Randomized Algorithms: Element Distinctness

CSE21 Winter 2017, Day 25 (B00), Day 17-18 (A00)

March 15, 2017

http://vlsicad.ucsd.edu/courses/cse21-w17
Given list of positive integers a_1, a_2, \ldots, a_n decide whether all the numbers are distinct or whether there is a repetition, i.e. two positions i, j with $1 \leq i < j \leq n$ such that $a_i = a_j$.

What algorithm would you choose in general?
Element Distinctness: HOW

Given list of positive integers \(a_1, a_2, \ldots, a_n\) decide whether all the numbers are distinct or whether there is a repetition, i.e. two positions \(i, j\) with \(1 \leq i < j \leq n\) such that \(a_i = a_j\).

What algorithm would you choose in general? Can sorting help?

Algorithm: first sort list and then step through to find duplicates. What's its runtime?

A. \(\Theta(1)\)
B. \(\Theta(n)\)
C. \(\Theta(n \log n)\)
D. \(\Theta(n^2)\)
E. None of the above
Element Distinctness: HOW

Given list of positive integers $a_1, a_2, ..., a_n$ decide whether all the numbers are distinct or whether there is a repetition, i.e. two positions i, j with $1 \leq i < j \leq n$ such that $a_i = a_j$.

What algorithm would you choose in general? Can sorting help?

Algorithm: first sort list and then step through to find duplicates. How much memory does it require?
A. $\Theta(1)$
B. $\Theta(n)$
C. $\Theta(n \log n)$
D. $\Theta(n^2)$
E. None of the above
Element Distinctness: HOW

Given list of positive integers a_1, a_2, \ldots, a_n decide whether all the numbers are distinct or whether there is a repetition, i.e. two positions i, j with $1 \leq i < j \leq n$ such that $a_i = a_j$.

What algorithm would you choose in general? What if we had unlimited memory?
Given list of positive integers \(A = a_1, a_2, \ldots, a_n \),

\textbf{UnlimitedMemoryDistinctness}(A)
1. For \(i = 1 \) to \(n \),
2. If \(M[a_i] = 1 \) then return "Found repeat"
3. Else \(M[a_i] := 1 \)
4. Return "Distinct elements"

What's the runtime of this algorithm?
A. \(\Theta(1) \)
B. \(\Theta(n) \)
C. \(\Theta(n \log n) \)
D. \(\Theta(n^2) \)
E. None of the above
Element Distinctness: HOW

Given list of positive integers $A = a_1, a_2, ..., a_n$,

$\text{UnlimitedMemoryDistinctness}(A)$
1. For $i = 1$ to n,
2. If $M[a_i] = 1$ then return "Found repeat"
3. Else $M[a_i] := 1$
4. Return "Distinct elements"

What's the runtime of this algorithm?
A. $\Theta(1)$
B. $\Theta(n)$
C. $\Theta(n \log n)$
D. $\Theta(n^2)$
E. None of the above

What's the memory use of this algorithm?
A. $\Theta(1)$
B. $\Theta(n)$
C. $\Theta(n \log n)$
D. $\Theta(n^2)$
E. None of the above
Element Distinctness: HOW

To simulate having more memory locations: use **Virtual Memory**.

Define **hash function**

\[h: \{ \text{desired memory locations} \} \rightarrow \{ \text{actual memory locations} \} \]

- Typically we want more memory than we have, so \(h \) is **not one-to-one**.
- How to implement \(h \)?
 - CSE 12, CSE 100.
- Here, let's use hash functions in an algorithm for Element Distinctness.
Element Distinctness: HOW

Given list of positive integers $A = a_1, a_2, \ldots, a_n$, and m memory locations available

HashDistinctness(A, m)
1. Initialize array $M[1,..,m]$ to all 0s.
2. Pick a hash function h from all positive integers to $1,..,m$.
3. For $i = 1$ to n,
4. If $M[h(a_i)] = 1$ then return "Found repeat"
5. Else $M[h(a_i)] := 1$
6. Return "Distinct elements"
Given list of positive integers \(A = a_1, a_2, \ldots, a_n \), and \(m \) memory locations available

HashDistinctness(\(A, m \))
1. Initialize array \(M[1,\ldots,m] \) to all 0s.
2. Pick a hash function \(h \) from all positive integers to \(1,\ldots,m \).
3. For \(i = 1 \) to \(n \),
4. If \(M[h(a_i)] = 1 \) then return "Found repeat"
5. Else \(M[h(a_i)] := 1 \)
6. Return "Distinct elements"
Element Distinctness: HOW

Given list of positive integers \(A = a_1, a_2, \ldots, a_n \), and \(m \) memory locations available

\[
\text{HashDistinctness}(A, m)
\]
1. Initialize array \(M[1,\ldots,m] \) to all 0s.
2. Pick a hash function \(h \) from all positive integers to 1,\ldots,\(m \).
3. For \(i = 1 \) to \(n \),
4. If \(M[h(a_i)] = 1 \) then return "Found repeat"
5. Else \(M[h(a_i)] := 1 \)
6. Return "Distinct elements"

What's the memory use of this algorithm?
A. \(\Theta(1) \)
B. \(\Theta(n) \)
C. \(\Theta(n \log n) \)
D. \(\Theta(n^2) \)
E. None of the above
Given list of positive integers $A = a_1, a_2, \ldots, a_n$, and m memory locations available

HashDistinctness(A, m)

1. Initialize array $M[1,\ldots,m]$ to all 0s.
2. Pick a hash function h from all positive integers to $1,\ldots,m$.
3. For $i = 1$ to n,
4. If $M[h(a_i)] = 1$ then return "Found repeat"
5. Else $M[h(a_i)] := 1$
6. Return "Distinct elements"

But this algorithm might make a mistake!!! When?
Element Distinctness: WHY

Given list of positive integers $A = a_1, a_2, \ldots, a_n$, and m memory locations available

$\text{HashDistinctness}(A, m)$
1. Initialize array $M[1,..,m]$ to all 0s.
2. Pick a hash function h from all positive integers to $1,..,m$.
3. For $i = 1$ to n,
4. If $M[h(a_i)] = 1$ then return "Found repeat"
5. Else $M[h(a_i)] := 1$
6. Return "Distinct elements"

Correctness:
Goal is
If there is a repetition, algorithm finds it
If there is no repetition, algorithm reports "Distinct elements"
Element Distinctness: WHY

Given list of positive integers $A = a_1, a_2, \ldots, a_n$, and m memory locations available

HashDistinctness(A, m)
1. Initialize array $M[1,..,m]$ to all 0s.
2. Pick a hash function h from all positive integers to 1,..,m.
3. For $i = 1$ to n,
4. If $M[h(a_i)] = 1$ then return "Found repeat"
5. Else $M[h(a_i)] := 1$
6. Return "Distinct elements"

Correctness: Goal is
If there is a repetition, algorithm finds it ✓
If there is no repetition, algorithm reports "Distinct elements" ❌ Hash Collisions
Resolving collisions with chaining

Hash Table

Each memory location holds a pointer to a linked list, initially empty.

Each linked list records the items that map to that memory location.

Collision means there is more than one item in this linked list
Element Distinctness: HOW

Given list of positive integers \(A = a_1, a_2, \ldots, a_n\), and \(m\) memory locations available

\textbf{ChainHashDistinctness}(A, m)

1. Initialize array \(M[1,\ldots,m]\) to null lists.
2. Pick a hash function \(h\) from all positive integers to \(1,\ldots,m\).
3. For \(i = 1\) to \(n\),
 4. For each element \(j\) in \(M[h(a_i)]\),
 5. If \(a_j = a_i\) then return "Found repeat"
 6. Append \(a_i\) to the tail of the list \(M[h(a_i)]\)
7. Return "Distinct elements"
Element Distinctness: WHY

Given list of positive integers $A = a_1, a_2, \ldots, a_n$, and m memory locations available

ChainHashDistinctness(A, m)
1. Initialize array $M[1,\ldots,m]$ to null lists.
2. Pick a hash function h from all positive integers to $1,\ldots,m$.
3. For $i = 1$ to n,
 4. For each element j in $M[h(a_i)]$,
 5. If $a_j = a_i$ then return "Found repeat"
 6. Append a_i to the tail of the list $M[h(a_i)]$
4. Return "Distinct elements"

Correctness: Goal is
If there is a repetition, algorithm finds it
If there is no repetition, algorithm reports "Distinct elements"
Element Distinctness: MEMORY

Given list of positive integers $A = a_1, a_2, \ldots, a_n$, and m memory locations available

ChainHashDistinctness(A, m)
1. Initialize array $M[1,\ldots,m]$ to null lists.
2. Pick a hash function h from all positive integers to $1,\ldots,m$.
3. For $i = 1$ to n,
4. For each element j in $M[h(a_i)]$,
5. If $a_j = a_i$ then return "Found repeat"
6. Append a_i to the tail of the list $M[h(a_i)]$
7. Return "Distinct elements"

What's the memory use of this algorithm?
Given list of positive integers \(A = a_1, a_2, \ldots, a_n \), and \(m \) memory locations available

ChainHashDistinctness\((A, m)\)

1. Initialize array \(M[1,\ldots,m] \) to null lists.
2. Pick a hash function \(h \) from all positive integers to \(1,\ldots,m \).
3. For \(i = 1 \) to \(n \),
4. For each element \(j \) in \(M[h(a_i)] \),
5. If \(a_j = a_i \) then return "Found repeat"
6. Append \(a_i \) to the tail of the list \(M[h(a_i)] \)
7. Return "Distinct elements"

What's the memory use of this algorithm?

Size of \(M \): \(O(m) \). Total size of all the linked lists: \(O(n) \). Total memory: \(O(m+n) \).
Element Distinctness: WHEN

\begin{algorithm}
\textbf{ChainHashDistinctness}(A, m)
\begin{enumerate}
\item Initialize array $M[1,..,m]$ to null lists.
\item Pick a hash function h from all positive integers to $1,..,m$.
\item For $i = 1$ to n,
\item \hspace{1em} For each element j in $M[h(a_i)]$,
\item \hspace{2em} If $a_j = a_i$ then return "Found repeat"
\item \hspace{1em} Append a_i to the tail of the list $M[h(a_i)]$
\item Return "Distinct elements" \hspace{1em} $\Theta(1)$
\end{enumerate}
\end{algorithm}
Element Distinctness: WHEN

ChainHashDistinctness(A, m)
1. Initialize array M[1,..,m] to null lists.
2. Pick a hash function h from all positive integers to 1,..,m.
3. For i = 1 to n,
4. For each element j in M[h(a_i)],
5. If $a_j = a_i$ then return "Found repeat"
6. Append a_i to the tail of the list M[h(a_i)]
7. Return "Distinct elements"

Worst case is when we don't find a_i: $O(1 + \text{size of list } M[h(a_i)])$
Element Distinctness: WHEN

ChainHashDistinctness(A, m)
1. Initialize array M[1,..,m] to null lists.
2. Pick a hash function h from all positive integers to 1,..,m.
3. For $i = 1$ to n,
4. For each element j in M[$h(a_i)$],
 If $a_j = a_i$ then return "Found repeat"
5. Append a_i to the tail of the list M[$h(a_i)$]
6. Return "Distinct elements"

Worst case is when we don't find a_i:
$O(1 + \text{size of list } M[h(a_i)])$
= $O(1 + \# \text{j<i with } h(a_j)=h(a_i))$
Element Distinctness: WHEN

ChainHashDistinctness(A, m)
1. Initialize array M[1,..,m] to null lists.
2. Pick a hash function \(h \) from all positive integers to 1,..,m.
3. For \(i = 1 \) to \(n \),
4. For each element \(j \) in M[\(h(a_i) \)],
5. If \(a_j = a_i \) then return "Found repeat"
6. Append \(a_i \) to the tail of the list M[\(h(a_i) \)]
7. Return "Distinct elements"

Total time: \(O(n + \sum_{i=1}^{n} \# \text{collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i) \)

\[= O(n + \text{total # collisions}) \]
Element Distinctness: WHEN

Collisions depend on choice of **hash function**

\[h: \{ \text{desired memory locations} \} \rightarrow \{ \text{actual memory locations} \} \]

Ideal hash function model: each output in \{1,2,\ldots,m\} is equally likely.

So \(h \) is a function that chooses a random number in \{1,2,\ldots,m\} for each input \(a_i \).
Element Distinctness: WHEN

Total time: $O(n + \sum_{i=1}^{n} \# \text{collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i)$

$= O(n + \text{total # collisions})$

How can I find the total number of collisions?

Doesn’t it depend on the random assignment to memory locations?
Element Distinctness: WHEN

Total time: $O(n + \sum_{i=1}^{n} \# \text{collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i)$

= $O(n + \text{total # collisions})$
Element Distinctness: WHEN

Total time: $O(n + \sum_{i=1}^{n} \# \text{collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i) \leq O(n + \text{total } \# \text{collisions})$

Expected value!
Element Distinctness: WHEN

Total time: $O(n + \sum_{i=1}^{n} \# \text{collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i)$

$= O(n + \text{total } \# \text{collisions})$

LINEARITY OF EXPECTATION!
Element Distinctness: WHEN

Total time: \(O(n + \sum_{i=1}^{n} \# \text{ collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i) \)

\[= O(n + \text{total # collisions}) \]

What's the expected total number of collisions?
Element Distinctness: WHEN

Total time: \(O(n + \sum_{i=1}^{n} \text{# collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i) \)

\[= O(n + \text{total # collisions}) \]

What's the expected total number of collisions?

For each pair \((i,j)\) with \(j<i\), define:

\[X_{i,j} = 1 \text{ if } h(a_i)=h(a_j) \text{ and } X_{i,j}=0 \text{ otherwise.} \]

Total # of collisions = \(\sum_{(i,j):j<i} X_{i,j} \)
Element Distinctness: WHEN

Total time: \(O(n + \sum_{i=1}^{n} \text{# collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i) \)

\[= O(n + \text{total # collisions}) \]

What's the expected total number of collisions?

For each pair \((i,j)\) with \(j<i\), define:

\[X_{i,j} = 1 \text{ if } h(a_i) = h(a_j) \text{ and } X_{i,j} = 0 \text{ otherwise.} \]

Total # of collisions = \(\sum_{(i,j): j<i} X_{i,j} \)

So by linearity of expectation: \(E(\text{total # of collisions}) = \sum_{(i,j): j<i} E(X_{i,j}) \)
Element Distinctness: WHEN

Total time: \(O(n + \sum_{i=1}^{n} \# \text{collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i) \)

\[= \ O(n + \text{total # collisions}) \]

What's the expected total number of collisions?

For each pair (i,j) with j<i, define:

\[X_{i,j} = 1 \text{ if } h(a_i) = h(a_j) \text{ and } X_{i,j} = 0 \text{ otherwise.} \]

Total # of collisions = \(\sum_{(i,j):j<i} X_{i,j} \)

What's \(E(X_{i,j}) \)?

A. 1/n
B. 1/m
C. 1/n^2
D. 1/m^2
E. None of the above.
Element Distinctness: WHEN

Total time: $O(n + \sum_{i=1}^{n} \# \text{collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i)$

= $O(n + \text{total # collisions})$

What's the expected total number of collisions?

For each pair (i,j) with $j<i$, define:

$X_{i,j} = 1$ if $h(a_i)=h(a_j)$ and $X_{i,j}=0$ otherwise.

Total # of collisions = $\sum_{(i,j):j<i} X_{i,j}$

How many terms are in the sum? That is, how many pairs (i,j) with $j<i$ are there?

A. n
B. n^2
C. $C(n,2)$
D. $n(n-1)$
Element Distinctness: WHEN

Total time: $O(n + \sum_{i=1}^{n} \# \text{collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i)$

$= O(n + \text{total # collisions})$

What's the expected total number of collisions?

For each pair (i,j) with $j<i$, define: $X_{i,j} = 1$ if $h(a_i)=h(a_j)$ and $X_{i,j}=0$ otherwise.

So by linearity of expectation:

$$E(\text{total # of collisions}) = \sum_{(i,j): j<i} E(X_{i,j}) = \binom{n}{2} \frac{1}{m} = O(n^2/m)$$
Element Distinctness: WHEN

Total time: $O(n + \sum_{i=1}^{n} \text{# collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i)$

$= O(n + \text{total # collisions})$

Total expected time: $O(n + n^2/m)$

In ideal hash model, as long as $m>n$ the total expected time is $O(n)$.

Note: This is much better than our original approach using sorting.
Announcements

Final Exam
A00: Wednesday 3/22 7pm
B00: Friday 3/24 11:30am

HW 8
Due Wednesday 11:59pm

OHs, 1-1s
Now is the time!

Two Final Exam Review Sessions
Saturday 3/18 1-3pm
Sunday 3/19 1-3pm
Locations TBD
Final Exam PPs posted
TTK has been started