CSE21 Winter 2017, Day 6 (B00), Day 4 (A00)

January 23, 2017

http://vlsicad.ucsd.edu/courses/cse21-w17
Today’s Plan

Analyzing algorithms that solve other problems
(besides sorting and searching)

Designing better algorithms
 • pre-processing
 • re-use of computation
Given a list of real numbers

\[a_1, a_2, \ldots, a_n \]

look for three indices, \(i, j, k \) (each between 1 and \(n \)) such that

\[a_i + a_j = a_k \]

Does the list 3,6,5,7,8 have a summing triple?

A. Yes: 1,2,3
B. Yes: 1,3,5
C. No

The correct answer is: B. Yes: 1,3,5
Given a list of real numbers

\[a_1, a_2, \ldots, a_n \]

look for three indices, i, j, k (each between 1 and n) such that

\[a_i + a_j = a_k \]

Design an algorithm to look for summing triples

output True if a summing triple exists
output False otherwise.
Summing Triples: HOW (1)

\[\text{SumTriples1}(a_1, \ldots, a_n : \text{real numbers}) \]

\[
\begin{align*}
\text{for } i & := 1 \text{ to } n \\
\text{for } j & := 1 \text{ to } n \\
& \quad \text{for } k := 1 \text{ to } n \\
& \quad \quad \text{if } a_i + a_j = a_k \text{ then return } true \\
\text{return } false
\end{align*}
\]

What's the best-case runtime of this algorithm?
A. \(O(1) \)
B. \(O(n) \)
C. \(O(n^2) \)
D. \(O(n^3) \)
E. None of the above
Summing Triples: HOW (1)

$SumTriples_1(a_1, \ldots, a_n : \text{real numbers})$

for $i := 1$ to n

for $j := 1$ to n

for $k := 1$ to n

if $a_i + a_j = a_k$ then return true

return false

Describe all best-case inputs…?
Summing Triples: HOW (1)

\[\text{SumTriples1}(a_1, \ldots, a_n \text{ : real numbers}) \]

\[
\text{for } i := 1 \text{ to } n \\
\quad \text{for } j := 1 \text{ to } n \\
\quad \quad \text{for } k := 1 \text{ to } n \\
\quad \quad \quad \text{if } a_i + a_j = a_k \text{ then return } true \\
\]

return false

What’s the worst-case runtime of this algorithm?
A. \(O(1) \)
B. \(O(n) \)
C. \(O(n^2) \)
D. \(O(n^3) \)
E. None of the above
Summing Triples: HOW (1)

\[\text{SumTriples1}(a_1, \ldots, a_n : \text{real numbers}) \]

\[
\text{for } i := 1 \text{ to } n \\
\quad \text{for } j := 1 \text{ to } n \\
\quad \quad \text{for } k := 1 \text{ to } n \\
\quad \quad \quad \text{if } a_i + a_j = a_k \text{ then return } true \\
\]

return false

the commutative property of addition
Summing Triples: HOW (2)

\[\text{SumTriples1}(a_1, \ldots, a_n : \text{real numbers})\]

\[
\text{for } i := 1 \text { to } n \quad \text{Eliminate redundancy} \\
\quad \text{for } j := 1 \text { to } n \quad \text{if } a_i + a_j = a_k \text{ then return } true \\
\quad \text{return } false
\]
Summing Triples: HOW (2)

SumTriples2(\(a_1, \ldots, a_n\) : real numbers)

\[
\begin{align*}
&\text{for } i := 1 \text{ to } n \\
&\quad \text{for } j := i \text{ to } n \\
&\quad \quad \text{for } k := 1 \text{ to } n \\
&\quad \quad \quad \text{if } a_i + a_j = a_k \text{ then return } true
\end{align*}
\]

\[
\frac{n(n-1)(n-2)}{3} = \Theta(n^3)
\]

What's the worst-case runtime of this algorithm?

A. O(1)
B. O(n)
C. O(n^2)
D. O(n^3)
E. None of the above
Summing Triples: HOW (2)

$SumTriples2(a_1, \ldots, a_n : \text{real numbers})$

for $i := 1$ to n

for $j := i$ to n

for $k := 1$ to n

if $a_i + a_j = a_k$ then return true

return false

Eliminate redundancy

Hmmmm…

Can we do better? How?
Store all values \((a_i + a_j)\) for \(i \leq j\). This array \(A\) has \(\frac{n(n-1)}{2}\) many elements.

for \(e\) in \(A\)
 for \(i = 1 \ldots n\)
 if \(a_i = e\) then return true
Summing Triples: HOW (2)

Reframing what we did:

\[\text{SumTriples2}(a_1, \ldots, a_n : \text{real numbers}) \]

\[
\begin{align*}
\text{for } i &:= 1 \text { to } n \\
\text{for } j &:= i \text { to } n \\
\text{for } k &:= 1 \text { to } n \\
\text{if } a_i + a_j = a_k & \text { then return true} \\
\text{return false}
\end{align*}
\]

For each candidate sum \(a_i + a_j \), do linear search to find it.

Improvements??
Summing Triples: HOW (2)

$\text{SumTriples2}(a_1, \ldots, a_n : \text{real numbers})$

\begin{align*}
\text{for } i & := 1 \text{ to } n \\
\text{for } j & := i \text{ to } n \\
\text{for } k & := 1 \text{ to } n \\
& \quad \text{do linear search to find it} \\
\text{if } a_i + a_j = a_k & \text{ then return true} \\
\text{return } false
\end{align*}

We have a faster search than linear search!
Summing Triples: HOW (3)

We are given a list of n real numbers a_1, \ldots, a_n. We want to find three of these numbers a_i, a_j, a_k such that their sum equals a target value x. The problem is to determine if such a triplet exists.

The algorithm uses a binary search to find a target sum S for each pair $a_i + a_j$. If a S such that $a_i + a_j = S$ is found, then a solution exists.

We assume that the list is sorted, which allows us to use binary search.

```
for i := 1 to n
  for j := i to n
    if BinarySearch(a_i + a_j; a_1, \ldots, a_n)
      then return true
  return false
```

For each candidate sum $a_i + a_j$, do binary search to find it.

Worst-case runtime?

A. $O(n^3)$
B. $O(n^2)$
C. $O(n^2 \log n)$
D. $O(n \log n)$
Summing Triples: HOW (3)

$SumTriples3(a_1, \ldots, a_n : \text{real numbers})$

for $i := 1$ to n

for $j := i$ to n

if $BinarySearch(a_i + a_j; a_1, \ldots, a_n)$

then return $true$

return $false$

Something is wrong!
Summing Triples: HOW (3)

\[\text{SumTriples3}(a_1, \ldots, a_n : \text{real numbers}) \]

\[
\begin{align*}
\text{for } i & := 1 \text{ to } n \\
\text{for } j & := i \text{ to } n \\
\text{if } & \text{BinarySearch}(a_i + a_j; a_1, \ldots, a_n) \\
\text{then return } & \text{true} \\
\text{return } & \text{false}
\end{align*}
\]

For each candidate sum \(a_i + a_j\), do binary search to find it.

Does this algorithm really work?
Summing Triples: HOW (4)

This algorithm works! How long does it take?

\[\text{Preprocessing step} \]

\[O(n^2) \]

\[O(n^2 \log n) \]

\[\text{SumTriples4}(a_1, \ldots, a_n : \text{real numbers}) \]

\[\text{MinSort}(a_1, \ldots, a_n) \]

\[\text{SumTriples3}(a_1, \ldots, a_n) \]

\[\text{in total we have} \]

\[O(n^2) + O(n^2 \log n) = O(n^2 \log n) \]
Summing Triples: HOW (4)

$\text{SumTriples}_4(a_1, \ldots, a_n : \text{real numbers})$

$\text{MinSort}(a_1, \ldots, a_n) \quad \text{O}(n^2)$

$\text{SumTriples}_3(a_1, \ldots, a_n) \quad \text{O}(n^2 \log n)$

SumTriples$_4$ worst-case complexity is \max of these: $O(n^2 \log n)$
Summing Triples: HOW (4)

$SumTriples4(a_1, \ldots, a_n : \text{real numbers})$

$MinSort(a_1, \ldots, a_n)$ \hspace{2cm} $O(n^2)$

$SumTriples3(a_1, \ldots, a_n)$ \hspace{2cm} $O(n^2 \log n)$

Max of these: $O(n^2 \log n)$

- $SumTriples4$ does better than $O(n^3)$.
- Using a faster sort won't help overall.
- Fastest known algorithm: $O(n^2)$
“Tight”?

To know that we've actually made improvements, need to make sure our original analysis was not overly pessimistic.

A **tight** bound for runtime is a function $g(n)$ so that the runtime is in $\Theta(g(n))$

Big-O: upper bound.

Big-Ω: lower bound.
Summing Triples: WHEN (1)

`SumTriples1(a_1, \ldots, a_n : \text{real numbers})`

```plaintext
for i := 1 to n
    for j := 1 to n
        for k := 1 to n
            if a_i + a_j = a_k then return true
```

return false

What's a lower bound on the worst-case runtime of this algorithm?

A. $\Omega(1)$
B. $\Omega(n)$
C. $\Omega(n^2)$
D. $\Omega(n^3)$

E. None of the above
Summing Triples: WHEN (1)

\[\text{SumTriples1}(a_1, \ldots, a_n : \text{real numbers}) \]

\[
\text{for } i := 1 \text{ to } n \\
\text{for } j := 1 \text{ to } n \\
\hspace{1cm} \text{for } k := 1 \text{ to } n \\
\hspace{2cm} \text{if } a_i + a_j = a_k \text{ then return } \text{true} \quad \Omega(n) \\
\]

\text{return } \text{false} \\

\text{Strategy: work from the inside out}
Summing Triples: WHEN (2)

SumTriples2 \((a_1, \ldots, a_n : \text{real numbers}) \)

\[
\text{for } i := 1 \text{ to } n \\
\quad \text{for } j := i \text{ to } n \\
\quad \quad \text{for } k := 1 \text{ to } n \\
\quad \quad \quad \text{if } a_i + a_j = a_k \text{ then return true}
\]

return false

What's a lower bound on the worst-case runtime of this algorithm?

A. \(\Omega(1) \)
B. \(\Omega(n) \)
C. \(\Omega(n^2) \)
D. \(\Omega(n^3) \)
E. None of the above
Summing Triples: WHEN (2)

\[
\text{SumTriples2}(a_1, \ldots, a_n : \text{real numbers})
\]

\[
\begin{align*}
&\text{for } i := 1 \text{ to } n \\
&\quad \text{for } j := i \text{ to } n \\
&\quad\quad \text{for } k := 1 \text{ to } n \\
&\quad\quad\quad \text{if } a_i + a_j = a_k \text{ then return true}
\end{align*}
\]

return false
Observe: in both these examples, the product rule for calculating the nested loop runtime gave us tight upper bounds … is that always the case?
When is the product rule for nested loops tight?

Nested code:

\[\text{while (Guard Condition)} \]

\[\text{Body of the Loop,} \]

\[\text{May contain other loops, etc.} \]

If Guard Condition is \(O(1)\) and body of the loop has runtime \(O(T_2)\) in the worst case and run at most \(O(T_1)\) iterations, then runtime is

\[O(T_1 T_2) \]

But what if many \(t_k\) are much better than the worst case?
Intersecting sorted lists: WHAT

Given two sorted lists

\[a_1, a_2, \ldots, a_n \text{ and } b_1, b_2, \ldots, b_n \]

determine if there are indices \(i, j \) such that

\[a_i = b_j \]

Design an algorithm to look for indices of intersection
Intersecting sorted lists: HOW

Given two sorted lists

\[a_1, a_2, \ldots, a_n \text{ and } b_1, b_2, \ldots, b_n \]

determine if there are indices \(i,j \) such that

\[a_i = b_j \]

High-level description:

- Use linear search to see if \(b_1 \) is anywhere in first list, using early abort
- Since \(b_2 > b_1 \), start the search for \(b_2 \) where the search for \(b_1 \) left off
- And in general, start the search for \(b_j \) where the search for \(b_{j-1} \) left off
Intersect \((a_1, \ldots, a_n, b_1, \ldots, b_n)\)

\[
i := 1
\]

\[
\text{for } j := 1 \text{ to } n
\]

\[
\text{while } (b_j > a_i \text{ and } i \leq n)
\]

\[
i := i + 1
\]

\[
\text{if } i > n \text{ then return } false
\]

\[
\text{if } b_j = a_i \text{ then return } true
\]

return \(false\)
Intersect sorted lists: WHY

\[Intersect(a_1, \ldots, a_n, b_1, \ldots, b_n) \]

\[
i := 1
\]

\[
\text{for } j := 1 \text{ to } n
\]

\[
\text{while } (b_j > a_i \text{ and } i \leq n)
\]

\[
\quad i := i + 1
\]

\[
\text{if } i > n \text{ then return false}
\]

\[
\text{if } b_j = a_i \text{ then return true}
\]

return false

To practice: trace examples & generalize argument for correctness
Intersecting sorted lists: WHEN

\[\text{Intersect}(a_1, \ldots, a_n, b_1, \ldots, b_n) \]

\[i := 1 \]

\[\text{for } j := 1 \text{ to } n \]

\[\text{while } (b_j > a_i \text{ and } i \leq n) \]

\[i := i + 1 \]

\[\text{if } i > n \text{ then return false} \]

\[\text{if } b_j = a_i \text{ then return true} \]

return false

Using product rule

\[O(n) \quad \text{worst case} \]

\[O(1) \]
Intersecting sorted lists: WHEN

Using product rule

\[\text{Intersect}(a_1, \ldots, a_n, b_1, \ldots, b_n) \]

\[i := 1 \]

\[\text{for } j := 1 \text{ to } n \]

\[\text{return } \text{false} \]

Total: \(O(n^2) \)
Intersecting sorted lists: WHEN

More careful analysis …

\[\text{Intersect}(a_1, \ldots, a_n, b_1, \ldots, b_n) \]

\[i := 1 \]

\[\text{for } j := 1 \text{ to } n \]

\[\text{while } (b_j > a_i \text{ and } i \leq n) \]

\[i := i + 1 \]

\[\text{if } i > n \text{ then return false} \]

\[\text{if } b_j = a_i \text{ then return true} \]

\[\text{return false} \]

Every time the while loop condition is true, \(i \) is incremented. If \(i \) ever reaches \(n+1 \), the program terminates (returns).
Intersecting sorted lists: WHEN

More careful analysis …

\[\text{Intersect}(a_1, \ldots, a_n, b_1, \ldots, b_n) \]

\[i := 1 \]

\[\text{for} \ j := 1 \text{ to } n \]

\[\text{while} \ (b_j > a_i \text{ and } i \leq n) \]

\[i := i + 1 \]

\[\text{if } i > n \text{ then return false} \]

\[\text{if } b_j = a_i \text{ then return true} \]

\[\text{return false} \]

This executes O(n) times total (across all iterations of for loop)
Intersect sorted lists: WHEN

More careful analysis ...

\[\text{Intersect}(a_1, \ldots, a_n, b_1, \ldots, b_n) \]

\[i := 1 \]

\[\text{for } j := 1 \text{ to } n \]

\[\text{while } (b_j > a_i \text{ and } i \leq n) \]

\[i := i + 1 \]

\[\text{if } i > n \text{ then return false} \]

\[\text{if } b_j = a_i \text{ then return true} \]

\[\text{return false} \]

Total: \(O(n) \)

This executes \(O(n) \) times total (across all iterations of for loop)

Be careful: product rule isn't always tight!
Announcements

HW2 Due tomorrow! (Tues 1/24, 11:59PM)

Practice with Order Notation on Khan Academy
e.g., https://www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/big-o-notation

1-1 Signup
Is available…!