Encoding/Decoding and Lower Bound for Sorting

CSE21 Winter 2017, Day 19 (B00), Day 13 (A00)

March 1, 2017

http://vlsicad.ucsd.edu/courses/cse21-w17
Announcements

HW #7 assigned
Due: Tuesday 2/7 11:59pm

MT2 handback in Gradescope
By Saturday, latest

HW #6 is in Gradescope
72-hour window for regrade requests
Goal: encode a length \(n \) binary string that we know has \(k \) ones (and \(n-k \) zeros).

How would you represent such a string with \(n-1 \) bits?

Can we do better? What if \(k \) is about half of \(n \)?

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.
Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?
Idea: give positions of 1s in the string within some smaller window.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = \underline{01}1000000010 ? Output:

There's a 1! What's its position?

```
  0  1  1  0
  00 01 10 11
```

This window has several 1s.
Use the first!
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 01

There's a 1! What's its position?
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 01

There's a 1! What's its position?
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 01\underline{1000000010} ?

Output: 0100

There's a 1! What's its position?
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 0100

No 1s in this window.
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode $s = 011000000010$? Output: 01000

No 1s in this window.
Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 01000

There's a 1! What's its position?
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 0100011

There's a 1! What's its position?
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010__? Output: 0100011

No 1s in this window.
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010? Output: 01000110.

No 1s in this window.
Idea: give positions of 1s in the string within some smaller window.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010? Output: 01000110.

Compressed to 8 bits!

But can we recover the original string? Decoding ...
Encoding: Fixed Density Strings

With \(n=12 \), \(k=3 \), window size \(n/k = 4 \). Output: 01000110

Can be parsed as the (intended) input: \(s = 011000000010 \)?
But also:

01: one in position 1
0: no ones
00: one in position 0
11: one in position 3
0: no ones

\(s' = 010000100010 \)

Problem: two different inputs with same output. Can't uniquely decode.
A valid compression algorithm must:

- Have outputs of shorter (or same) length as input.
- Be uniquely decodable.
Can we modify this algorithm to get unique decodability?

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010?

Output:
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example: \(n=12, k=3 \), window size \(n/k = 4 \).

How do we encode \(s = 011000000010 \)?

Output:
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = \(011000000010\)?

What output corresponds to these first few bits?

- A. 0
- B. 1
- C. 01
- D. 101
- E. None of the above.
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?

Output: 101

Interpret next bits as position of 1; this position is 01
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?
Output: 101
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example \(n=12, \ k=3, \) window size \(n/k = 4. \)

How do we encode \(s = 011000000010 \)?

Output: 101

A. 101000110
B. 1011000110
C. 1011000110
D. 10110000111
Idea: use marker bit to indicate when to interpret output as a position.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 01\textcolor{red}{1000000010} ?

Output: 101100

Interpret next bits as position of 1; this position is 00
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 101100
Idea: use marker bit to indicate when to interpret output as a position.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?
Output: 1011000

No 1s in this window.
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 1011000
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode \(s = 011000000010\) ?
Output: 1011000111

Interpret next bits as position of 1; this position is 11
Idea: use marker bit to indicate when to interpret output as a position.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010__ ? Output: 1011000111
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010? Output: 10110001110

No 1s in this window.
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010? Output: 10110001110

Compare to previous output: 01000110

Output uses more bits than last time. Any redundancies?
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example: n = 12, k = 3, window size n/k = 4.

How do we encode s = 011000000010? Output: 10110001110

Compare to previous output: 01000110

* Since k is known, after we see the last 1, we can stop since the rest are 0s. *
Encoding: Fixed Density Strings

procedure WindowEncode (input: $b_1b_2\ldots b_n$, with exactly k ones and $n-k$ zeros)

1. $w := \text{floor} \ (n/k)$
2. $\text{count} := 0$
3. $\text{location} := 1$
4. While $\text{count} < k$:
5. If there is a 1 in the window starting at current location
6. Output 1 as a marker, then output position of first 1 in window.
7. Increment count.
8. Update location to immediately after first 1 in this window.
9. Else
10. Output 0.
11. Update location to next index after current window.

Uniquely decodable?
Decoding: Fixed Density Strings

procedure WindowDecode (input: x₁x₂…xₘ, target is exactly k ones and n-k zeros)
1. w := floor (n/k)
2. b := floor (log₂(w))
3. s := empty string
4. i := 0
5. While i < m
6. If xᵢ = 0
7. s += 0…0 (j times)
8. i += 1
9. Else
10. p := decimal value of the bits xᵢ₊₁…xᵢ₊ᵇ
11. s += 0…0 (p times)
12. s += 1
13. i := i+b+1
14. If length(s) < n
15. s += 0…0 (n-length(s) times)
16. Output s.
Correctness?

\[E(s) = \text{result of encoding string } s \text{ of length } n \text{ with } k \text{ 1s, using } \text{WindowEncode}. \]

\[D(t) = \text{result of decoding string } t \text{ to create a string of length } n \text{ with } k \text{ 1s, using } \text{WindowDecode}. \]

Well-defined functions?

Inverses?

Can show that for each \(s \), \(D(E(s)) = s \).

Proof uses Strong Induction!
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

How long is E(s)?

A. n-1
B. log₂(n/k)
C. Depends on where 1s are located in s.
D. None of the above.
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

For which strings is $E(s)$ shortest?

A. More 1s toward the beginning.
B. More 1s toward the end.
C. 1s spread about evenly throughout.
Encoding/Decoding: Fixed Density Strings

Output size?

Assume \(n/k \) is a power of two. Consider \(s \) a binary string of length \(n \) with \(k \) 1s.

Best case: 1s toward the beginning of the string. \(E(s) \) has
- One bit for each 1 in \(s \) to indicate that next bits denote positions in window.
- \(\log_2(n/k) \) bits for each 1 in \(s \) to specify position of that 1 in a window.
- \(k \) such ones.
- No bits representing empty windows because all 0s are either "caught" in windows with 1s or after the last 1.

Total \(|E(s)| = k \log_2(n/k) + k \)
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

Worst case: 1s toward the end of the string. $E(s)$ has
- Some bits for empty windows since there are no 1s in first several windows.
- One bit for each 1 in s to indicate that next bits denote positions in window.
- $\log_2(n/k)$ bits for each 1 in s to specify position of that 1 in a window.
- k such ones.

What's an upper bound on the number of these bits?

A. n
B. $n-k$
C. 1
D. k
Output size?

Assume \(n/k \) is a power of two. Consider \(s \) a binary string of length \(n \) with \(k \) 1s.

Worst case: 1s toward the end of the string. \(E(s) \) has
- At most \(k \) bits for empty windows since at most \(k \) nonoverlapping windows of length \(n/k \) will fit in a string of length \(n \).
- One bit for each 1 in \(s \) to indicate that next bits denote positions in window.
- \(\log_2(n/k) \) bits for each 1 in \(s \) to specify position of that 1 in a window.
- \(k \) such ones.

Total \(|E(s)| \leq k \log_2(n/k) + 2k \)
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

\[k \log_2(n/k) + k \leq |E(s)| \leq k \log_2(n/k) + 2k \]

Using this inequality, there are at most ____ length n strings with k 1s.

A. \(2^n\)
B. n
C. \((n/k)^2\)
D. \((n/k)^k\)
E. None of the above.
Output size?

Assume \(n/k \) is a power of two. Consider \(s \) a binary string of length \(n \) with \(k \) 1s. Given \(|E(s)| \leq k \log_2(n/k) + 2k \), we need at most \(k \log_2(n/k) + 2k \) bits to represent all length \(n \) binary strings with \(k \) 1s. Hence, there are at most \(2^{k \log_2(n/k) + 2k} \) many such strings.
Assume \(n/k \) is a power of two. Consider \(s \) a binary string of length \(n \) with \(k \) 1s. Given \(|E(s)| \leq k \log_2(n/k) + 2k \), we need at most
\[k \log_2(n/k) + 2k \] bits to represent all length \(n \) binary strings with \(k \) 1s. Hence, there are at most
\[2^{(k \log_2(n/k) + 2k)} \] many such strings.

\[
2^{(k \log(n/k) + 2k)} = 2^{(k \log(n/k))} \cdot 2^{(2k)}
\]

\[
= \left(2^{(\log(n/k))}\right)^k \cdot 2^{(2k)}
\]

\[
= (n/k)^k \cdot 4^k = (4n/k)^k
\]
Output size?

Assume \(n/k \) is a power of two. Consider \(s \) a binary string of length \(n \) with \(k \) 1s. Given \(|E(s)| \leq k \log_2(n/k) + 2k \), we need at most \(k \log_2(n/k) + 2k \) bits to represent all length \(n \) binary strings with \(k \) 1s. Hence, there are at most \(2^{2(k \log_2(n/k) + 2k)} \) many such strings.

\[
2^{(k \log(n/k) + 2k)} = 2^{(k \log(n/k))} \cdot 2^{(2k)}
= \left(2^{(\log(n/k))}\right)^k \cdot 2^{(2k)}
= (n/k)^k \cdot 4^k = (4n/k)^k
\]

\(C(n,k) = \# \text{Length } n \text{ binary strings with } k \text{ 1s } \leq (4n/k)^k \)
Bounds for Binomial Coefficients

Using `windowEncode()`:
\[\binom{n}{k} \leq (4n/k)^k \]

Lower bound?

Idea: find a way to count a **subset** of the fixed density binary strings.

Some fixed density binary strings have one 1 in each of k chunks of size n/k.

How many such strings are there?

A. \(n^n \)
B. k!
C. \((n/k)^k\)
D. \(C(n,k)^k\)
E. None of the above.
Bounds for Binomial Coefficients

Using `windowEncode()`:

\[\binom{n}{k} \leq (4n/k)^k \]

Using evenly spread strings:

\[(n/k)^k \leq \binom{n}{k} \]

Counting helps us analyze our compression algorithm.

Compression algorithms help us count.
Theoretically Optimal Encoding

A theoretically optimal encoding for length n binary strings with k 1s would use the ceiling of \(\log_2 \binom{n}{k} \) bits.

How?
- List all length n binary strings with k 1s in some order.
- To encode: Store the position of a string in the list, rather than the string itself.
- To decode: Given a position in list, need to determine string in that position.
A theoretically optimal encoding for length n binary strings with k 1s would use
the ceiling of $\log_2 \binom{n}{k}$ bits.

How?
- List all length n binary strings with k 1s in some order.
- **To encode:** Store the position of a string in the list, rather than the string itself.
- **To decode:** Given a position in list, need to determine string in that position.

Use lexicographic (dictionary) ordering ...
Lex Order

String a comes before string b if the first time they differ, a is smaller.

I.e.

$$a_1a_2...a_n <_{lex} b_1b_2...b_n$$

means there exists j such that

$$a_i=b_i \text{ for all } i<j \text{ AND } a_j<b_j$$

Which of these comes last in lex order?
A. 1001 C. 1101 E. 0000
B. 0011 D. 1010
Lex Order

E.g. Length $n=5$ binary strings with $k=3$ ones, listed in lex order:

<table>
<thead>
<tr>
<th>Original string, s</th>
<th>Encoded string (i.e. position in this list)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00111</td>
<td>0 = 0000</td>
</tr>
<tr>
<td>01011</td>
<td>1 = 0001</td>
</tr>
<tr>
<td>01101</td>
<td>2 = 0010</td>
</tr>
<tr>
<td>01110</td>
<td>3 = 0011</td>
</tr>
<tr>
<td>10011</td>
<td>4 = 0100</td>
</tr>
<tr>
<td>10101</td>
<td>5 = 0101</td>
</tr>
<tr>
<td>10110</td>
<td>6 = 0110</td>
</tr>
<tr>
<td>11001</td>
<td>7 = 0111</td>
</tr>
<tr>
<td>11010</td>
<td>8 = 1000</td>
</tr>
<tr>
<td>11100</td>
<td>9 = 1001</td>
</tr>
</tbody>
</table>
Lex Order: Algorithm?

Need two algorithms, given specific n and k:

$$s \rightarrow E(s,n,k)$$

and

$$p \rightarrow D(p,n,k)$$

Idea: Use recursion.

Key insight: In lex order, strings that start with 0 come before strings that start with 1.
For $E(s,n,k)$:

- Any string that starts with 0 must have position before $\binom{n-1}{k}$
- Any string that starts with 1 must have position at or after $\binom{n-1}{k}$
Lex Order: Algorithm?

For $E(s, n, k)$:

- Any string that starts with 0 must have position before $\binom{n-1}{k}$
- Any string that starts with 1 must have position at or after $\binom{n-1}{k}$

```
procedure lexEncode ($b_1b_2...b_n$, n, k)
  1. If $n = 1$,
  2.    return 0.
  3. If $s_1 = 0$,
  4.    return lexEncode ($b_2...b_n$, n-1, k)
  5. Else
  6.    return $C(n-1,k) + \text{lexEncode}(b_2...b_n, n-1, k-1)$
```
Lex Order: Algorithm?

For D(s,n,k):

- Any position before \(\binom{n-1}{k} \) must correspond to string that starts with 0.
- Any position at or after \(\binom{n-1}{k} \) must correspond to string that starts with 1.

procedure lexDecode (p, n, k)
1. If \(n = k \),
2. return 1111..1 //length n string of all 1s
3. If \(p < C(n-1,k) \),
4. return "0" + lexDecode(p, n-1, k)
5. Else
6. return "1" + lexDecode(p-C(n-1,k), n-1, k-1)
Using `lexEncode`, `lexDecode`, we can represent any fixed density length n binary string with k 1s as one of $C(n,k)$ positions.

So, it takes $\log_2(C(n,k))$ bits to store fixed-density binary strings using lex order.

Theoretical lower bound: $\log_2(C(n,k))$.

Same! So this encoding algorithm is optimal.
Another application of counting ... lower bounds

Sorting algorithm: performance was measured in terms of number of comparisons between list elements

What's the fastest possible worst case for any sorting algorithm?
Another application of counting … lower bounds

Sorting algorithm: performance was measured in terms of number of comparisons between list elements

What's the **fastest possible worst case** for any sorting algorithm?

Tree diagram for a sorting algorithm represents possible comparisons we might have to do, based on relative sizes of elements.

Sometimes called a decision tree
Another application of counting … lower bounds

Tree diagram for a sorting algorithm

Rosen p. 761
Another application of counting … lower bounds

Sorting algorithm: performance was measured in terms of number of comparisons between list elements.

What's the fastest possible worst case for any sorting algorithm?

Maximum (worst-case) number of comparisons for a sorting algorithm is the **height** of its tree diagram.
Another application of counting … lower bounds

How many leaves will there be in a decision tree that sorts n elements?

A. 2^n
B. $\log n$
C. $n!$
D. $C(n,2)$
E. None of the above.
Another application of counting … lower bounds

Sorting algorithm: performance was measured in terms of number of comparisons between list elements

What's the *fastest possible worst case* for any sorting algorithm?

max # of comparisons = **height** of tree diagram

For any algorithm, what would be **smallest possible height**?

What do we know about the tree?

* Internal nodes correspond to comparisons.
* Leaves correspond to possible input arrangements.
Another application of counting … lower bounds

Sorting algorithm: performance was measured in terms of number of comparisons between list elements

What's the **fastest possible worst case** for any sorting algorithm?

max # of comparisons = **height** of tree diagram

For any algorithm, what would be **smallest possible height**?

What do we know about the tree?
* Internal nodes correspond to comparisons.
* Leaves correspond to possible input arrangements. $n!$
Another application of counting ... lower bounds

How does height relate to number of leaves?

Theorem: There are at most 2^h leaves in a binary tree with height h.

Which of the following is true?

A. It's possible to have a binary tree with height 3 and 1 leaf.
B. It's possible to have a binary tree with height 1 and 3 leaves.
C. Every binary tree with height 3 has 1 leaf.
D. Every binary tree with height 1 has 3 leaves.
E. None of the above.
How does height relate to number of leaves?

Theorem: There are at most 2^h leaves in a binary tree with height h.

Which of the following is true?

A. It's possible to have a binary tree with height 3 and 1 leaf.
B. It's possible to have a binary tree with height 1 and 3 leaves.
C. Every binary tree with height 3 has 1 leaf.
D. Every binary tree with height 1 has 3 leaves.
E. None of the above.

Proof by induction on h.
Another application of counting … lower bounds

What's the **fastest possible worst case** for any sorting algorithm?

max # of comparisons = **height** of tree diagram

\[
\# \text{ leaves } \leq 2^h \\
n! \leq 2^h \\
\log_2 n! \leq h \\
h \geq \log_2 n!
\]

Fastest possible worst case performance of sorting is \(\log_2(n!) \)
Another application of counting ... lower bounds

What's the **fastest possible worst case** for any sorting algorithm? \(\log_2(n!) \)

How big is that?

Lemma: For \(n > 1 \),

\[
\left(\frac{n}{2} \right)^{\frac{n}{2}} < n! < n^n
\]
Another application of counting … lower bounds

What's the **fastest possible worst case** for any sorting algorithm? \(\log_2(n!) \)

How big is that?

Lemma: For \(n > 1 \), \(\left(\frac{n}{2} \right)^{\frac{n}{2}} < n! < n^n \)

Theorem: \(\log_2(n!) \) is in \(\Theta(n \log n) \)

Proof: For \(n > 1 \), taking logs of both sides in the lemma gives

\[
\frac{n}{2} \log \left(\frac{n}{2} \right) < \log_2(n!) < n \log n
\]

\[
\frac{1}{2} \left(n \log n - n \log 2 \right) < \log_2(n!) < n \log n
\]
Another application of counting … lower bounds

What's the fastest possible worst case for any sorting algorithm? \(\log_2(n!) \)

How big is that? \(\Theta(n \log n) \)

Therefore, the best sorting algorithms will need \(\Theta(n \log n) \) comparisons in the worst case.

It's impossible to have a comparison-based algorithm that does better than *Merge Sort* (in the worst case).
Announcements

HW #7 assigned
Due: Tuesday 2/7 11:59pm

MT2 handback in Gradescope
By Saturday, latest

HW #6 is in Gradescope
72-hour window for regrade requests

OH’s and 1-1 Slots
Use them well !!!