CSE248
Spring 2011
Partitioning
Many-Core Placement (discussion #3)

Main parts

- **Testcase generation** – up to 50M cells
 - Tiling existing benchmarks – 25 copies of bblue4 (don’t like this)
 - “Netlist generators” – gnl (tell me what you decided to NOT use – Darnauer-Dai, Hutton et al., etc.)
 - Agree on netlist parameters (e.g., macro cells, % of buffers/inverters, Rent parameters, FOD, …), sanity checks (degree, pathlengths, etc.)
 - Implementation work (SN) – must be tested and available two weeks before final experiments done

- **GP ends with a “global placement, but not a legal placement”**
 - Phase 1 Option1: parallel clustering (LJW – later)
 - Phase 1 Option2: {GWTW, multi-start top-down partitioning with constrained depth} (Capo, MLPart) (SN - now)
 - **Phase 2 (perfectly parallelizable) (based on APlace / SimPL) {PLP, WLR}**

- **DP has two phases** (LJW – now)
 - Legalization: revise your pseudocode and make it clear how it is parallelized, which rows are fixed while others are being adjusted, how to avoid cycling
 - Detailed Placement: keep simple (no independent sets, sorting, … or other non-decomposable steps) – start with Mongrel (multi-row DP) or other “powerful” local operator
 - *** Think through WHY you’re “innovating” (to escape local minima of previous works, to ensure perfect parallelizability, …)

- (Platform testing – gcc4.6 install, …)
Planar Bounded-Skew Tree (discussion #2)

- Started implementation of Charikar (to finish tomorrow night)
 - Sanity-checks: points on a line, points on a circle, points on a lattice, …
 - Visualization (plotting), small cases, etc. are necessary before moving to larger instances
- John Nale code via Prof. Mandoiu doesn’t compile: if this takes > a day to fix, then implement from scratch (should take a day)
 - Sweet spot is 50-100 sinks, so runtime efficiency is not the issue
- “BST-DME is fine”
 - (What does “fine” mean? → communicate validations that have been made)
- *What needs to be changed in Charikar / Zelikovsky to comprehend or acknowledge the “P” and the “Z” in PBST?* → compile thoughts on this by 5/16 (start of 8th week)
- More on goals/targets
 - Not just a “plain” comparison of “I implemented A, B, C – here is what happened”
 - BST-DME and others: can you improve/explore topology?
 - Rooted-Kruskal: again, can you explore other orderings (bounded-discrepancy search)?
 - In what ranges (between B = 0, B = +infty; between N = small and N = large) do the various methods have their best relative performances?
Known Optimal Solutions (discussion #2)

- Topic has converged: sizing for low power under (setup) timing constraints
- Most-related work = DAC10 Eye Charts
- Qualitative goals: “scalable” (= composable?), “realistic”, “known optimal”
- New idea
 - Start with “eye chart” which is very simple: chains, stars, meshes
 - Augment “eye charts” to be more realistic without losing “known optimality”
 - IDEA: insert “fixed-size” cells (buffers) to decouple the sizing problem at various places in the netlist, to enable augmentation of topology while preserving “known optimality”
 - Entire library (following DAC-10 ideas) has no slew-dependence, which enables DP for sizing
- Open issues
 - Are you sure that optimality is preserved? (We agreed: Yes)
 - How to use and connect those gray buffers to achieve “realistic topology”?
 - Does the introduction of the fixed-size buffers and extra nets really make the problem harder for optimizers?
 - Should there be little slack (forces the tool to the correct solution?) or lots of slack (doesn’t help the tool?) on the new paths involving the gray buffers?
 - Can you study existing sensitivity functions (SensOpt, DUET, etc.) and engineer buffer sizes and connections to “fool” or “misdirect” existing optimizers?
 - (Can the original library, including slew-dependence, be used? (Doubtful: probably prevents application of DP, and hence “known optimal”.)
Adaptive Testing (discussion #1)

- Method of Uezono et al. (VTS 2010) has unbounded error
- NP-completeness hasn’t been established; min-cost flow or other polynomial algorithms also not found (suspicion is this is a hard problem)
- Parameters: \(k = \#\)clusters; \(M = \#\)process conditions; \(P = \#\)paths
 - \(k < 10\)?
 - \(M\) can be large – e.g., up to 1000?
 - \(P\) can be large, but this doesn’t matter too much
- Limiting cases to consider
 - \(k = 2\) clusters
 - All Pr the same, different sizes
 - All sizes the same, different Pr
- Cost = waste is not “intuitive” to work with, but it is monotone
 - Monotone: Can apply “DP-RP” on Uezono or other greedy ordering … (min-perimeter, max-adjacency, etc.)
 - Interesting observation: cost decreases monotonically from \(k = 2\) to \(k = M\)
- Many heuristics possible
 - B&B for \(k = 2\)? (then, apply recursively)
 - Better criterion (than Uezono’s) (with bounded error?) for clumping 2 process conditions together? For clumping 3 together? (then, apply iteratively)
 - Iterative improvement (KL-FM or better)? (apply to some initial clustering construction)
- Issue: “testcases” (validation plan)
 - Probability distribution over process conditions
 - Overlap between process conditions
Many-Core Placement (discussion #1)

- Problem statement = ?
- Qualitative (novel) goal: $\Theta(P)$ speedup on P processors, avoid “pollution” from previous works / think out of the box!
- Key background (~3-4 pp. tex)
 - Relevant methods for Partitioning and clustering; Global placement (not legal, but spread); Detailed placement \rightarrow which are relevant, which are not, and why? (e.g., is “hierarchical” a priori off the table?)
 - Many-core architecture and HW-SW platform options
- New ideas = ?
 - How to combine non-disjoint solutions of subproblems?
 - Are changes to the traditional cluster-GP-DP flow warranted?
- Techniques to develop
- Schedule
 - To the extent that “DP” is orthogonal and smaller in space of possibilities, implementation can proceed in parallel with GP development?
- Testbed
 - Problem instances, quality metrics
 - Hardware (SDSC BlueGene clusters)
Many-Core Placement (discussion #2)

- Alpert / Nam (IBM) clustering method is in Aplace3.0 code
- Still suggest: need a “religious” stance here of “no serial computation” (cf. “New Ideas” from previous discussion)
 - “Absolute scalability” is your stake in the ground; everything else is built around it
 - What does this break in your approach? E.g., no top-down decomposition, no guarantees of disjoint clusters, …
 - Another stake in the ground: don’t use P processors to solve the same problem P times (bounded-discrepancy search, GWTW). And, assume that symmetry is broken somehow.
 - Can you place, say, 10*P clusters using P processors, where each cell belongs on average to 10 clusters? (P ~ sqrt(N))?
 - How to keep clusters from overlapping too much in any area?
 - How to deduce a cell placement from the cluster placement?
 - How to combine non-disjoint solutions of subproblems?
 - Are changes to the traditional cluster-GP-DP flow warranted?
- Details of how shared memory is actually accessed?
 - How are the clustering, the clusters, the original netlist, the induced netlist(s) over clusters, the placement (locations of clusters and cells): stored, accessed, updated?
Known Optimal Solutions (discussion #1)

- Problem Statement = ?
- Arena: **sizing**, placement, partitioning, routing, …
- Related Works (constructions with known optima; “scaling”)
 - Sizing: DAC10 “eye charts”
 - Placement/Partitioning: HHK95, PEKO/PEKU, “Planted Partition” Bui, Garbers, etc.
 - Routing: SLIP11 scaling
 - “Synthetic Benchmark” netlist constructions (Ghent ?, UCSC ?, Toronto circ/gen, …)
- Qualitative goals: “scalable” (= composable?), “realistic”, “general conclusions vs. tractability”
- Issues
 - How to simplify “sizing” so that it is tractable (e.g., DAC10 paper eliminated slew-dependence in its testbed)?
- **New** and/or basic ideas = ?
 - Metric of “realism” (see the “synthetic benchmark” literature; note that realism and tractability to analysis are opposing goals)
 - Maybe “known optimal” can be in a probabilistic sense (cf. planted partition idea) or a bounded sense (cf. HHK95 scaling suboptimality)
 - Always try to optimally solve as large a “small case” as possible (e.g., B&B or SA running for weeks gives a proof point later)
Planar Bounded-Skew Tree (discussion #1)

- Literature review ("annotated bibliography" kind of summary ~1 page) (5/4)
 - On Optimal Interconnections; Edahiro93 Greedy-DME, Planar (Zhu-Dai92, KahngT96); BST-DME; Charikar; Zelikovsky [Note: everyone should have such a summary ~5/4]

- Motivations / "fundamental questions to address"
 - Why single-layer / planar required? (Interposer in 3DIC; clock distribution on MCM substrate; avoid vias using "dedicated clock layer"?)
 - How does "planar" change the BST problem? E.g., how would you change KahngT96 when “Z” becomes “B”? (5/6)
 - Ignoring planarity, “BST” gives continuum between “ZST” and “SMT”. Then, “pBST” gives continuum between “pZST” (PlanarDME) and “SMT” should achieve such behavior as skew bound B is varied (in particular, should “match” other methods for B = 0, ∞)
 - What intuitions have you built so far? Pencil and paper: points on a line, on a circle, on a 2-D lattice (5/6)

- Code
 - BST-DME code from Bookshelf (need to get it to compile/run – 5/2)
 - Implement Charikar, Zelikovsky methods (what are “planar”, “bounded” versions?)

- Scope (are you still comfortable with PBST as the topic?)
 - Linear delay model (ignore Elmore)
 - No buffering (no clock gating, no sink polarity, no obstacles, …)
 - Topology design
 - Open: minimum-cost Planar BST consistent with given topology “topology given” is unclear
 - Charikar: Is there a “terminal ordering” (e.g., as in k-center heuristic) that gives a good topology somehow?
Outline

- Fiduccia-Mattheyses Hypergraph Partitioning
- Partitioning With Terminals
- More Tuning Examples
- Multilevel Partitioning and Experimental Reporting
- End-Case Processing
Hypergraphs in VLSI CAD

- Circuit netlist represented by hypergraph
Fiduccia-Mattheyses (FM) Approach

- **Pass:**
 - start with all vertices free to move (*unlocked*)
 - label each possible move with immediate change in cost that it causes (*gain*)
 - iteratively select and execute a move with highest gain, lock the moving vertex (i.e., cannot move again during the pass), and update affected gains
 - best solution seen during the pass is adopted as starting solution for next pass

- **FM:**
 - start with some initial solution
 - perform passes until a pass fails to improve solution quality
Figure 1. Example of cell gains

Figure 2. Bucket list structure

Figure 3. Critical nets
Cut During One Pass (Bipartitioning)
Key Elements of FM

- Three main operations
 - computation of initial gain values at beginning of pass
 - retrieval of the best-gain (feasible) move
 - update of all affected gain values after a move is made

- Contribution of Fiduccia and Mattheyses:
 - circuit hypergraphs are sparse
 - move gain is bounded between $+2 \times \text{max vertex degree}$, $-2 \times \text{max vertex degree}$
 - hash moves by gains (gain bucket structure)
 - each gain affected by a move is updated in constant time
 - linear time complexity per pass: $O(#\text{pins})$
Taxonomy of Algorithm and Implementation Improvements

- Modifications of the algorithm
- Implicit decisions
- Tuning that can change the result
- Tuning that cannot change the result
Modifications of the Algorithm

- Important changes to flow, new steps/features
 - lookahead tie-breaking (Krishnamurthy84)
 - CLIP (Dutt, Deng)
 - instead of actual gain, maintain “updated gain”
 = actual gain minus initial gain (at start of pass)
 - WHY ???
 - cut-line refinement
 - insert nodes into gain structure only if incident to cut nets
 - multiple unlocking (Dasdan, Aykanat)
Modifications of the Algorithm

- Important changes to flow, new steps/features
 - lookahead tie-breaking
 - CLIP
 - instead of actual gain, maintain “updated gain”
 = actual gain minus initial gain
 - promotes “clustered moves” (similar to “LIFO gain buckets”)
 - cut-line refinement
 - insert nodes into gain structure only if incident to cut nets
 - multiple unlocking
Implicit Decisions

- Tie-breaking in choosing highest gain bucket
- Tie-breaking in where to attach new element in gain bucket
 - LIFO vs. FIFO vs. random ... (known issue: HagenK95)
- Whether to update, or skip updating, when “delta gain” of a move is zero
- Tie-breaking when selecting the best solution seen during pass
 - first encountered, last encountered, best-balance, ...
Tuning That Can Change the Result

- Threshold large nets to reduce runtime
- Skip gain update for large nets
- Skip zero delta gain updates
 - changes resolution of hash collisions in gain container
- Loose/stable net removal
 - perform gain updates for only selected nets
- Allow illegal solutions during pass
Tuning That Can’t Change the Result

- Skip updates for nets that cannot have non-zero delta gain
- Netcut-specific optimizations
- 2-way specific optimizations
- Optimizations for nets of small degree
- ...

... 41 years since KL70, 29 years since FM82, 100’s of papers in literature
Zero Delta Gain Update

- When vertex x is moved, gains for all vertices y on nets incident to x must potentially be updated.

- In all FM implementations, this is done by going through incident nets one at a time, computing changes in gain for vertices y on these nets.

- Implicit decision:
 - reinsert a vertex y when it experiences a zero delta gain move (will shift position of y within the same gain bucket)
 - E.g., at head of gain bucket (what about “20% closer to the head”?)
 - skip the gain update (leave position of y unchanged)
Tie-Breaking Between Highest-Gain Buckets

- Gain container typically implemented such that available moves are segregated, e.g., by source or destination partition

- There can be more than one highest-gain bucket

- When balance constraint is anything other than “exact bisection”, moves at multiple highest-gain buckets can be legal

- Implicit decision:
 - choose the move that is from the same partition as the last vertex moved (“toward”)
 - choose the move that is not from the same partition as the last vertex moved (“away”)
 - choose the move in partition 0 (“part0”)
How Much Can This Matter?

- 5% ?
- 10% ?
- 20% ?
Implicit Decision Effects: IBM01

<table>
<thead>
<tr>
<th>ALGORITHM</th>
<th>IBM01 with unit areas and 10% balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updates</td>
<td>Flat LIFO</td>
</tr>
<tr>
<td>All (\Delta \text{gain}) Away</td>
<td>856/1723 (12.8)</td>
</tr>
<tr>
<td>All (\Delta \text{gain}) Part0</td>
<td>356/1226 (16.3)</td>
</tr>
<tr>
<td>All (\Delta \text{gain}) Toward</td>
<td>188/577 (12.6)</td>
</tr>
<tr>
<td>Nonzero Away</td>
<td>201/529 (8.44)</td>
</tr>
<tr>
<td>Nonzero Part0</td>
<td>201/436 (8.81)</td>
</tr>
<tr>
<td>Nonzero Toward</td>
<td>197/454 (9.29)</td>
</tr>
</tbody>
</table>
Implicit Decision Effects: IBM02

<table>
<thead>
<tr>
<th>ALGORITHM</th>
<th>IBM02 with unit areas and 10% balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updates Bias</td>
<td>Flat LIFO</td>
</tr>
<tr>
<td>All Δgain Away</td>
<td>402/1404 (30.8)</td>
</tr>
<tr>
<td>All Δgain Part0</td>
<td>307/1468 (43.2)</td>
</tr>
<tr>
<td>All Δgain Toward</td>
<td>283/585 (23.7)</td>
</tr>
<tr>
<td>Nonzero Away</td>
<td>275/471 (18.9)</td>
</tr>
<tr>
<td>Nonzero Part0</td>
<td>262/444 (18.4)</td>
</tr>
<tr>
<td>Nonzero Toward</td>
<td>265/453 (17.0)</td>
</tr>
</tbody>
</table>
Effect of Implicit Decisions

- Very large average cutsize difference for flat partitioner with worst vs. best combination
 - far outweighs “new improvements”

- One wrong decision can lead to misleading conclusions w.r.t. other decisions
 - “part0” is worse than “toward” with zero delta gain updates
 - better or same without zero delta gain updates

- Stronger optimization engines mask flaws
 - ML CLIP > ML LIFO > Flat CLIP > Flat LIFO
 - less dynamic range → ML masks bad flat implementation
Tuning Effects

- Comparison of two CLIP-FM implementation
- Min and Ave cutsizes from 100 single-start trials

<table>
<thead>
<tr>
<th>Tolerance</th>
<th>Algorithm CLIP</th>
<th>Ibm01</th>
<th>Ibm02</th>
<th>Ibm03</th>
<th>Ibm04</th>
<th>Ibm05</th>
<th>Ibm06</th>
</tr>
</thead>
<tbody>
<tr>
<td>2%</td>
<td>Paper1</td>
<td>Min</td>
<td>471</td>
<td>1228</td>
<td>2569</td>
<td>17782</td>
<td>1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ave</td>
<td>2456</td>
<td>12158</td>
<td>16695</td>
<td>20178</td>
<td>3156</td>
</tr>
<tr>
<td></td>
<td>Paper2</td>
<td>Min</td>
<td>329</td>
<td>298</td>
<td>797</td>
<td>653</td>
<td>2557</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ave</td>
<td>485</td>
<td>472</td>
<td>1635</td>
<td>1233</td>
<td>3074</td>
</tr>
<tr>
<td>10%</td>
<td>Paper1</td>
<td>Min</td>
<td>246</td>
<td>439</td>
<td>1915</td>
<td>488</td>
<td>2146</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ave</td>
<td>462</td>
<td>4163</td>
<td>9720</td>
<td>1232</td>
<td>3016</td>
</tr>
<tr>
<td></td>
<td>Paper2</td>
<td>Min</td>
<td>237</td>
<td>266</td>
<td>675</td>
<td>527</td>
<td>1775</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ave</td>
<td>424</td>
<td>406</td>
<td>1325</td>
<td>893</td>
<td>2880</td>
</tr>
</tbody>
</table>

- Question: Why did this happen?
 - Original inventor of CLIP-FM couldn’t figure it out
 - **Hint**: some modern IBM benchmarks have large macro-cells
Corking Effect in CLIP

- CLIP begins by placing all moves into the 0-gain buckets
 - CLIP chooses moves by cumulative delta gain ("updated gain")
 - initially, every move has cumulative delta gain = 0

- Historical legacy (and for speed): FM partitioners typically look only at the first move in a bucket
 - if it is illegal, skip the rest of the bucket (possibly skip all buckets for that partition)

- If the move at the head of each bucket at the beginning of a CLIP pass is illegal, pass terminates without making any moves
 - even if first move is legal, an illegal move soon afterward will "cork"

- New test cases (IBM) have large cells
 - large cells have large degree, and often large initial gain
 - CLIP inventor couldn’t understand bad performance on IBM cases
Tuning to Uncork CLIP

- Don’t place nodes with area > balance constraint in gain container at pass initialization
 - actually, can be useful for all FM variants
 - zero CPU overhead

- Look beyond the first move in a bucket
 - extremely expensive
 - hurts quality (partitioner doesn’t operate well near balance tolerance)
 - not worth it, from our experience

- Simply do a LIFO pass before starting CLIP
 - spreads out nodes in gain buckets
 - reduces likelihood that large node has largest total gain
Outline

- Fiduccia-Mattheyses Hypergraph Partitioning
- Partitioning With Terminals
- More Tuning Examples
- Multilevel Partitioning and Experimental Reporting
- End-Case Processing
Goals

- Flavors of hypergraph partitioning
 - **abstract:** free hypergraph context \rightarrow no terminals
 - **practical:** top-down placement context \rightarrow terminals

- Terminals *change* the partitioning problem
 - empirical study of effects on FM performance

- New heuristics needed that exploit terminals
 - early pass termination in FM

- Open issues
Partitioning in the Research Literature

“Given hypergraph $H = (V,E)$, partition V into V_1 and V_2 with $|V_1| \sim |V_2|$ so as to minimize the number of cut hyperedges…”

- balance constraints \rightarrow NP-hard
- pass-based KLFM variants most successful

Benchmark-driven research

- partitioning benchmarks have no fixed-terminal information

Entire literature is on “free hypergraphs”
Recall: Partitioning in Top-Down Placement

- Global placement
 - map cells of netlist into layout area
 - satisfy performance constraints, minimize area

- Top-down divide-and-conquer approach

- Divide step: hypergraph partitioning
 - connections among blocks modeled as fixed vertices (terminals) in the partitioning instance
Placement Blocks Have Many Terminals!

- Rent’s rule: \(\#\text{terminals} = k \cdot (\#\text{cells})^p \)

- For given Rent parameter value \(p \), below what \(\#\text{cells} \) will more than \(y\% \) of vertices be terminals?

<table>
<thead>
<tr>
<th>Rent parameter</th>
<th>(y=5%)</th>
<th>(y=10%)</th>
<th>(y=20%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p = 0.60)</td>
<td>40992</td>
<td>7250</td>
<td>1281</td>
</tr>
<tr>
<td>(p = 0.65)</td>
<td>186943</td>
<td>25800</td>
<td>3561</td>
</tr>
<tr>
<td>(p = 0.70)</td>
<td>1413600</td>
<td>140250</td>
<td>13915</td>
</tr>
</tbody>
</table>
disconnect!

- Top-down placement *always* generates instances *with* fixed terminals

- Partitioning research has focused on instances *without* fixed terminals

obvious questions

- Is effect of terminals on algorithm performance sufficient to require new techniques?

- Can we exploit, rather than tolerate, terminals?
Demonstration: Effects of Terminals

- Experiment with *well-assigned* terminals
 - find “good solution”: best of 100 partitioner runs
 - make increasing % of nodes into terminals fixed as in good solution
 - “good solution” cost - *an upper bound for min cost* of all instances (by construction)
 - run partitioner again - how does it do?

- Expectations
 - problem gets easier as more terminals are fixed
 - smaller runtime, better average quality
Expectations Partly Wrong

- “Well-assigned” terminals can hurt!
 - good solutions are harder to find
 - spike at 5%
Presence of Terminals is Significant

- Interpretation of the spike
 - failure of FM
 - other heuristics may be more successful
Can We **Exploit Terminals?**

- Best for free hypergraphs ≠ best with terminals
 - need methods specifically to exploit terminals
 - different trade-offs/tunings of traditional heuristics

- Example: shorter passes in FM
 - terminals shorten the useful part of the pass (find best sooner)
 - Data: Average number of passes per run, and average percentage of nodes moved per pass (excluding the first pass) for 50 runs of LIFO-FM

<table>
<thead>
<tr>
<th>Testcase</th>
<th>0% Fixed</th>
<th>10% Fixed</th>
<th>20%Fixed</th>
<th>30%Fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#P</td>
<td>%Moved</td>
<td>#P</td>
<td>%Moved</td>
</tr>
<tr>
<td>IBM 01</td>
<td>12</td>
<td>20.5%</td>
<td>9.9</td>
<td>9.1%</td>
</tr>
<tr>
<td>IBM 02</td>
<td>9.6</td>
<td>12.4%</td>
<td>8.1</td>
<td>6.1%</td>
</tr>
<tr>
<td>IBM 03</td>
<td>10</td>
<td>6.8%</td>
<td>8.3</td>
<td>5.7%</td>
</tr>
<tr>
<td>IBM 04</td>
<td>13</td>
<td>8.3%</td>
<td>9.9</td>
<td>4.4%</td>
</tr>
<tr>
<td>IBM 05</td>
<td>33</td>
<td>37.0%</td>
<td>13</td>
<td>4.7%</td>
</tr>
</tbody>
</table>
Terminals in FM Partitioning

No Fixed Terminals

Fixed Terminals
FM Partitioning With Pass Limits

- Allow *at most x% of nodes* to be moved in a pass

<table>
<thead>
<tr>
<th>Max % To Move</th>
<th>0%</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>nolimit</td>
<td>596.2</td>
<td>1041.8</td>
<td>513.8</td>
<td>303.4</td>
</tr>
<tr>
<td>50%</td>
<td>855.9</td>
<td>1027.3</td>
<td>555.2</td>
<td>290.3</td>
</tr>
<tr>
<td>IBM01 25%</td>
<td>959.4</td>
<td>1249.1</td>
<td>521.7</td>
<td>297.4</td>
</tr>
<tr>
<td>10%</td>
<td>1233.6</td>
<td>1435.3</td>
<td>514.7</td>
<td>298.0</td>
</tr>
</tbody>
</table>

- **Pass limits:**
 - hurt results when there are no terminals
 - help given “sufficiently many“ terminals
Observations

- Fixed terminals matter
- Current methods do not adequately comprehend presence of fixed terminals
- Better methods to exploit fixed terminals are possible
- Many questions open
 - Quantify effects of terminals
 - Interpret “sufficiently many terminals” (“# terminals” is meaningless in general)
 - Explain nonmonotonicity for < 5% fixed terminals
 - Variant pass-limiting schemes
 - Stronger effects for multi-way?
 - New heuristics specialized for fixed terminals
Outline

- Fiduccia-Mattheyses Hypergraph Partitioning
- Partitioning With Terminals
- More Tuning Examples
- Multilevel Partitioning and Experimental Reporting
- End-Case Processing
More FM Improvements (VRW)

- **Initial solution**
 - typically chosen to be balanced ("legal")
 - all moves preserve balance
 - we choose "very illegal" initial solution (**VILE**)
 - all vertices are initially in one partition
 - vertex moves must not worsen the balance
 - balance is easily restored in 1-2 FM passes

- **Randomization**
 - classic FM is *deterministic* (except for init. sol.)
 - we *randomly reorder vertices* before each pass
 - \(\Rightarrow \) FM can use VILE and better escape local min.
New Improvement (VRW)

- Recall
 - classic FM and its variants prioritize moves/vertices
 - leaves ties among equal-priority moves
 - when vertex moves, its neighbors are reprioritized
 - tie-breaking seriously affects performance of FM
 - Krishnamurthy used it in look-ahead partitioner (slow)
 - Hagen/Kahng: LIFO FM is better than FIFO FM
 - Unused degrees of freedom exist

- We break ties toward neighbors of fixed vertices
 - at the start of each pass,
 move fixed vertices back and forth (“wiggle”)
 - this reprioritizes the neighbors of fixed vertices
Experimental Methodology

- Benchmarks with fixed vertices
 - ISPD 99 suite, produced from ISPD `98 circuits from IBM

- Comparison methodology
 - run-time / solution quality trade-off: record solution quality achieved in given time

- Compare average results of K starts of
 - LIFO FM (Hagen/Kahng `94)
 - CLIP FM (Dutt/Deng `95)
 - FM VRW (this method)
<table>
<thead>
<tr>
<th>Algo</th>
<th>1 start</th>
<th>2 starts</th>
<th>4 starts</th>
<th>8 starts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IBM01D H 2%, 6139 movable, 2155 fixed, 7330 nets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM</td>
<td>706.6(1.7)</td>
<td>648.8(3.4)</td>
<td>600.5(6.7)</td>
<td>566.2(13.4)</td>
</tr>
<tr>
<td>CLIP</td>
<td>654.7(5.4)</td>
<td>593.6(10.8)</td>
<td>537.2(21.7)</td>
<td>492.0(43.4)</td>
</tr>
<tr>
<td>VRW</td>
<td>624.2(1.7)</td>
<td>588.6(3.4)</td>
<td>570.6(6.7)</td>
<td>555.5(13.4)</td>
</tr>
<tr>
<td></td>
<td>IBM01D H 10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM</td>
<td>676.9(1.6)</td>
<td>612.3(3.2)</td>
<td>562.8(6.5)</td>
<td>504.2(12.9)</td>
</tr>
<tr>
<td>CLIP</td>
<td>482.4(6.0)</td>
<td>412.0(12.1)</td>
<td>368.3(24.2)</td>
<td>348.3(48.4)</td>
</tr>
<tr>
<td>VRW</td>
<td>419.9(1.4)</td>
<td>403.8(2.9)</td>
<td>395.9(5.8)</td>
<td>390.4(11.6)</td>
</tr>
<tr>
<td></td>
<td>IBM01D V 2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM</td>
<td>664.3(2.1)</td>
<td>600.0(4.2)</td>
<td>557.8(8.3)</td>
<td>521.9(16.6)</td>
</tr>
<tr>
<td>CLIP</td>
<td>587.7(5.5)</td>
<td>536.8(11.1)</td>
<td>499.0(22.2)</td>
<td>471.2(44.4)</td>
</tr>
<tr>
<td>VRW</td>
<td>535.6(1.8)</td>
<td>508.3(3.7)</td>
<td>489.4(7.4)</td>
<td>480.1(14.8)</td>
</tr>
<tr>
<td></td>
<td>IBM01D V 10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM</td>
<td>623.9(1.8)</td>
<td>582.2(3.51)</td>
<td>551.3(7.0)</td>
<td>528.9(14.1)</td>
</tr>
<tr>
<td>CLIP</td>
<td>559.4(5.6)</td>
<td>521.3(11.2)</td>
<td>488.3(22.4)</td>
<td>465.2(44.8)</td>
</tr>
<tr>
<td>VRW</td>
<td>519.8(1.4)</td>
<td>494.6(2.8)</td>
<td>474.6(5.5)</td>
<td>461.9(11.1)</td>
</tr>
</tbody>
</table>
Observations

- Winning combinations are in bold in table
 - all FM VRW combinations are winning
 - FM VRW is superior to LIFO FM and CLIP FM

- Extending LIFO FM to FM VRW
 - Very simple (one-day effort)

- With very many terminals (see proceedings)
 - FM VRW is faster than hMetis, similar quality

- With few terminals (see proceedings)
 - FM VRW is better on some benchmarks, much worse on others
 - can perform both LIFO FM and FM VRW starts
Outline

- Fiduccia-Mattheyses Hypergraph Partitioning
- Partitioning With Terminals
- More Tuning Examples
- Multilevel Partitioning and Experimental Reporting
- End-Case Processing
Multilevel Partitioning

- **Used in the most efficient partitioners**
 - Karypis et al., DAC `97
 - Alpert et al., DAC `97

- **Basic idea (two levels)**
 - group original vertices together (in clusters)
 - induce clustered hypergraph
 - partition clustered hypergraph
 - assign original vertices to set1/set2 accordingly
 - refine by additional FM passes

- Also see 1998 paper by Wichlund and Aas
Multilevel Partitioning

Clustering

Refinement
Multi-level Partitioning

- Multi-level FM (MLFM)
 - does not directly use an initial partitioning
 - much better than “flat” FM, produces very good solutions in near-linear time
 - critical to performance of top-down placers

- Implementation choices in MLFM
 - V-cycling (“iterative ML”) - Karypis et al., DAC’97
 - a method of using an initial solution
 - avoids clustering vertices that are in different sets
 - allows us to run ML to improve results of previous runs
 - Top-level partitioning with small tolerance
 - first partition top level with lax tolerance
 - use the result as initial solution for another FM run
 - decrease tolerance to what it should be, run FM

- New clustering methods
- Of course, lots of tuning (solution pool size, un/coarsening ratios, etc.)

- One main conclusion: Locally optimized implementations look very different!
Clustering in Multilevel

- Needs to be fast
- HEM (Heavy-Edge Matching)
- EC (Edge Clustering) of Karypis et al.
 - for all pairs of adjacent vertices/clusters, add up weights of all hyperedges incident to both
 - every hyperedge contributes weight/degree (= 1/k model)
 - merge pairs in order of total weights
- PinEC
 - hyperedges of degree==2 contribute 2*weight, all others contribute weight
 - this corresponds to #pins removed by merging
 - Seems to work better in UCLA MLPart, but there are many other contextual differences (#V-cycles, #starts, …)
Reporting of Metaheuristic Experiments

- Long-discussed in the metaheuristics community (Gent94, Barr95)
- BSF = resource-equalized comparison of metaheuristics
Outline

- Fiduccia-Mattheyses Hypergraph Partitioning
- Partitioning With Terminals
- More Tuning Examples
- Multilevel Partitioning and Experimental Reporting
- End-Case Processing
Balanced Hypergraph Partitioning in Placement

- **Leading heuristics**
 - Kernighan-Lin (KL) `70, Fiduccia-Mattheyses (FM) `82,
 - Dutt and Deng (CLIP) `95, Multi-Level FM (MLFM) `90s

- **Advantages**
 - represents a “divide and conquer” approach
 - well-studied, fast, successful in practice

- **Disadvantages**
 - “wrong objective” for routable placement?
 - under-utilizes routing area over the cutlines!!!
 - few non-netcut objectives can be efficiently optimized
 - timing constraints difficult to capture
Partitioning-Driven Top-down Placement

- Placement blocks represent cells and layout area

- Each partitioning round:
 #blocks doubles, sizes halve
 Eventually, several cells in tiny region
Reduction of Top-Down Placement to Balanced Hypergraph Partitioning

- Blocks typically cut in the longer direction
 - Cuts *perpendicular* to rows
 - target balance 50/50
 - cut line adjusted after partitioning
 → large tolerance okay
 - Cuts *parallel* to rows
 - target determined by configuration of rows in block
 - cannot adjust cut line after partitioning
 → tolerance determined by whitespace, i.e., unused sites

- Some “subtleties”
 - Discrete legal cell locations (sites) in rows
 - Constraints on cell locations, e.g., fixed pads
 - Relationship of top-down mincut to net HPWL objective (recall: HPWL = practically optimizable estimator)?
Difficulties in Top-Down Placement

- Small partitioning tolerance
 - typically under few % of total cell area, often set to min cell size
 - smaller, more fragmented solution space
 - → iterative partitioners are hampered
 - problem worsens with modern cell libraries (more macro functions, larger range of drive strengths)
 - existing workarounds are distant from standard FM

- Small problem instances
 - few cells in block → each is a large % of total
 - cells larger than tolerances cannot move

→ Small instances harder for iterative partitioners
How to Improve Wirelength, Routability?

- Partitioning of large instances difficult to improve
 - use hMetis or MLPart

- Avoid very small partitioning instances
 - increase end-case placement threshold

- Avoid iterative partitioning on small instances
 - use enumerative and branch-and-bound methods

- Experimental questions:
 - does this improve placement quality?
 - how suboptimal is FM?
 - how much faster is FM than optimal partitioning?
 - what are the practical size limits for end-case placement and optimal partitioning?
Methods and Tools

- Complete top-down placer
 - reads industry-standard formats (Cadence LEF/DEF)
 - produces results comparable to commercial tools
- Partitioning and placement instances saved
- Optimal partitioners and placers
 - enumeration accelerated with Gray codes
 - straightforward branch-and-bound (no polytopes etc)
- Optimal partitioners/placers quickly implementable
Gray Code Enumeration of Partitionings

- Use model
 - traverse all solutions without repetition
 - re-assigning one node gives new solution: O(1) update
 - incrementally maintain partition balances and net cut
 - faster than lexicographic enumeration, where average-case update takes O(N) time
 - save best-seen solution

- Software for Gray code generation
 - simple: dozen lines in C (see paper)
 - lightning-fast, but memory hog
 - also works for k-way
B&B for Balanced Partitioning

- Not all solutions are traversed
- Based on lexicographic ordering of partitionings
- Assumes an ordering of nodes
- Branch-and-bound as a finite state machine
 - start with all nodes unassigned
 - assign/unassign nodes one by one using a stack
 - traverse the lexicographic tree of partial solutions
- Maintain "cut so far" on the stack
- Save first/best-seen complete solutions
- Prune branches with cut as big as best-seen
B&B for Balanced Partitioning

- Not all solutions traversed
- Based on lexicographic ordering of partitionings
- Assumes an ordering of nodes
- Branch-and-bound as a finite state machine
- Maintain "cut so far" on the stack
 - when node assigned (branching), cut can not decrease
 - when node unassigned (backtracking), cut readily available
- Save first/best-seen complete solutions
- Prune branches with cut as big as best-seen
B&B for Balanced Partitioning

- Not all solutions traversed
- Based on lexicographic ordering of partitionings
- Assumes an ordering of nodes
- Branch-and-bound as a finite state machine
- Maintain "cut so far" on the stack

- When first/best-seen complete solution reached
 - save solution
 - update best cut seen
 - unassign nodes (backtrack) to examine other branches

- Prune branches with cut as big as best-seen
Comparison Methodology

- Partitioning instances saved by placer
 - each instance has 10-50 nodes
 - instances binned by size for averaging
 - format publicly available (see ISPD-99 proceedings)

- “Good” instances
 - non-zero optimal cut (want to divide FM cut by optimal cut)
 - branch-and-bound takes longer than 0.0001 sec
 (FM always takes much longer)

- Indicators
 - run time ratio (X starts of FM vs one B&B run)
 - cut ratio (best of X starts of FM vs one B&B run)
Comparison with LIFO-FM

Num Nodes	Num Instances (Good)	Num Instances Sub Opt.	Num Instances							
10	160(134)	32	20.73	1.976	41.46	1.7	62.19	1.564	2073.1	1.08
12	94(83)	8	17.02	1.948	34.05	1.671	51.08	1.537	1702.7	1.029
14	58(55)	11	11.14	1.892	22.29	1.623	33.44	1.496	1114.9	1.042
16	65(62)	20	6.796	1.846	13.59	1.634	20.38	1.53	679.6	1.053
18	40(40)	25	4.43	1.907	8.86	1.717	13.29	1.628	443	1.149
20	42(40)	29	2.761	1.913	5.523	1.726	8.284	1.635	276.1	1.178
22	27(27)	22	1.429	2.001	2.857	1.81	4.286	1.721	142.8	1.217
24	30(30)	27	0.871	2.088	1.743	1.896	2.614	1.805	87.14	1.294
26	38(38)	38	0.512	2.368	1.023	2.171	1.535	2.072	51.16	1.512
28	31(31)	31	0.357	2.227	0.713	2.054	1.07	1.963	35.67	1.468
30	25(25)	24	0.151	1.973	0.302	1.834	0.453	1.765	15.11	1.39
32	13(13)	9	0.261	1.698	0.522	1.595	0.783	1.55	26.08	1.287
34	13(13)	13	0.078	2.773	0.155	2.562	0.233	2.447	7.759	1.816
Comparison with CLIP-FM

<table>
<thead>
<tr>
<th>Num Nodes</th>
<th>Num Instances (Good)</th>
<th>Num Instances Sub Opt.</th>
<th>1 Start Time</th>
<th>1 Start Cut</th>
<th>2 Starts Time</th>
<th>2 Starts Cut</th>
<th>3 Starts Time</th>
<th>3 Starts Cut</th>
<th>100 Starts Time</th>
<th>100 Starts Cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>160(124)</td>
<td>27</td>
<td>24.23</td>
<td>1.971</td>
<td>48.47</td>
<td>1.688</td>
<td>72.71</td>
<td>1.552</td>
<td>2423.8</td>
<td>1.07</td>
</tr>
<tr>
<td>12</td>
<td>94(86)</td>
<td>9</td>
<td>17.96</td>
<td>1.985</td>
<td>35.93</td>
<td>1.698</td>
<td>53.9</td>
<td>1.563</td>
<td>1796.8</td>
<td>1.035</td>
</tr>
<tr>
<td>14</td>
<td>58(55)</td>
<td>9</td>
<td>10.47</td>
<td>1.867</td>
<td>20.95</td>
<td>1.601</td>
<td>31.43</td>
<td>1.473</td>
<td>1047.9</td>
<td>1.036</td>
</tr>
<tr>
<td>16</td>
<td>65(65)</td>
<td>26</td>
<td>7.488</td>
<td>1.89</td>
<td>14.97</td>
<td>1.67</td>
<td>22.46</td>
<td>1.564</td>
<td>748.7</td>
<td>1.099</td>
</tr>
<tr>
<td>18</td>
<td>40(40)</td>
<td>26</td>
<td>3.926</td>
<td>1.908</td>
<td>7.851</td>
<td>1.72</td>
<td>11.77</td>
<td>1.623</td>
<td>392.5</td>
<td>1.157</td>
</tr>
<tr>
<td>20</td>
<td>42(42)</td>
<td>29</td>
<td>3.15</td>
<td>1.922</td>
<td>6.301</td>
<td>1.736</td>
<td>9.451</td>
<td>1.645</td>
<td>315</td>
<td>1.177</td>
</tr>
<tr>
<td>22</td>
<td>27(27)</td>
<td>21</td>
<td>1.422</td>
<td>1.999</td>
<td>2.843</td>
<td>1.817</td>
<td>4.265</td>
<td>1.72</td>
<td>142.1</td>
<td>1.245</td>
</tr>
<tr>
<td>24</td>
<td>30(30)</td>
<td>29</td>
<td>0.923</td>
<td>2.1</td>
<td>1.846</td>
<td>1.912</td>
<td>2.769</td>
<td>1.818</td>
<td>92.29</td>
<td>1.3</td>
</tr>
<tr>
<td>26</td>
<td>38(38)</td>
<td>37</td>
<td>0.519</td>
<td>2.38</td>
<td>1.037</td>
<td>2.185</td>
<td>1.556</td>
<td>2.086</td>
<td>51.86</td>
<td>1.541</td>
</tr>
<tr>
<td>28</td>
<td>31(31)</td>
<td>31</td>
<td>0.361</td>
<td>2.219</td>
<td>0.723</td>
<td>2.038</td>
<td>1.084</td>
<td>1.947</td>
<td>36.13</td>
<td>1.421</td>
</tr>
<tr>
<td>30</td>
<td>25(25)</td>
<td>24</td>
<td>0.155</td>
<td>1.988</td>
<td>0.311</td>
<td>1.849</td>
<td>0.466</td>
<td>1.781</td>
<td>15.53</td>
<td>1.369</td>
</tr>
<tr>
<td>32</td>
<td>13(13)</td>
<td>9</td>
<td>0.289</td>
<td>1.691</td>
<td>0.578</td>
<td>1.593</td>
<td>0.867</td>
<td>1.554</td>
<td>28.88</td>
<td>1.305</td>
</tr>
<tr>
<td>34</td>
<td>13(13)</td>
<td>13</td>
<td>0.08</td>
<td>2.747</td>
<td>0.161</td>
<td>2.54</td>
<td>0.241</td>
<td>2.427</td>
<td>8.049</td>
<td>1.816</td>
</tr>
</tbody>
</table>
For small partitioning instances saved from top-down placement:

- Gray code enumeration is faster than B&B for up to 9 nodes
- One start of FM and CLIP FM on a problem with 10 nodes is 20-23 times (!) slower than B&B on average
- CPU time ratio decreases to one at 23-30 nodes
- One start of FM or CLIP FM produces solutions with twice the optimal cut (on average)