Section III: Partitioning and Floorplanning
Overview

- Partitioning
- Floorplanning (top and block level)
- IO
- Clock distribution
Method

- Automatic vs. Manual?
 - Intense controversy
 - High performance designs force manual
 - But, not that hard

- Goal is two level netlist hierarchy:
 - N “manageable” PnR blocks,
 - pads, other edge logic flattened to top level
Block Area

- Examine total area under each branch of hierarchy
- Examine placeable objects under each branch of hierarchy
 - Sweet spot these days between 100k – 250k objects (I.e. 300 – 750k ‘gates’)
- Large numbers of rams can be problematic to place, so assume lower row utilization for these blocks
- Small blocks too difficult to fit in with large blocks: group with larger block and region later internally, if required
Block Area (#2)

- High Aspect Ratio blocks can be a problem for both congestion and/or timing
- Low utilization blocks may have better timing if ‘crunched down’ somewhat
Interconnection Density

- Rough rule of thumb: pin edge density should be less than 30% of the total potential pin bandwidth
- Abutted blocks must allow for feedthroughs as well (block in center feel more pressure)
- Channels, if present, probably will dominate the problem
Example Floorplan 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Kinsts</th>
<th>Term</th>
<th>%util</th>
</tr>
</thead>
<tbody>
<tr>
<td>pe</td>
<td>254</td>
<td>2546</td>
<td>72</td>
</tr>
<tr>
<td>mc</td>
<td>123</td>
<td>6100</td>
<td>59</td>
</tr>
<tr>
<td>hice</td>
<td>97</td>
<td>4239</td>
<td>72</td>
</tr>
<tr>
<td>ta1</td>
<td>132</td>
<td>3707</td>
<td>63</td>
</tr>
<tr>
<td>ta2</td>
<td>129</td>
<td>1601</td>
<td>65</td>
</tr>
<tr>
<td>tc</td>
<td>123</td>
<td>2191</td>
<td>73</td>
</tr>
<tr>
<td>td</td>
<td>235</td>
<td>2435</td>
<td>79</td>
</tr>
<tr>
<td>vdlg</td>
<td>179</td>
<td>1714</td>
<td>73</td>
</tr>
<tr>
<td>vp</td>
<td>15</td>
<td>906</td>
<td>64</td>
</tr>
<tr>
<td>ra</td>
<td>66</td>
<td>425</td>
<td>51</td>
</tr>
<tr>
<td>su</td>
<td>68</td>
<td>639</td>
<td>55</td>
</tr>
<tr>
<td>wx</td>
<td>87</td>
<td>1118</td>
<td>62</td>
</tr>
<tr>
<td>pll1</td>
<td>.8</td>
<td>352</td>
<td>16</td>
</tr>
<tr>
<td>pll2</td>
<td>.8</td>
<td>1108</td>
<td>26</td>
</tr>
<tr>
<td>east</td>
<td>2.8</td>
<td>286</td>
<td>41</td>
</tr>
<tr>
<td>west</td>
<td>10.0</td>
<td>885</td>
<td>46</td>
</tr>
<tr>
<td>north</td>
<td>5.3</td>
<td>341</td>
<td>56</td>
</tr>
<tr>
<td>south</td>
<td>5.3</td>
<td>335</td>
<td>56</td>
</tr>
</tbody>
</table>
Interconnection Density (#2)

- Typical boo-boo: RTL partitioning by function rather than connectivity
- Typical boo-boo #2: failure to replicate logic when appropriate e.g. Ram address muxing logic, io affinity control logic
- Both examples of failure to “Think Physical”
Interconnection Density (#3)

- Ram blocks: heads up! Pin layer choices involve tradeoff in floorplanning flexibility vs. wire bandwidth
- Low pin bandwidth: avoid m3 and below (assuming m1->m6 is HVHVHV)
Repeater Considerations

- Need floorplan ‘cracks’
- No IP bigger than repeater distance
- Package pinout and chip-crossing time may force PnR block locations
- Addition of diode for preemptive antenna fixing
- Must use length-based algorithm, not pure timing based
Example Floorplan 2
Low Utilization Blocks

- May need to be regioned down to reduce average distance
- Too much and coupling C is higher and timing will get worse
- High aspect ratios bad for timing, in general
Core Power Distribution Mesh

- "Fine grain"
 - Vertical M6
 - width 9u
 - stride 53u
 - Vertical M4
 - width 3.5u
 - stride 53u
 - Horizontal M5
 - width 4.4u
 - stride 40u
Special floorplanning issues

- Package pinout dictates analog IP
- PLL or other analog IP may require noisy macros (e.g. rams) placed farther away (e.g. 1200u)
- More inductive corner bond pads may force analog VDD/VSS to placed on edges (or double bonded)
Block Level Floorplanning

- Preplacing stdcells ("DIY data paths")
 - **Pro:**
 - Reduces number of placeable objects in rest of block
 - Seeds placement of auto-placed cells
 - Increases area available since seeded stuff probably at high utilization
 - Deterministic results from run to run
 - Easier to change than full custom layout
 - Potential for faster ckts (T-gates, dynamic FFs, stacked latches, ??)
Block Level Floorplanning (#2)

- Preplacing stdcells
 - **Con:**
 - Sizes ups and buffering by tools a problem
 - Metal 2 or other interfering preroutes a problem
 - Dynamic power issues scary
 - Hand instantiation not portable to other libs

- Most common use: ‘edge logic’, register files
Typical Issues with Rams

- Number of layers blocked, 1, 2, 3… 4: Place rams around block edges
- Connectivity to each other
- Connectivity to block pins
- Stdcell ‘canyons’ bad, but ok for repeaters (digression: why do all placers suck?)
- Two-side pin access problems, face pins inward
Typical Issues with Rams (#2)

- Corner hot spots
- Pin pitch issues
- Stdcell pin routing violations, keep them clear a few tracks
- Power hookup, rings or ‘internal pins’
- Bumps on top of memory array issues
Artisan Ram Rings
Artisan Ram Rings Connected
Grouping and Regioning

- **Fixed regions (X0, Y0) (X1, Y1)**
 - “Exclusive”, rarely used, useful for regioning by clocks when clocks too expensive to distribute everywhere
 - “Non-Exclusive”, most common region type

- **Floating Regions**
 - Takes MaxX MaxY, MaxHalfPerimeter

- **Utilization “fluffers” shapes**
 - Reduce congestion
 - Leave space for decoupling or more spares in very high row-utilization areas
Grouping and Regioning

- Global route “fluffers”
 - Determine headroom left in existing PnR
 - Reserve resources for later (I.e. model future impact of global feedthroughs, etc)

- Cases:
 - Grouping Based on clock domain
 - Reduce clock power, skew
 - Grouping for more deterministic placement
 - BIST logic
 - Merged hierarchy
Clock Distribution

- Distribute a clock with:
 - Minimum skew (performance and hold time issues)
 - Minimum cell area and metal use
 - (sometimes) minimal latency
 - (sometimes) particular latency
 - (sometimes) intermixed gating for power reduction
 - (sometimes) hold to particular duty cycle: e.g. 50:50 +- 1 percent
Clock Distribution (#2)

Do all this in the face of:

- Process variation from lot-to-lot
- Process variation across the die
- Radically different loading (ff density) around the die
- Metal variation across the die
- Power variation across the die (both static IR and dynamic)
- Coupling (same and other layers)
ReShape Clocks Example

- Balanced, shielded H-tree for pre-clock distribution
- Mesh for Block level distribution
Pre-clock 2 Level H-tree

- All routes 5-6u M6/5, shielded with 1u grounds
- ~10 buffers per node
- output mesh must hit every sub-block
Block Level Mesh (.18u)

- Clumps of 1-6 clock buffers, surrounded by capacitor pads
- Shielded input and output m6 shorting straps
- Pre-clock connects to input shorting straps
- 1u m5 ribs every 20 - 30 u (4 to 6 rows)
- Max 600u stride
Problems with Meshes

- Burn more power at low frequencies
- Blocks more routing resources (solution, integrated power distribution with ribs can provide shielding for ‘free’)
- Difficult for ‘spare’ clock domains that will not tolerate regioning
- Post placement (and routing) tuning required
- No ‘beneficial skew’ (shudder) possible
Problems with Meshes (#2)

- Clock gating only easy at root
- Fighting tools to do analysis:
 - Clumped buffers a problem in Static Timing Analysis tools
 - Large shorted meshes a problem for STA tools
- Need Full extractions and Spice-Like simulation (e.g. Avant! Star-Sim) to determine skew
Benefits of Meshes (#3)

- Deterministic since shielded all the way down to rib distribution
- No ecoplacement required: all buffers preplaced before block placement
- Low latency since uses shorted drivers, therefore lower skew
- Ecoplacements of FFs later do not require rebalance of tree
- “Idealized” clocking environment for concurrent RTL design and timing convergence dance.
Mesh Example

- ~ 100k flops
- 6 blocks
Clock Skew Thermal Map

- Pre-tuning
Clock Skew Thermal Map #2

- 50ps block/ 100ps global skew, post tuning
Other Difficult Nets

- Scan enable
- Reset Trees
 - Use synchronous fanout to each PnR block (chip quadrants if flat design)
- Massive muxing structures (e.g. CAMS, PLAs)
 - Use thermal maps to discover
Other Difficult Nets (#2)

- Scan insertion
 - Beware if scan not in netlist: area, routeability hit to come
 - Block level insertion will create many loops, which may be tied together at the block level, confusing tools
 - Hierarchy ‘swizzles’ may occur if hierarchy manipulated in backend, or if test-insertion tools run incorrectly
 - To re-stitch post-placement or not
Congestion and Routeability

- Important for evaluation of floorplanning choices
- Global Routing:
 - GCELLS = Tiles
 - Basic global routing
 - Thermal Map and “Overcons”
Thermal Map Example
Thermal Map Example (#2)
Congestion and Routeability (#2)

- Detail Routing (Maze router)
 - Track assignment
 - SBOX routing of 6x6 GCELL SBOX, step and repeat with overlaps
 - Search and Repair. Welcome to “Vios”
 - Congestion vios
 - Pin accessibility vios (“chewing on rock”)
 - Maze router warts: large single SBOX routes
 - Eco re-route issues
 - Off grid pin issues
 - Non-preferred routing problems
Congestion and Routeability (#3)

- What does true congestion occur? Too much thermal map congestion for maze router to average over a ‘few’ SBOXes
- Scenic routes..more on this later…STAY AWAY
Congestion and Routeability (#4)

- Placer is using internal grouter
 - Old timing driven: single number for X, Y cap/len
 - Estimate congestion, used to be one number, now per GCELL
 - Average coupling per GCELL derived
 - Large effect on timing ECO, gate sizing, repeater insertion
 - Beware: if placement based thermal map does not look the same as post-groute thermal map!! (see mapoffsets in Apollo)
Notes on Clock Distribution
Clock Skew

- Most “high-profile” of clock network metrics
- Maximum difference in arrival times of clock signal to any 2 latches/FF’s fed by the network

\[\text{Skew} = \max | t_1 - t_2 | \]

Fig. From Zarkesh-Ha Sylvester / Shepard, 2001
Clock Skew Causes

- Designed (unavoidable) variations – mismatch in buffer load sizes, interconnect lengths
- Process variation – process spread across die yielding different L_{eff}, T_{ox}, etc. values
- Temperature gradients – changes MOSFET performance across die
- IR voltage drop in power supply – changes MOSFET performance across die

Note: Delay from clock generator to fan-out points (clock latency) is not important by itself

- **BUT:** increased latency leads to larger skew for same amount of relative variation
Clock Jitter

Clock network delay uncertainty

- From one clock cycle to the next, the period is not exactly the same each time
- Maximum difference in phase of clock between any two periods is jitter
- Must be considered in max path (setup) timing; typically $O(50\text{ps})$ for high-end designs
Clock Jitter Causes

- PLL oscillation frequency
- Various noise sources affecting clock generation and distribution
 - E.g., power supply noise dynamically alters drive strength of intermediate buffer stages
 - Jitter reduced by minimizing IR and $L^*(\frac{di}{dt})$ noise

Courtesy Cypress Semi
Clock Power

- Power consumption in clocks due to:
 - Clock drivers
 - Long interconnections
 - Large clock loads – all clocked elements (latches, FF’s) are driven

- Different components dominate
 - Depending on type of clock network used
 - Ex. Grid – huge pre-drivers & wire cap. drown out load cap.
Clock Power Is LARGE

Not only is the clock capacitance large, it switches every cycle!

\[P = \alpha C V_{dd}^2 f \]

Sylvester / Shepard, 2001
Low-Power Clocking

- Gated clocks
 - Prevent switching in areas of chip not being used
 - Easier in static designs
- Edge-triggered flops in ARM rather than transparent latches in Alpha
 - Reduced load on clock for each latch/flop
 - Eliminated spurious power-consuming transitions during latch flow-through
Clock Area

- Clock networks consume silicon area (clock drivers, PLL, etc.) and routing area
- Routing area is most vital
- Top-level metals are used to reduce RC delays
 - These levels are precious resources (unscaled)
 - Power routing, clock routing, key global signals
- Reducing area also reduces wiring capacitance and power
- Typical #’s: Intel Itanium – 4% of M4/5 used in clock routing
Clock Slew Rates

- To maintain signal integrity and latch performance, minimum slew rates are required
 - Too slow – clock is more susceptible to noise, latches are slowed down, setup times eat into timing budget \(T_{\text{setup}} = 200 + 0.33 \times T_{\text{slew}} \) (ps), more short-circuit power for large clock drivers
 - Too fast – burns too much power, overdesigned network, enhanced ground bounce

- Rule-of-thumb: \(T_{\text{rise}} \) and \(T_{\text{fall}} \) of clock are each between 10-20% of clock period (10% - aggressive target)
 - 1 GHz clock; \(T_{\text{rise}} = T_{\text{fall}} = 100-200\text{ps} \)

Sylvester / Shepard, 2001
Example: Alpha 21264

Grid + H-tree approach

Power = 32% of total

Wire usage = 3% of metals 3 & 4

4 major clock quadrants, each with a large driver connected to local grid structures
Alpha 21264 Skew Map

Ref: Compaq, ASP-DAC00
June 2002
Sylvester / Shepard, 2001
Clock Distribution Trends

- **Timing**
 - Clock period dropping fast, skew must follow
 - Slew rates must also scale with cycle time
 - Jitter – PLL’s get better with CMOS scaling but other sources of noise increase
 - Power supply noise more important
 - Switching-dependent temperature gradients

- **Materials**
 - Cu reduces RC slew degradation, potential skew
 - Low-k decreases power, improves latency, skew, slews

- **Power**
 - Complexity, dynamic logic, pipelining → more clock sinks
 - Larger chips → bigger clock networks

Sylvester / Shepard, 2001
Power vs. Skew

- Fundamental design decision
- Meeting skew requirements is easy with unlimited power budget
 - Wide wires reduce RC product but increase total C
 - Driver upsizing reduces latency (→ skew) but increases buffer cap
- SOC context: plastic package → power limit is 2-3 W
Global Clock Buffer Structure

Differential clock lines distributed to global clock buffers

Courtesy: S. Muddu, SGI
Hierarchy Management

- **Mini-Block level Clock**
 - Count clock nodes per Std. Block
 - total load (gate + wire)
 - Determine local clock tree levels/size
 - Estimate size of area clock buffer
 - Reserve space for clock buffers and clock wires/shields
 - Apply balanced clock routing

- **Top-level Clock**
 - Add clock grid topology for each Std. block
 - Estimate PLL to local buf. delays for all Std.blocks
 - Determine worst case delay
 - Add buffer-chains to align delays
 - Consider electromigration for high-activity, heavily-loaded wires
 - Add shielding inside, if necessary
 - Top-level balanced clock routing

Courtesy: S. Muddu, SGI
Grid Networks

- Gridded clock distribution common on earlier DEC Alpha microprocessors

- Advantages:
 - Skew determined by grid density, not too sensitive to load position
 - Clock signals available everywhere
 - Tolerant to process variations
 - Usually yields extremely low skew values

- Disadvantages:
 - Huge amount of wiring and power
 - To minimize such penalties, need to make grid pitch coarser → lose the grid advantage
Tree Networks

- **H-tree (Bakoglu)**
 - One large central driver, recursive structure to match wirelengths
 - Halve wire width at branching points to reduce reflections

- **Disadvantages**
 - Slew degradation along long RC paths
 - Unrealistically large central driver
 - Clock drivers can create large temperature gradients (ex. Alpha 21064 ~30° C)
 - Non-uniform load distribution
 - Inherently non-scalable (wire R growth)
 - Partial solution: intermediate buffers at branching points

Courtesy of P. Zarkesh-Ha

Sylvester / Shepard, 2001

June 2002

DAC02 - Physical Chip Implementation
Buffered Clock Tree

- L2 Drives all clock loads within its region
- PLL
- Other regions of the chip

Sylvester / Shepard, 2001
Buffered H-tree

- **Advantages**
 - Ideally zero-skew
 - Can be low power (depending on skew requirements)
 - Low area (silicon and wiring)
 - CAD tool friendly (regular)

- **Disadvantages**
 - Sensitive to process variations
 - Local clocking loads inherently non-uniform
Tree Balancing

Some techniques:

a) Introduce dummy loads

b) Snaking of wirelength to match delays

Con: Routing area often more valuable than Silicon

Sylvester / Shepard, 2001
Clock Integrity

- Shield everywhere
 - Laterally and above/below
 - Provides current return paths, eliminates coupled noise effects (both C and L)
Network of Choice

- Globally – Tree
- Power requirements reduced relative to global grid
 - Smaller routing requirements, frees up global tracks
- Trees balanced easily at *global* level
 - Keeps global skew low (with minimal process variation)

Sylvester / Shepard, 2001
Network of Choice

- Locally – Grid
- Smaller grid distribution area allows for coarser grid pitch
 - Lower power in interconnect
 - Lower power in pre-drivers
 - Routing area reduced
- Local skew is kept very small
- Easy access to clock by simply connecting to grid
Skew Reduction Using Package

- Most clock network latency occurs at global level (largest distances spanned)
- Latency \propto Skew
- With reverse scaling, routing low-RC signals at global level becomes more difficult & area-consuming
Skew Reduction Using Package

- Incorporate *global* clock distribution into the package
- Flip-chip packaging allows for high density, low parasitic access from substrate to IC
- RC of package-level wiring up to 4 orders of magnitude smaller than on-chip wiring
- Global skew reduced
- Lower capacitance \rightarrow lower power
- Opens up global routing tracks
- Results not yet conclusive

Sylvester / Shepard, 2001
Useful Skew (= “cycle-stealing”)

Zero skew
- Global skew constraint
- All skew is bad

Useful skew
- Local skew constraints
- Shift slack to critical paths
Skew = Local Constraint

- Timing is correct as long as the signal arrives in the permissible skew range

- $d - t_{hold} < Skew < T_{period} - D - t_{setup}$

race condition

permissible range

cycle time violation
Skew Scheduling for Design Robustness

- Design will be more robust if clock signal arrival time is in the middle of permissible skew range, rather than on the edge.

- "2 0 2": more safety margin
- "0 0 0": at verge of violation

T = 6 ns
Potential Advantages

- Reduce peak current consumption by distributing the FF switch point in the range of permissible skew

- Can exploit extra margin to increase clock frequency or reduce sizing (= power)
Conventional Zero-Skew Flow

- Synthesis
- Placement
- 0-Skew Clock Synthesis
- Clock Routing
- Signal Routing
- Extraction & Delay Calculation
- Static Timing Analysis
Useful-Skew Flow

Existing Placement

U-Skew Clock Synthesis

Clock Routing

Signal Routing

Extraction & Delay Calculation

Static Timing Analysis

Permissible range generation

Initial skew scheduling

Clock tree topology synthesis

Clock net routing

Clock timing verification