles (cost = 1) and free space (cost = 0).

Formally, given a region R , we define a weight func-
tion w: R + 3 + such that each point s E R has a corre-
sponding positive weight w (s). The cost, or weight, of a
path P E R is defined to be the integral of w over P.
Optimal motion planning entails minimizing this path in-
tegral. To find a minimum-cost path P C_ R between two
points on the boundary of R , one might guess that Dijk-
stra’s shortest path algorithm [12] provides a natural so-
lution. However, application of Dijkstra’s algorithm re-
lies on an implicit assumption that the solution can be cast
as an ideal path, i.e., a path of zero width. The relevance
of this caveat becomes clear when we consider our second
extension to the basic formulation-the requirement of a
robust path solution.

Due to errors in location, orientation and motion, a ro-
bot agent is never able to exactly follow a given pre-
scribed path. A path is error-tolerant if the agent will not
come to harm when it makes a small deviation from the
path: in the above scenario, a path that requires the agent
to tiptoe precisely between landmines is not as error-tol-
erant as a path that avoids minefields altogether. With this
in mind, we define a robust path to be one that maintains
a prescribed minimum width (and that is thereby error-
tolerant). This prescribed-width formulation also ad-
dresses the fact that robot agents are physical entities with
physical dimensions: because physical agents do not oc-
cupy only point locations in the environment, the mini-
mum-cost path of zero width that is computed by a short-
est-path algorithm may be infeasible (e.g., while an insect
might easily exit a room through a barred window, a per-
son cannot easily do so). In general, the optimum path for
an agent of width d, cannot be obtained by simply wid-

778 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 6 , DECEMBER 1993

ening or narrowing the optimum path for an agent of width

We now establish the relationship between a pre-
scribed-width path requirement and the concept of d-sep-
aration [191. In the following, we use ball (x , d) to denote
the closed ball of diameter d centered at n, i .e., the set of
all points at distance d / 2 or less from x. (Our prescribed-
width formulation, as well as the definition below of the
robust path planning problem, assumes that an agent is of
circular shape. If the agent has a different shape, e.g., an
arbitrary polygon, then our new &PATH algorithm (Sec-
tion 11-B) assumes that the agent has width equal to the
width of its smallest circumscribing disk.)

Dejinition: Given two disjoint subsets S and T of the
boundary of a region R, a set of points C R is a width-
d path between S and T if there exist s E: S, t E T, and a
path P from s to t such that

d2.

z U r s P {ball(n, d) fl R) ,

that is, P contains the intersection of R with any disk of
diameter d centered about a point of P.

Just as the path P between S and Twill partition R into
RI, R,, and P , the width-d path P G R between S and T
also papitions R into three sets: i) the set of points El =
[(R - P) fl R,] U B,, that is, the union of the left bound-
ary B, and all points in R that are to the left of P ; ii) the
set of points Rr = [(R - p) fl R,] U B,; and iii) the
pointset P itself. We now obtain the definition of a
d-separating path (see Fig. 2).

Definition: Given two disjoint subsets S and T of the
boundary of a region R , a set of pcints c R is a
d-separating path between S and T if P is a width-d path
such that any point of R, is distance d or more away from
any point of Er.

A d-separating path p between S and T is a minimal
d-separating path between S and T if no subset of F sat-
isfies the preceding definition. Because all points in R have
positive cost and because we are interested in minimum-
cost paths, the following discussion refers only to mini-
mal d-separating paths. Given a specific width d , the
d-robust motion planning problem can now be stated as
follows.

d-Robust Motion Planning Problem (RMPP): Given an
arbitrary region R with boundary B , a weight function
w: R + 9?+, a source S C B , a destination T C B , and
a width d, find a d-separating path p C R between S and
T that has minimum total weight.

While our formulation specifies an arbitrary weight
function that is integrated to yield path cost, in most prac-
tical situations the region is discretized relative to a given
fixed grid or sampling granularity (see, e.g., [7]) . Thus,
in the present work, we will assume a fixed-grid repre-
sentation R of the environment region R. With this dis-
crete RMPP formulation, the cost of a path is defined to
be the sum of the weights of the nodes covered by the
path. Similarly, the notion of &separation also naturally
extends to the discrete grid.

DeBnition: Given a region R , a discrete d-separating

S

Fig. 2 . A d-separating path o f width d between two points s ES and
t E Tof the boundary of a region R . Here R, is separated from R, by a
distance of d.

path P in the gridded region R is the subset of the grid-
points of R that is contained in some d-separating path p
in R (Fig. 3).

As before, a discrete d-separating path is minimal if no
subset of it satisfies this definition. Analogously to the
continuous case, a d-separating path partitions the gridded
environment into two subsets, such that each gridpoint
from one partition is a distance of at least d units away
from any gridpoint in the other partition. We therefore
have the following problem formulation.

d-Robust Motion Planning Problem in a Grid
(RMPPG): Given a weighted gridded region R with
boundary B C 8, a source S C_ B , a destination T G B ,
and a width d, find a discrete d-separating path P C R
between S and T that has minimum cost.

Intuitively, as the granularity quantum approaches zero
the solution for the RMPPG instance will converge to the
solution for the corresponding continuous RMPP in-
stance. At this point, we observe that although RMPPG
is a very natural problem formulation, it cannot be effi-
ciently solved by traditional methods. In particular, effi-
cient graph algorithms such as Dijkstra’s shortest-path al-
gorithm fail because the optimal d-separating path may
self-intersect: when the shortest-path algorithm attempts
to increment a path, it cannot determine how much of the
increment should be added to the path cost (see Fig. 4).’

In the special case where the cost function is binary,
Dijkstra’s algorithm is applicable via the following well-
known technique [25]: augment the environment by
growing each obstacle (as well as the region boundary)
isotropically by d / 2 units, then set the weight of each
node in the free area to some constant, while the weight
of any node in an area covered by an obstacle is set to
infinity. A minimum-cost prescribed-width path in such

‘Recall that in an n-node edge-weighted graph G = (V , E) with identified
source uo E V , the kth phase of Dijkstra’s algorithm k = I , . . * , n finds
another node uk for which the shortest pathlength do, in G is known; we
know the optimum 3-r pathlength when uk = t . Although the RMPPG for-
mulation above assumes a node-weighted G, we may easily obtain an edge-
weighted graph (for all U E V , add w (u) / 2 to the weight of each edge
incident to U) to which we may apply Dijkstra‘s algorithm. However, this
transformation is correct only for computing the optimal zero-width path:
Dijkstra’s algorithm relies on the fact that d, can never be strictly less than
mink (dik + t ik ,) , but this may not hold when paths have nonzero width, as
shown in Fig. 4.

HU er a l . : ROBUST PATH PLANNING I N GENERAL ENVIRONMENTS 779

T
P - , - . - 7 - 7 - . - 7 7 - T - . m - R q q q - 7 - 7 7 ,h

. 1 , . . _ . . _ I

1 \ , I
I , . . , ‘
1 , ,’
I - I
I I
I , I
I I

. - I - - - - - - - -,I . l, RI mI P
1 , 1

I , . . I,. -
P

I . \::::,II . - - - - - - - - - - - - - - - - , ’

S
Fig. 3 . A dis_cretifed representation R of a region R , and a discrete d-sep-
arating path P in R . Note thaLp is the set of lattice points covered by the
continuous d-separating path P in R .

Fig. 4. An optimal path with nonzero width can intersect itself (in this
example the center gap is too narrow to allow the path to pass through it);
efficient shortest-path algorithms fail to solve the robust motion planning
problem for such instances.

an augmented environment would correspond to the cen-
ter P of the d-separating path p that we seek (Fig. 2).
Unfortunately, this simple transformation fails for arbi-
trary weight functions: a general environment has no solid
“obstacles” that can be “grown” in such a fashion.

In fact, even in the case of a binary cost function, Dijk-
stra’s algorithm may not be entirely suitable. Recall that
our path cost model charges only once for each node cov-
ered by the path, reflecting the original motivation of min-
imizing the “path integral” of cost. Arguably, this is not
unreasonable; for example, the cost of traversing a mine-
field may be very large, but once the mined area is cleared,
the hazard associated with a second visit is zero. Simi-
larly, when a path is plowed through snow or when a road

X Y Z x‘
Fig. 5. Dijkstra’s algorithm fails for the general robust motion planning
problem because the cost of edge e = (y , z) may depend on many previous
nodes (e.g., x‘) on the path: in this example (shown on the right), the cust
of incrementing the path by adding the edge e should be S [Z - Z fl (Y U
X’)]. rather than a[Z - (2 fl Y)] , otherwise the cost of the small dark
region will be charged twice.

charge more than once for a single visited region depend-
ing on where the path previously visited (Fig. 5, right),
and therefore edge costs cannot be fixed a priori.

To summarize, we see that the traditional Dijkstra-
based obstacle-growing method fails to solve the robust
motion planning problem for two reasons: 1) the obstacle-
growing transformation does not apply to general cost
functions, and 2) fixed edge costs cannot be determined
when the cost model charges exactly once for each node
covered by the path. With this in mind, we now use a
network flow approach to develop an efficient, optimal
algorithm for the RMPPG problem.

B. A Network Flow Based Approach
To solve the robust motion planning problem in a grid,

we use ideas from network flows in continua [21].* For
completeness of our exposition, we first review several
key concepts from the theory of network flows [161, [28].
A j o w network 7 = (N, A , s, t, c, c ’) is a directed graph
with node set N ; a set of directed arcs A C N X N; a
distinguished source node s E N and a distinguished sink
node t E N ; an arc capacity function c: A -+ ‘8’ that
specifies the capacity c, 2 0 of each arc a, E A ; and a
node capacity function e’: N + (32 + that specifies the ca-
pacity c : r 0 of each node n, E N . To handle undirected
graphs, we may replace each undirected arc a, by two
directed arcs a, and all, each having capacity c,,.

A j o w in 77 assigns to each arc a!, a value cpIJ with the
constraint that 0 I cpI1 I cl,. An arc ay is called saturated
if 4, = c,,. We insist onflow conservation at every node
except s and t, and we require that the flow through each
node nJ does not exceed the capacity of that node:

C 411 = 41Jk I c; nJ z s, t.
I

is paved, the work is proportional to the actual area
plowed or paved. Given this path cost formulation, Dijk-
stra’s algorithm cannot be applied since it requires jixed
edge costs. Fig. 5 illustrates this, where for the path on

A node nj is called saturated if C cPjj = cj’ . Since flow is
conserved at every node, the total amount of flow from
the source must be equal to the total flow into the sink;

the left it is appropriate to let the cost of the grid edge
(y, z) be G(z - are the sets of
gridpoints in ball@, d) and ball(z, d) , respectively, and
the weight function i.e.,
@(z) = C z E ~ W(Z). However, this cost definition can

n Y) , where Y and *We note that Mitchell 1321 also extends the ideas of flows in continua,
but in a very different way. The results in [32] develop a theory of flows
in polyhedral domains, with a view to such practical applications as motion
planning of many agents through a congested region (i.e., “rapid deploy-
ment”), the routing of multiple wires in a printed circuit board, etc.

is extended to sets Of

780 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9 , NO. 6, DECEMBER 1993

we call this quantity the value @ of the flow:

+ = c & = c djt
I j

A flow with the maximum possible value is called a
maximum flow. An s-t cut in a network is a set (N I , A ’)
of nodes N ’ C N and arcs A’ c A such that every path
from s to r uses at least one node of N ’ or at least one arc
of A ’ . The capacity c (N ’ , A ’) of a cut is the sum of the
capacities of all nodes and arcs in the cut. A classical
result of linear programming duality states that the max-
imum flow value is equal to the minimum cut capacity;
this is the max-flow min-cut theorem [161.

Theorem I : Given a network 7 = (N , A , s, t , c , c ’) ,
the value of a maximum s-r flow is equal to the minimum
capacity of any s-t cut. Moreover, the nodes and arcs of
any minimum s-t cut are a subset of the saturated nodes
and saturated arcs in some maximum s-t flow. 0

Recall our earlier observation that any s-t path will sep-
arate, i.e., cut, RI from R,.. In particular, an inexpensive
s-t path will correspond to an inexpensive cut between
two appropriately chosen nodes s’ and t’. Since a subset
of the nodes and arcs saturated by the maximum s‘-t’ flow
will yield this s’-t’ cut, it is natural for us to derive the
desired s-t path via a maximum-flow computation in a net-
work where capacities correspond to travel costs in R. The
remainder of this section describes how we accomplish
this.

To transform robust motion planning in a region R into
an instance of network flow, we first superimpose a mesh
network topology over R , then assign node weights in this
network according to the weighting function w : R + ‘3 + .
This yields a representation that corresponds to the un-
derlying RMPPG instance.

We guarantee a robust path solution by ensuring that
any separating node set in the mesh topology satisfies the
prescribed width-d requirement. Toward this end, we de-
fine the d-neighborhood of a node v in the mesh to be the
set of all nodes at distance d or less units away from U ,
and we then modify the mesh topology by connecting each
node to every other node in its d-neighborhood, where d
is the prescribed path width. The resulting network is
called a d-connected mesh, and has the property that no
node set of width less than d is a separating set. An illus-
tration of this construction for d = 2 is given in Fig. 6 .
We note that the concept of a d-neighborhood was first
investigated by Gomory and Hu [21].

Finally, we choose nodes s‘ and t‘ such that the mini-
mum s’-t’ cut is forced to lie along some path between s
and t . We accomplish this by making s‘ and t ’ , respec-
tively, into a source and a sink, then connecting each to
a contiguous set of nodes corresponding to part of the
boundary of the original region R. This completes the
transformation; Fig. 7 gives a high-level illustration of
the construction.

Observe that up to this point, we have converted a mo-
tion planning instance into an undirected, node-capaci-
rared (node-weighted) flow instance. However, network

0
0
0
0
0

0 0 ” q o 0 0
0

0
a‘

0

0
9
0
0
0

o o b o o o
Fig. 6. A node and its d-neighborhood (d = 2) .

A

Sourc

ink

Fig. 7 . A robust motion planning instance transformed into a network flow
instance.

flow algorithms typically assume that the input is an arc-
capacitated network (with infinite node capacities),
Therefore, in order to use a standard maximum flow al-
gorithm on our network, we must transform an instance
having both node and arc capacities into an equivalent
arc-capacitated maximum flow instance. To accomplish
this, we use the standard device of splitting each node
v E N with weight W (V) into two unweighted nodes U ’ and
U ” , then introducing a directed arc from v’ to v ” with
capacity w (u) . Also, each arc (U , U) E A of the original
network is transformed into two infinite-capacity directed
arcs (U” , U ’) and (U ” , U’). Thus, each arc (U ’ , U ”) of the
resulting directed network will, when saturated, contrib-
ute the original node weight W (U) to the minimum cut
value. This transformation is illustrated in Fig. 8 [20].
The overall size of the network increases by only a con-
stant factor via this last transformation, i.e., the final di-
rected arc-capacitated network will have only 2(NI nodes
and (NI + 2 (A (arcs. Therefore, a maximum flow com-
putation in the transformed network will be asymptoti-
cally as fast as in the original network.

Note that a maximum flow in the arc-capacitated trans-
formed graph corresponds to a minimum arc-cut in the

HU er 0 1 . : ROBUST PATH PLANNING IN GENERAL ENVIRONMENTS 78 1

++c+; CI 1 C2 4 c: + c12 Ci C14 c2 I

Fig. 8. Transformation of a node- and arc-capacitated flow network to an
arc-capacitated flow network: arc capacities c,, remain infinite, while orig-
inal node capacities (node weights) c,‘ induce directed arc capacities in the
transformed network.

transformed graph (by the max-flow min-cut theorem),
which in turn corresponds to a minimum node-cut in the
original graph since the transformation preserves minimal
cut set costs. Moreover, the “width” of the cut can be no
less than d since, as discussed above, the connection of
each node to all nodes in its d-neighborhood guarantees
that any separating node set will have the prescribed
width. A formal summary of our algorithm, which we call
d-PATH, is given in Fig. 9.

We conclude this section with the observation that the
max-flow min-cut theorem [16] and the existence of effi-
cient algorithms for maximum flow (e.g., [12], [16]) to-
gether imply the following.

Theorem 2: The Q-PATH method of Fig. 9 outputs an
optimal solution to the RMPPG problem in time poly-
nomial in the size of the mesh representation of the region
R. U

C. A Test Implementation
There are numerous algorithms for computing maxi-

mum flows in networks [11, [161 [2 I]. To demonstrate the
viability of our approach, we have used an existing im-
plementation of Dink’s network flow algorithm [181.
Starting with an empty flow, the Dinic algorithm itera-
tively augments the flow in stages; the optimal flow so-
lution is achieved when no flow augmentation is possible.
Each stage starts with the existing flow, and attempts to
“push” as much flow as possible along shortest paths
from the source to the sink in a residue network wherein
each arc has capacity equal to the difference between its
original capacity and its current flow value. After the cur-
rent flow has been thus augmented, newly saturated arcs
are removed and the process iterates. Since there can be
at most (NI - 1 such stages, each requiring time at most
O((A1 . INI) , the total time complexity of the Dinic al-
gorithm is O(1Al . /NI2) .

If we have a total of (NI nodes in our mesh graph, the
time complexity of the Dink algorithm is O(lNI3) . In
practice, more efficient flow algorithms are available [11.
For example, by using the network flow algorithm of [171,
we obtain the following.

Theorem 3: For a given prescribed path width d , the
&PATH method solves the RMPPG problem in

O(d’ * IN\’ ’ log) N l / d 2)

time, where IN(is the number of nodes in the mesh rep-
resentation of the region R .

&PATH: Finding a d-rohnst path in a weighted rrgion
Input: Region R. weight function 11’ : R + P+. width d~

grid size y. source s and destination t 011 hoiimdary of X
Output: A discrrte d-separating path P C R connecting B and t
Create a &connected mesh topology 7 of size g x g over R

Assign node weights (capacities) in 77 according to weight fixiction I (’

Set boiindary node weights (capacities) to cy
Transform node/ar~-rapacitated network r j into arc-capacitated network ri
Add source node s’ arid sink node t’ to ?+

Connect s‘ to B,. the boundarv nodes of R. clockwise from 5 to f
Connect t’ to B,, the boundary nodes of R. clockwise from t t o s
Set capacitics of all arcs adjacent to s’ or t’ to w
Compute maximum s’-t’ flow in r i
Output all nodes incident to arcs in the mininniin sf-t’ cut of r!

with all arc capacities bet to 30

Fig. 9. Finding a d-separating path of minimum cost in an arbitrary
weighted region, i.e., an optimal solution to the RMPPG problem.

Proof: Each node in the mesh has no more than d 2
adjacent arcs, so that

A = O (d 2 * (N I) .

The network flow algorithm of [171 operates within time

O[IAl * PI . log (INI2/IA1)1.

The overall time complexity of &PATH is therefore

O (d 2 * (N I 2 . log JN(/d2). 0

If d is constant (i.e., the agent is much smaller than the
environment size), then the time complexity of &PATH
becomes O ((N (’ . log (N I) for any fixed d. The time
complexity may be further reduced in cases where the ter-
rain cost function may only take on values from a fixed,
bounded range. In this case, we may apply the maximum
flow algorithm of [I] to obtain an overall time complexity
of 0 (J N l 2) for the &PATH algorithm.

111. SIMULATION RESULTS
Our current &PATH implementation uses ANSI C code

to transform an arbitrary robust motion planning instance
into a maximum-flow instance; we then use the Fortran-
77 Dink code of [18] to compute the flow, and invoke
Mathematica [40] to draw the resulting path. We have
tested our implementation on three classes of motion
planning instances: uniformly weighted regions , environ-
ments with polygonal obstacles, and smooth randomly-
costed terrains. For each of these input classes, the
boundary of the region is a rectangle, and we look for a
width-d path connecting s and t which are, respectively,
in the top left and bottom right comers of the region. With
each instance, we tested various values of d.

A uniformly weighted region has all node weights equal
to the same constant. In such an instance we expect the
solution path to resemble a straight line between s and t ,
with the straightness of the line improving as the mesh
resolution and the width d both increase. Experimental
results confirm this behavior.

Our test environments with polygonal obstacles are
populated by polygons of random sizes located through-
out the region. Nodes in the clear areas are uniformly as-
signed a small constant weight. while nodes inside the

782 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 6, DECEMBER 1993

0 20 40 60 80 l o o $ 0 20 40 6 0 80 100:

B
t

1 0 0

80

60 I

40

2 0

I
f

r - ..
0 20 40 6 0 80 l O O i 0 20 40 4 0 80 100

Fig. 10. Robust motion planning in a region with polygonal obstacles. Note
that the topology of the solutions changes as the prescribed width d is in-
creased. The solutions shown correspond to widths d = 1 (top left),
d = 2 (top right), d = 3 (bottom left), and d = 4 (bottom right).

100 1 0 0

eo t * O

60 ! 60

4 0 40

20 2 0
>
f

1 0 0 100

80 . 80

r
60 ?i 6 0

<

4 0 ! G O

2 0 f 20

U t

o 20 40 6 0 8 0 1001 o 20 40 60 eo i o o i

Fig. 1 1 . Robust motion planning in a region with polygonal obstacles
(continued). The solutions shown correspond to widths d = 5 (top left),
d = 6 (top right), d = 7 (bottom left), and d = 8 (bottom right).

obstacles have infinite weight. In such an environment,
changing the prescribed width d may dramatically affect
the optimum path topology with respect to the obstacles,
since long detours may be required in order to avoid nar-
row passages between objects. This phenomenon was in-
deed confirmed by our experiments, as illustrated in Figs.
10 and 11.

80 I

bO
t

40

'L

0
o 2 0 4 0 60 80 i o o E o 20 4 0 6 0 8 0 I O O ~

LOO 31 00

eo f do r

P

E
2

0 c !
i

4 0 a - 41

20 2C i c
(I
0 20 40 40 80 1 0 0 - 0 20 4 0 bO 8 0 I002

Fig. 12. A randomly generated smooth terrain and its robust motion plan-
ning solutions. We see the terrain itself (top left), as well as solutions cor-
responding to widths d = 1 (top right), d = 2 (bottom left), and d = 3
(bottom right).

Finally, we tested our methodology on randomly costed
terrains, using a mesh resolution of 100 x 100 nodes and
a range of d values. Each random terrain instance was
generated as follows. All nodes in the mesh were initially
assigned a weight of zero, except for a small random sub-
set of the nodes that were each given a large random po-
sitive weight. Then, a weight redistribution step was it-
eratively used to increment each node's weight by a small
random fraction of the total weight of its immediate
neighbors until a smoothly costed terrain was obtained.
Figs. 12 and 13 depict typical &PATH output for the
RMPPG problem in a random terrain. Regions of greater
weight are denoted by darker shades, and regions of
smaller weight are denoted by lighter shades. The opti-
mum width-d path is highlighted in black.

We emphasize that even though the Dinic algorithm is
not ideal for a mesh topology, typical running times used
to generate and solve all of the above classes of instances
are on the order of at most a few minutes on a SUN Sparc
IPC (15.7 MIPS). We therefore conclude that our ap-
proach constitutes a viable new method for optimal robust
motion planning in general terrains.

IV. CONCLUSIONS AND OPEN PROBLEMS
We have developed a polynomial-time algorithm that

gives optimal solutions to the robust motion planning
problem in a discretized environment. Our method is
based on the duality between connecting paths and sepa-
rating sets, and relies on a maximum-flow computation to
find a minimum-cost path of prescribed width in an arbi-
trarily weighted region. The accuracy of the solution with

HU et al.: ROBUST PATH PLANNING IN GENERAL ENVlRONMENTS 783

0 2 0 4 0 60 8 0 100; 0 20 40 60 80 100:

Fig. 13. A randomly generated smooth terrain and its optimal robust mo-
tion planning solutions (continued). Here we see the solutions correspond-
ing to widths d = 4 (top left), d = 5 (top right), d = 7 (bottom left), and
d = 8 (bottom right).

respect to the continuous version of the problem depends
on the grid size, which is intrinsic to the input. It should
be noted that the underlying network topology does not
necessarily have to be a mesh. In particular, our &PATH
approach easily applies to instances where the underlying
grid resolution varies across the region, with more crucial
areas of the region being represented more finely, and less
important areas having coarser resolution in order to in-
crease efficiency. Our method enjoys a number of addi-
tional generalizations and applications, including a higher
dimensional extension that solves a class of discrete in-
stances of the Plateau problem on minimal surfaces [2 2] ,

Chief among the future research goals is improvement
of the time complexity of the network flow computation;
substantial improvement is likely since the mesh is a
highly regular and symmetric network that admits a con-
cise representation. Additional research might also ad-
dress more general path planning issues, such as i) incor-
poration of kinematic and dynamic considerations, ii) use
of hierarchical approaches as a heuristic speedup, and iii)
addressing the case where the endpoints of the path are
not necessarily on the boundary of the region.

~ 3 1 .

ACKNOWLEDGMENT
The authors wish to express their gratitude to Profes-

sors Sheila Greibach and John Canny, as well as to the
anonymous referees, for their helpful comments.

REFERENCES
[I] R. K . Ahuja, J. B. Orlin, and R. E. Tarjan, “Improved time bounds

for the maximum flow problem,” Tech. Rep. CS-TR-I 18-87, Dept.
Comput. Sci.. Princeton Univ., 1987.

[2] J. C. Alexander, “On the motion of a trailer-truck, problem 84-12,’’
SIAM Rev., pp. 578-579, 1985.

[3] J. C. Alexander and J. H. Maddocks, “On the maneuvering of ve-
!iicles,” SIAM J . Appl. Math., vol. 48, pp. 38-51, 1988.

[4] F. Avnaim, J. D. Boissonnat, and B. Faverjon, “A practical exact
motion planning algorithm for polygonal objects moving amidst
polygonal obstacles,” Tech. Rep. 890, INRIA, Sophia-Antipolis,
France, 1988.

[SI J . Barraquand and J . C . Latombe, “On non-holonomic mobile robots
and optimal maneuvering,” Revue d ’lnrelligence Arfijicielle, vol. 3,

[6] -, “Controllability of mobile robots with kinematic constraints,”
Tech. Rep. STAN-CS-90-1317, Dept. Comput. Sci., Stanford Univ.,
Stanford, CA, 1990.

[7] -, “Nonholonomic multibody mobile robots: Controllability and
motion planning in the presence of obstacles,” in Proc. IEEE Int.
Conf. Roborics Automat., 1991, pp. 2328-2335.

[SI J. Canny, The Complexity of Robot Motion Planning. Cambridge,
MA: MIT Press, 1988.

[9] J. Canny, B . Donald, J . Reif, and P. Xavier, “On the complexity of
kinodynamic planning, ” in Proc. IEEE Symp. Foundations Comput.,

[IO] D. W. Cho, “Certainty grid representation for robot navigation by a
bayesian method,” Robotica, vol. 8, pp. 159-165, 1990.

I1 I] J. H. Connell, Minimalisr Mobile Roborics. New York: Academic,
1990.

1121 T. H. Cormen, C. E. Leiserson, and R. Rivest, lntroducrion ro Al-
gorithms.

[I31 R. Courant and H. Robbins, What is Mathematics? An Elemenrarjl
Approach to Ideas and Methods. London, England: Oxford Univ.
Press, 1941.

[14] T. Dean and M. Boddy, “An analysis of time-dependent planning,”
in Proc. AAAI, St. Paul, MN, 1988, pp. 49-54.

[I51 B. R. Donald, “Error detection and recovery for robot motion plan-
ning with uncertainty,” Ph.D. dissertation, Dept. EE&CS, MIT,
1987.

[I61 L. R. Ford and D. R. Fulkerson, Flows in Networks. Princeton, NJ:
Princeton Univ. Press, 1961.

[I71 A. V . Goldberg, E. Tardos, and R. E. Tarjan, “Network flow algo-
rithms,” Mar. 1989, unpublished.

[18] D. Goldfarb and M. D. Grigoriadis, “A computational comparison
of the dinic and network simplex methods for maximum flow,” Ann.
Operat. Res. , vol. 13, pp. 83-123, 1988.

(191 R. E. Gomory, T. C. Hu, and J . M. Yohe, “r-separating sets,”
Canad. J . Math., vol. 26, pp.. 1418-1429, 1974.

[20] D. Gusfield and D. Naor, “Efficient algorithms for generalized cut
trees,” in Proc. ACM/SIAM Symp. Discrete Algorithms, 1990, pp.

[21] T. C. Hu, Integer Programming and Network Flows. Reading, MA:
Addison-Wesley, 1969.

[22] T. C. Hu, A. B. Kahng, and G . Robins, “Optimal solution of the
discrete plateau problem,” Tech. Rep. CSD-920006, Comput. Sci.
Dept., UCLA, Jan. 1992.

[23] -, “Solution of the discrete plateau problem,” Proc. Nat. Acad.
Sci. , vol. 89 pp. 9235-9236, 1992.

[24] 0. Khatib, “Real-time obstacle avoidance for manipulators and mo-
bile robots,” Int. J . Robotics Res. , vol. 5 , pp. 90-98, 1986.

1251 J . C. Latombe, Robot Motion Planning. Boston, MA: Kluwer Ac-
ademic, 1991.

[26] J. P. Laumond, “Feasible trajectories for mobile robots with kine-
matic and environment constraints,” Preprints Int. Conf. Intell. Syst.,
1986, pp. 346-354.

[27] -, “Finding collision-free smooth trajectories for a non-holonomic
mobile robot,” in Proc. IEEE Conf. Foundations Comput. Sci.,
Milan, Italy, 1987, pp. 1120-1123.

[28] E. Lawler, Combinatorial Optimization: Networks and Matroids.
New York: Holt-Rinehart and Winston, 1976.

[29] Z. Li, J . F. Canny, and S. S . Sastry, “On motion planning fordexrer-
ous manipulation, part i: The problem formulation,” in Proc. IEEE
Inr. Conf. Roborics Automut., Scottsdale, AZ, 1989, pp. 775-780.

[30] T. Lozano-Perez, “Spatial planning: A configuration space ap-
proach,” IEEE Trans. Compuf. , vol. C-32, pp, 108-120, 1983.

[31] J . S. B. Mitchell, “An algorithmic approach to some problems in
terrain navigation,” in Geometric Reasoning, D. Kapur and J. L.
Mundy, Eds.

[32] -, “On maximum flows in polyhedral domains,” J . Comput. Sysr.
Sci . , vol. 40, pp. 88-123, 1990.

pp. 77-103, 1989.

Sci . , 1988, pp. 306-318.

Cambridge, MA: MIT Press, 1990.

422-433.

Cambridge, MA: MIT Press, 1988.

IEEE TRANSACTIONS O N ROBOTICS A N D AUTOMATION, VOL. 9, NO. 6, DECEMBER 1993

J . S . B. Mitchell, D. M. Mount, and C. H. Papadimitriou, “The
discrete geodesic problem,” S I A M J . Comput., vol. 16, pp. 647-668,
1987.
W . Nelson, “Continuous-curvature paths for autonomous vehicles,”
in Proc. IEEE Inr. Conf Robotics Automat., Scottsdale, AZ, Apr.
1989,pp. 1260-1264.
C. O’Dunlaing and C. K . Yap, “A retraction method for planning
the motion of a disc,” J . Algorithms, vol. 6, pp. 187-192, 1983.
C. H. Papadimitriou and K . Steiglitz, Combinarorial Optimization.
Englewood Cliffs, NJ: Prentice-Hall, 1982.
J . T. Schwartz, M. Sharir, and H. Hopcroft, Pluming, Geometr?.and
Complexity of Robot Motion.
S. H. Suh and K. G . Shin, “A variational dynamic programming ap-
proach to robot-path planning with a distance-safety criterion,” IEEE
Trans. Robotics Automat., vol. 4 , pp. 334-349, 1988.
T. Tsuchiya, “On two methods for approximating minimal surfaces
in parametric form,” Mathemat. Computat., vol. 46, pp. 517-529,
1986.
S. Wolfram, Mathemarica: A System for Doing Mathematics by Com-
puter, Second Edition.
D. Zhu and J . C. Latombe, “New heuristic algorithms for efficient
hierarchical path planning,” IEEE Trans. Robotics Automat., vol. 7 ,
pp. 9-20, 1991.

Norwood, NJ: Ablex, 1987.

Reading, MA: Addison-Wesley, 1991.

T. C. Hu received the B.S . degree in engineering
from the National Taiwan University in 1953 and
the Ph.D. degree in applied mathematics from
Brown University in 1960.

He has made important contributions in math-
ematical programming, combinatorial algorithms,
and VLSI design (four books and over sixty pa-
pers). His theoretical contributions such as the
Gomory-Hu cut tree and the Hu-Tucker algo-
rithm for optimum binary alphabetic trees are well
known. On the more practical side, he was a con-

sultant to the Office of Emergency Preparedness, Executive Office of the
President, and member of a 1972 team that saved the U.S. Government
over S200.000 per month in communication costs.

Previously Dr. Hu was an editor of IEEE TRANSACTIONS ON COMPUTERS
and coedited (with Prof. E. S. Kuh) VLSI Circuit Layout (IEEE Press) in
1985.

Andrew B. Kahng was born in October 1963 in
San Diego, CA. He received the A.B. degree in
applied mathematics and physics from Harvard
College, and the M.S. and P1I.D. degrees in com-
puter science from the University of California at
San Diego.

Since July 1989, he has been an Assistant Pro-
fessor with the Computer Science Department,
UCLA, where he has received an NSF Young In-
vestigator Award. His research interests include
computer-aided design of VLSI circuits, combi-

natorial and parallel algorithms, computational geometry, and the theory
of global optimization. Dr. Kahng is a member of ACM and SIAM.

Gabriel Robins received the Ph.D. degree from
the UCLA Computer Science Department.

Currently, he is an Assistant Professor of Com-
puter Science at the University of Virginia, Char-
lottesville. His primary areas of research are VLSI
CAD and geometric algorithms, with recent work
focusing on performance-driven routing, Steiner
tree heuristics, motion planning, pattern recogni-
tion algorithms, and computational geometry.

Dr. Robins is a member of ACM, MAA, and
SIAM. At UCLA, he won the Distinguished

Teaching Award and held an IBM Graduate Fellowship. He is the author
of a Distinguished Paper at the 1990 IEEE International Conference on
Computer-Aided Design, and his Ph.D. dissertation was nominated for the
ACM Distinguished Dissertation Award.

