“Notes” slides from before lecture

CSE 21, Winter 2017, Section A00

Lecture 17 Notes

Class URL: http://vlsicad.ucsd.edu/courses/cse21-w17/
Notes March 13 (1)

- **This week:** Days 25 (24), 26 of posted slides
 - Element distinctness, randomized selection \(\rightarrow\) pulling recursion, randomization, conditional probability, algorithm design all together
 - Review (Wednesday)

- **HW8 is due on Wednesday.**

- **Final exam reviews:**
 - Saturday 1-3pm York 2722
 - Sunday 1-3pm Center 101

- **FINAL EXAM WILL BE IN CENTER 101 (entire class) !!!**
 - Two pieces of paper allowed

- Please fill out CAPEs – thank you

- Any logistic, other issues?
Element Distinctness: WHAT

Given list of positive integers a_1, a_2, \ldots, a_n decide whether all the numbers are distinct or whether there is a repetition, i.e. two positions i, j with $1 \leq i < j \leq n$ such that $a_i = a_j$.

What algorithm would you choose in general?

- "Sort" then traverse sorted list to see if adjacent elements are equal
- "Hash"
- bucket/radix sort in $\Theta(n)$ if n's are bounded
Element Distinctness: HOW

Given list of positive integers a_1, a_2, \ldots, a_n decide whether all the numbers are distinct or whether there is a repetition, i.e. two positions i, j with $1 \leq i < j \leq n$ such that $a_i = a_j$.

What algorithm would you choose in general? Can sorting help?

Algorithm: first sort list and then step through to find duplicates. What's its runtime?

A. $\Theta(1)$
B. $\Theta(n)$
C. $\Theta(n \log n)$
D. $\Theta(n^2)$
E. None of the above
Element Distinctness: HOW

Given list of positive integers a_1, a_2, \ldots, a_n decide whether all the numbers are distinct or whether there is a repetition, i.e. two positions i, j with $1 \leq i < j \leq n$ such that $a_i = a_j$.

What algorithm would you choose in general? Can sorting help?

Algorithm: first sort list and then step through to find duplicates. How much memory does it require?

- A. $\Theta(1)$
- B. $\Theta(n)$
- C. $\Theta(n \log n)$
- D. $\Theta(n^2)$
- E. None of the above

no extra memory used if “in-place” sorting algorithm is used.
Element Distinctness: HOW

Given list of positive integers a_1, a_2, \ldots, a_n decide whether all the numbers are distinct or whether there is a repetition, i.e. two positions i, j with $1 \leq i < j \leq n$ such that $a_i = a_j$.

What algorithm would you choose in general? What if we had unlimited memory?
Element Distinctness: HOW

Given list of positive integers $A = a_1, a_2, \ldots, a_n$,

1. For $i = 1$ to n,
2. If $M[a_i] = 1$ then return "Found repeat"
3. Else $M[a_i] := 1$
4. Return "Distinct elements"

What's the runtime of this algorithm?
A. $\Theta(1)$
B. $\Theta(n)$
C. $\Theta(n \log n)$
D. $\Theta(n^2)$
E. None of the above
Given list of positive integers $A = a_1, a_2, \ldots, a_n$,

UnlimitedMemoryDistinctness(A)
1. For $i = 1$ to n,
2. If $M[a_i] = 1$ then return "Found repeat"
3. Else $M[a_i] := 1$
4. Return "Distinct elements"

What's the runtime of this algorithm?
A. $\Theta(1)$
B. $\Theta(n)$
C. $\Theta(n \log n)$
D. $\Theta(n^2)$
E. None of the above

What's the memory use of this algorithm?
A. $\Theta(1)$
B. $\Theta(n)$
C. $\Theta(n \log n)$
D. $\Theta(n^2)$
E. None of the above

depends on value of max list element
Element Distinctness: HOW

To simulate having more memory locations: use Virtual Memory.

Define hash function

\[h: \{ \text{desired memory locations} \} \rightarrow \{ \text{actual memory locations} \} \]

- Typically we want more memory than we have, so \(h \) is not one-to-one.
- How to implement \(h \)?
 - CSE 12, CSE 100.
- Here, let's use hash functions in an algorithm for Element Distinctness.
Virtual Memory Applications

Not just in this algorithm but in many computational settings we want to simulate a huge space of possible memory locations but where we are only going to access a small fraction.

For example, suppose you have a company of 5,000 employees and each is identified by their SSN. You want to be able to access employee records by their SSN.

You don’t want to keep a table of all possible SSN’s so we’ll use a virtual memory data structure to emulate having that huge table.
Ideally, we could use a very unpredictable function called a **hash function** to assign random physical locations to each virtual location.

Assume that we have a function h so that for every virtual location v, $h(v)$ is uniformly and randomly chosen among the physical locations.

We call such an h an **ideal hash function** if it is computable in constant time.
Element Distinctness: HOW

Given list of positive integers $A = a_1, a_2, \ldots, a_n$, and m memory locations available

$\text{HashDistinctness}(A, m)$
1. \checkmark Initialize array $M[1,..,m]$ to all 0s.
2. Pick a hash function h from all positive integers to $\{1,..,m\}$
3. For $i = 1$ to n, $\forall a_i \in A$
4. If $M[h(a_i)] = 1$ then return "Found repeat"
5. Else $M[h(a_i)] := 1$
6. Return "Distinct elements"

\[h = \text{"mod 10"} \]
\[m = 10 \]
\[\text{input} = 27, 19, 36, 24, 17 \]

$\text{\textcircled{7}}$ $\text{\textcircled{9}}$ $\text{\textcircled{c}}$ $\text{\textcircled{4}}$ $\text{\textcircled{7}}$
Element Distinctness: HOW

Given list of positive integers \(A = a_1, a_2, \ldots, a_n \), and \(m \) memory locations available

HashDistinctness\((A, m)\)

1. Initialize array \(M[1,\ldots,m] \) to all 0s. \(O(m) \)
2. Pick a hash function \(h \) from all positive integers to 1,\ldots,m.
3. For \(i = 1 \) to \(n \),
4. \(\rightarrow \) If \(M[h(a_i)] = 1 \) then return "Found repeat"
5. \(\rightarrow \) Else \(M[h(a_i)] := 1 \)
6. Return "Distinct elements"

What's the runtime of this algorithm?

A. \(\Theta(1) \)
B. \(\Theta(n) \)
C. \(\Theta(n \log n) \)
D. \(\Theta(n^2) \)
E. None of the above
Given list of positive integers $A = a_1, a_2, \ldots, a_n$, and m memory locations available.

HashDistinctness(A, m)
1. Initialize array $M[1,..,m]$ to all 0s.
2. Pick a hash function h from all positive integers to $1,..,m$.
3. For $i = 1$ to n,
4. If $M[h(a_i)] = 1$ then return "Found repeat"
5. Else $M[h(a_i)] := 1$
6. Return "Distinct elements"

What's the memory use of this algorithm?
A. $\Theta(1)$
B. $\Theta(n)$
C. $\Theta(n \log n)$
D. $\Theta(n^2)$
E. None of the above

$\Theta(m)$, indep of n
Element Distinctness: WHY

Given list of positive integers \(A = a_1, a_2, \ldots, a_n \), and \(m \) memory locations available

\[
\text{HashDistinctness}(A, m)
\]
1. Initialize array \(M[1,\ldots,m] \) to all 0s.
2. Pick a hash function \(h \) from all positive integers to \(1,\ldots,m \).
3. For \(i = 1 \) to \(n \),
4. If \(M[h(a_i)] = 1 \) then return "Found repeat"
5. Else \(M[h(a_i)] := 1 \)
6. Return "Distinct elements"

But this algorithm might make a mistake!!!

\[
\begin{align*}
53 & \equiv 3 \pmod{10} \\
43 & \equiv 3 \pmod{10}
\end{align*}
\]
but \(53 \neq 43 \)
Element Distinctness: WHY

Given list of positive integers $A = a_1, a_2, \ldots, a_n$, and m memory locations available

HashDistinctness(A, m)
1. Initialize array $M[1,..,m]$ to all 0s.
2. Pick a hash function h from all positive integers to 1,..,m.
3. For $i = 1$ to n,
4. If $M[h(a_i)] = 1$ then return "Found repeat"
5. Else $M[h(a_i)] := 1$
6. Return "Distinct elements"

Correctness: Goal is
If there is a repetition, algorithm finds it
If there is no repetition, algorithm reports "Distinct elements"

Currently, fail this goal

43, ..., 43

$\times \ 43, \ldots, 53$
Birthday paradox

One example where people are misled is the *birthday paradox*.

What is the chance of two people in a group sharing the same birthday?

Example: What is the chance that, in a group of 30 people, two share the same birthday?
Where is the connection?

Think of elements in the array = people

Days of the year = memory locations

\(h(\text{person}) = \text{birthday} \)

collisions mean that two people share the same birthday.

\(\Pr(\text{collision}) \)
General Birthday Paradox-type Phenomena

We have n objects and m places. We are putting each object at random into one of the places. What is the probability that 2 objects occupy the same place?

$$Pr = (1 - \frac{2}{m})$$

- prob that 3^{rd} object causes no collision given no collision before

$$Pr = 1 - \frac{(i-1)}{m}$$

$$\text{Prob(no collisions)} = ?$$

- $n=1 \Rightarrow P = 1$
- $n=2 \Rightarrow P = (1 - \frac{1}{n})$
Using conditional probabilities, the probability there is no collisions is \[1(1-1/m)(1-2/m)\ldots(1-(n-1)/m)\]

Then using the fact that \(1 - x \leq e^{-x}\),

\[
p \leq \prod_{i=1}^{n} e^{-\frac{i-1}{m}} = e^{-\sum_{i=1}^{n} \frac{i-1}{m}} = e^{-\frac{\binom{n}{2}}{m}}
\]
Conditional Probabilities

\[p \leq \prod_{i=1}^{n} e^{-\frac{i-1}{m}} = e^{-\sum_{i=1}^{n} \frac{i-1}{m}} = e^{\frac{n(n-1)}{2m}} \]

We want \(p \) to be close to 1 so \(\frac{n(n-1)}{2m} \) should be small, i.e. \(m \gg \frac{n^2}{2} \).

In the element distinctness algorithm, we need the number of memory locations to be at least \(\Omega(n^2) \).
Conditional Probabilities

$$p \leq \prod_{i=1}^{n} e^{-\frac{i-1}{m}} = e^{-\sum_{i=1}^{n} \frac{i-1}{m}} = e^{-\frac{n}{2}}$$

On the other hand, it is possible to show that if $m \gg n^2$ then there are no collisions with high probability. i.e.

$$p > 1 - \frac{{n \choose 2}}{m}$$

So if m is large then p is close to 1.
Element Distinctness: WHY

Given list of positive integers $A = a_1, a_2, \ldots, a_n$, and m memory locations available

$\text{HashDistinctness}(A, m)$
1. Initialize array $M[1,\ldots,m]$ to all 0s.
2. Pick a hash function h from all positive integers to $1,\ldots,m$.
3. For $i = 1$ to n,
4. If $M[h(a_i)] = 1$ then return "Found repeat"
5. Else $M[h(a_i)] := 1$
6. Return "Distinct elements"

Correctness: Goal is
If there is a repetition, algorithm finds it ✔
If there is no repetition, algorithm reports "Distinct elements"

Hash Collisions
Resolving collisions with chaining

Hash Table

Each memory location holds a pointer to a linked list, initially empty.

Each linked list records the items that map to that memory location.

Collision means there is more than one item in this linked list.
Element Distinctness: HOW

Given list of positive integers $A = a_1, a_2, \ldots, a_n$, and m memory locations available

$\text{ChainHashDistinctness}(A, m)$

1. Initialize array $M[1,\ldots,m]$ to null lists.
2. Pick a hash function h from all positive integers to $1,\ldots,m$.
3. For $i = 1$ to n,
 4. For each element j in $M[h(a_i)]$,
 5. If $a_j = a_i$ then return "Found repeat"
 6. Append a_i to the tail of the list $M[h(a_i)]$
3. Return "Distinct elements"
Element Distinctness: WHY

Given list of positive integers $A = a_1, a_2, \ldots, a_n$, and m memory locations available

ChainHashDistinctness(A, m)
1. Initialize array $M[1,..,m]$ to null lists.
2. Pick a hash function h from all positive integers to $1,..,m$.
3. For $i = 1$ to n,
4. For each element j in $M[h(a_i)]$,
5. If $a_j = a_i$ then return "Found repeat"
6. Append a_i to the tail of the list $M[h(a_i)]$
7. Return "Distinct elements"

Correctness: Goal is
If there is a repetition, algorithm finds it
If there is no repetition, algorithm reports "Distinct elements"
Element Distinctness: MEMORY

Given list of positive integers $A = a_1, a_2, \ldots, a_n$, and m memory locations available

ChainHashDistinctness(A, m)
1. Initialize array $M[1,\ldots,m]$ to null lists.
2. Pick a hash function h from all positive integers to $1,\ldots,m$.
3. For $i = 1$ to n,
4. For each element j in $M[h(a_i)]$,
5. If $a_j = a_i$ then return "Found repeat"
6. Append a_i to the tail of the list $M[h(a_i)]$
7. Return "Distinct elements"

What's the memory use of this algorithm?

$O(m)$ memory locations in M

$O(n) = \text{total size of linked lists}$
Given list of positive integers $A = a_1, a_2, \ldots, a_n$, and m memory locations available.

ChainHashDistinctness(A, m)
1. Initialize array $M[1,..,m]$ to null lists.
2. Pick a hash function h from all positive integers to $1,..,m$.
3. For $i = 1$ to n,
4. For each element j in $M[h(a_i)]$,
5. If $a_j = a_i$ then return "Found repeat"
6. Append a_i to the tail of the list $M[h(a_i)]$
7. Return "Distinct elements"

What's the memory use of this algorithm?
Size of M: $O(m)$. Total size of all the linked lists: $O(n)$. Total memory: $O(m+n)$.
Element Distinctness: WHEN

\[\text{ChainHashDistinctness}(A, m) \]

1. Initialize array \(M[1,..,m] \) to null lists.
2. Pick a hash function \(h \) from all positive integers to \(1,..,m \).
3. For \(i = 1 \) to \(n \),
 4. For each element \(j \) in \(M[h(a_i)] \),
 5. If \(a_j = a_i \) then return "Found repeat"
 6. Append \(a_i \) to the tail of the list \(M[h(a_i)] \)
7. Return "Distinct elements" \(\Theta(1) \)
Element Distinctness: WHEN

ChainHashDistinctness(A, m)
1. Initialize array M[1,..,m] to null lists.
2. Pick a hash function h from all positive integers to 1,..,m.
3. For i = 1 to n,
4. For each element j in M[h(a_i)],
5. If a_j = a_i then return "Found repeat"
6. Append a_i to the tail of the list M[h(a_i)]
7. Return "Distinct elements"

Worst case is when we don't find a_i:
O(1 + size of list M[h(a_i)])
Element Distinctness: WHEN

ChainHashDistinctness(A, m)
1. Initialize array M[1,..,m] to null lists.
2. Pick a hash function h from all positive integers to 1,..,m.
3. For i = 1 to n,
4. For each element j in M[h(a_i)],
5. If a_j = a_i then return "Found repeat"
6. Append a_i to the tail of the list M[h(a_i)]
7. Return "Distinct elements"

Worst case is when we don't find a_i:

\[O(1 + \text{size of list } M[h(a_i)]) \]
\[= O(1 + \# j<i \text{ with } h(a_j) = h(a_i)) \]
Element Distinctness: WHEN

ChainHashDistinctness(A, m)
1. Initialize array M[1,..,m] to null lists.
2. Pick a hash function h from all positive integers to 1,..,m.
3. For i = 1 to n,
 4. For each element j in M[h(a_i)],
 5. If a_j = a_i then return "Found repeat"
 6. Append a_i to the tail of the list M[h(a_i)]
4. Return "Distinct elements"

Total time: $O(n + \sum_{i=1}^{n} \# \text{collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i)$

= $O(n + \text{total # collisions})$
Collisions depend on choice of hash function

\[h: \{ \text{desired memory locations} \} \rightarrow \{ \text{actual memory locations} \} \]

Ideal hash function model: each output in \(\{1,2,\ldots,m\} \) is equally likely.

So \(h \) is a function that chooses a random number in \(\{1,2,\ldots,m\} \) for each input \(a_i \).
Element Distinctness: WHEN

Total time: $O(n + \sum_{i=1}^{n} \# \text{collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i)$

$= O(n + \text{total # collisions})$

How can I find the total number of collisions?

Doesn’t it depend on the random assignment to memory locations?
Element Distinctness: WHEN

Total time: $O(n + \sum_{i=1}^{n} \# \text{ collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i)$

$= O(n + \text{ total # collisions})$

random variable!
Element Distinctness: WHEN

Total time: $O(n + \sum_{i=1}^{n} \# \text{collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i \)$

= $O(n + \text{total # collisions})$

expected value!
Element Distinctness: WHEN

Total time: $O(n + \sum_{i=1}^{n} \# \text{ collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i)$

= $O(n + \text{total # collisions})$

linearity of expectation!
Element Distinctness: WHEN

Total time: $O(n + \sum_{i=1}^{n} \# \text{ collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i)$

$= O(n + \text{ total } \# \text{ collisions})$

What's the expected total number of collisions?
Element Distinctness: WHEN

Total time: $O(n + \sum_{i=1}^{n} \text{# collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i)$

$= O(n + \text{total # collisions})$

What's the expected total number of collisions?

For each pair (i,j) with $j<i$, define:

$X_{i,j} = 1$ if $h(a_i)=h(a_j)$ and $X_{i,j}=0$ otherwise.

Total # of collisions = $\sum_{(i,j):j<i} X_{i,j}$

$C(n,2) \cdot \frac{1}{m}$
Element Distinctness: WHEN

Total time: $O(n + \sum_{i=1}^{n} \text{# collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i)$

$= O(n + \text{total # collisions})$

What's the expected total number of collisions?

For each pair (i,j) with $j<i$, define:

$X_{i,j} = 1$ if $h(a_i)=h(a_j)$ and $X_{i,j}=0$ otherwise.

Total # of collisions $= \sum_{(i,j): j<i} X_{i,j}$

So by linearity of expectation: $E(\text{total # of collisions}) = \sum_{(i,j): j<i} E(X_{i,j})$
Element Distinctness: WHEN

Total time: \(O(n + \sum_{i=1}^{n} \text{# collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i) \)

\[= O(n + \text{total # collisions}) \]

What's the expected total number of collisions?

For each pair \((i,j)\) with \(j<i\), define:

\(X_{i,j} = 1 \) if \(h(a_i) = h(a_j) \) and \(X_{i,j}=0 \) otherwise.

Total # of collisions = \(\sum_{(i,j):j<i} X_{i,j} \)

What's \(E(X_{i,j}) \)?

A. \(1/n \)
B. \(1/m \)
C. \(1/n^2 \)
D. \(1/m^2 \)
E. None of the above.
Element Distinctness: WHEN

Total time: $O(n + \sum_{i=1}^{n} \text{# collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i)$

$$= O(n + \text{total # collisions})$$

What's the expected total number of collisions?

For each pair (i,j) with $j<i$, define:

$X_{i,j} = 1$ if $h(a_i)=h(a_j)$ and $X_{i,j}=0$ otherwise.

Total # of collisions $= \sum_{(i,j): j<i} X_{i,j}$

How many terms are in the sum? That is, how many pairs (i,j) with $j<i$ are there?

A. n
B. n^2
C. $C(n,2)$
D. $n(n-1)$
Element Distinctness: WHEN

Total time: \(O(n + \sum_{i=1}^{n} \text{# collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i) \)

\[= O(n + \text{total # collisions}) \]

What's the expected total number of collisions?

For each pair \((i,j)\) with \(j<i\), define:

\(X_{i,j} = 1 \) if \(h(a_i) = h(a_j) \) and \(X_{i,j} = 0 \) otherwise.

So by linearity of expectation:

\[E(\text{total # of collisions}) = \sum_{(i,j): j<i} E(X_{i,j}) = \binom{n}{2} \frac{1}{m} = O(n^2/m) \]
Element Distinctness: WHEN

Total time: $O(n + \sum_{i=1}^{n} \# \text{collisions between pairs } a_i \text{ and } a_j, \text{ where } j<i)$

$= O(n + \text{total } \# \text{collisions})$

Total expected time: $O(n + n^2/m)$

In ideal hash model, as long as $m>n$ the total expected time is $O(n)$.

Note: This is much better than our original approach using sorting.
Randomized Algorithms: Selection

CSE21 Winter 2017, Day 24 (B00), Day 16 (A00)

March 13, 2017

http://vlsicad.ucsd.edu/courses/cse21-w17
Selection Problem: WHAT

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$,

find the i^{th} smallest element in the list.
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$, find the i^{th} smallest element in the list.

What algorithm would you choose if $i=1$?
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$,
find the i^{th} smallest element in the list.

What algorithm would you choose in general?

\[i = \frac{n}{2} \quad ? \quad \Theta(n^2) \times \]
\[i = 7 \quad ? \]
\[7 \cdot n \]
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$,
find the i^{th} smallest element in the list.

What algorithm would you choose in general? Can sorting help?

Algorithm: first sort list, and then step through to find i^{th} smallest. What's its runtime?

A. $\Theta(1)$
B. $\Theta(n)$
C. $\Theta(n \log n)$
D. $\Theta(n^2)$
E. None of the above
Selection Problem: HOW

Given list of distinct integers \(a_1, a_2, \ldots, a_n \) and integer \(i, 1 \leq i \leq n \), find the \(i \)th smallest element in the list.

What algorithm would you choose in general? Different strategy ...

Pick random list element called the “pivot”

Partition list into those Smaller than pivot, those Bigger than pivot

Using \(i \) and size of partition sets \(S \) and \(B \), determine in which set to continue looking.
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$, find the i^{th} smallest element in the list.

Pick random list element called “pivot.”
Partition list into those smaller than pivot, those bigger than pivot.
Using i and size of partition sets, determine in which set to continue looking.

ex. 17, 42, 3, 8, 19, 21, 2 \hspace{1cm} i = 3 \hspace{1cm} n = 7$
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$, find the i^{th} smallest element in the list.

Pick random list element called ‘pivot.’
Partition list into those smaller than pivot, those bigger than pivot.
Using i and size of partition sets, determine in which set to continue looking.

ex. 17, 42, 3, 8, 19, 21, 2 $i = 3$ Random pivot: 17

$S = 2, 3, 8$ $p = 17$ $B = 42, 19, 21$
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$, find the i^{th} smallest element in the list.

Pick random list element called “pivot.”
Partition list into those smaller than pivot, those bigger than pivot.
Using i and size of partition sets, determine in which set to continue looking.

ex. $17, 42, 3, 8, 19, 21, 2$\hfill i = 3 \hfill \text{Random pivot: 17}

Smaller than 17: $3, 8, 2$\hfill Bigger than 17: $42, 19, 21$

$|S| = 3$ \hfill $p = 17$
look in S with $i = 3$
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$, find the i^{th} smallest element in the list.

Pick random list element called “pivot.”
Partition list into those smaller than pivot, those bigger than pivot.
Using i and size of partition sets, determine in which set to continue looking.

ex. 17, 42, 3, 8, 19, 21, 2 \hspace{1cm} i = 3 \hspace{1cm} \text{Random pivot: 17}

\textbf{Smaller than 17: 3, 8, 2} \hspace{1cm} \textbf{Bigger than 17: 42, 19, 21}

Has 3 elements so third smallest must be in this set
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$, find the i^{th} smallest element in the list.

Pick random list element called “pivot.”
Partition list into those smaller than pivot, those bigger than pivot.
Using i and size of partition sets, determine in which set to continue looking.

ex. $17, 42, 3, 8, 19, 21, 2$ $i = 3$ Random pivot: 17
New list: $3, 8, 2$ $i = 3$

$S = 2, 3$ $p = 8$ $B = |S| = s$ $s + 1 = i \Rightarrow$ DONE!
Given list of distinct integers a_1, a_2, \ldots, a_n and integer $i, 1 \leq i \leq n$, find the i^{th} smallest element in the list.

Pick random list element called “pivot.”
Partition list into those smaller than pivot, those bigger than pivot.
Using i and size of partition sets, determine in which set to continue looking.

ex. $17, 42, 3, 8, 19, 21, 2$ $\underline{i = 3}$ Random pivot: 17
New list: 3, 8, 2 $\underline{i = 3}$ Random pivot: 8
Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$, find the i^{th} smallest element in the list.

Pick random list element called “pivot.”
Partition list into those smaller than pivot, those bigger than pivot.
Using i and size of partition sets, determine in which set to continue looking.

ex. $17, 42, 3, 8, 19, 21, 2$ $i = 3$ Random pivot: 17
New list: 3, 8, 2 $i = 3$ Random pivot: 8
Smaller than 8: 3, 2 Bigger than 8:
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$, find the i^{th} smallest element in the list.

Pick random list element called “pivot.”
Partition list into those smaller than pivot, those bigger than pivot. Using i and size of partition sets, determine in which set to continue looking.

ex. $17, 42, 3, 8, 19, 21, 2$ $i = 3$ Random pivot: 17
New list: 3, 8, 2 $i = 3$ Random pivot: 8

Smaller than 8: 3, 2

Bigger than 8:

Has 2 elements so third smallest must be "next" element, i.e., 8
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$, find the i^{th} smallest element in the list.

Pick random list element called “pivot.”
Partition list into those smaller than pivot, those bigger than pivot.
Using i and size of partition sets, determine in which set to continue looking.

ex. $17, 42, 3, 8, 19, 21, 2$ $i = 3$ Random pivot: 17
New list: 3, 8, 2 $i = 3$ Random pivot: 8
Smaller than 8: 3, 2 Bigger than 8:

Return 8 compare to original list: 17, 42, 3, 8, 19, 21, 2
Selection Problem: HOW

Given list of distinct integers $A = a_1, a_2, \ldots, a_n$ and integer i, $1 \leq i \leq n$,
Selection Problem: HOW

Given list of distinct integers $A = a_1, a_2, \ldots, a_n$ and integer i, $1 \leq i \leq n$,
$\text{RandSelect}(A, i)$
1. If $n=1$ return a_1

What are we doing in this first line?

A. Establishing the base case of the recursion.
B. Establishing the induction step.
C. Randomly picking a pivot.
D. Randomly returning a list element.
E. None of the above.
Selection Problem: HOW

Given list of distinct integers $A = a_1, a_2, \ldots, a_n$ and integer i, $1 \leq i \leq n$, $\text{RandSelect}(A, i)$

1. If $n=1$ return a_1
2. Initialize lists S and B.
3. Pick integer j uniformly at random from 1 to n.
4. For each index k from 1 to n (except j):
 5. if $a_k < a_j$, add a_k to the list S.
 6. if $a_k > a_j$, add a_k to the list B.

"pivot about $p = a_j$ process..."

\[S \quad a_j \quad B \]

\[2 \quad 3 \quad 8 \]

// index of random pivot element

in its proper position!!!
Selection Problem: HOW

Given list of distinct integers \(A = a_1, a_2, \ldots, a_n \) and integer \(i, \ 1 \leq i \leq n \),

\[\text{RandSelect}(A, i) \]

1. If \(n=1 \) return \(a_1 \)
2. Initialize lists \(S \) and \(B \).
3. Pick integer \(j \) uniformly at random from 1 to \(n \).
4. For each index \(k \) from 1 to \(n \) (except \(j \)):
5. \(\text{if } a_k < a_j, \text{ add } a_k \text{ to the list } S. \)
6. \(\text{if } a_k > a_j, \text{ add } a_k \text{ to the list } B. \)
7. \(\text{Let } s \text{ be the size of } S. \)
8. \(\text{If } s = i-1, \text{ return } a_j. \)
Selection Problem: HOW

Given list of distinct integers $A = a_1, a_2, \ldots, a_n$ and integer i, $1 \leq i \leq n$, \[\text{RandSelect}(A, i) \]
1. If $n=1$ return a_1
2. Initialize lists S and B.
3. Pick integer j uniformly at random from 1 to n.
4. For each index k from 1 to n (except j):
 5. if $a_k < a_j$, add a_k to the list S.
 6. if $a_k > a_j$, add a_k to the list B.
7. Let s be the size of S.
8. If $s = i-1$, return a_j.
9. If $s \geq i$, return $\text{RandSelect}(S, i)$.
10. If $s < i$, return $\text{RandSelect}(B, i-(s+1))$.

What's the right way to fill in this blank?
A. i
B. s
C. $i+s$
D. $i-(s+1)$
E. None of the above.
Selection Problem: WHEN

Given list of distinct integers $A = a_1, a_2, \ldots, a_n$ and integer i, $1 \leq i \leq n$,
$\text{RandSelect}(A, i)$

1. If $n=1$ return a_1
2. Initialize lists S and B.
3. Pick integer j uniformly at random from 1 to n.
4. For each index k from 1 to n (except j):
 5. if $a_k < a_j$, add a_k to the list S.
 6. if $a_k > a_j$, add a_k to the list B.
7. Let s be the size of S.
8. If $s = i-1$, return a_j.
9. If $s \geq i$, return $\text{RandSelect}(S, i)$.
10. If $s < i$, return $\text{RandSelect}(B, i-(s+1))$.

What input gives the best-case performance of this algorithm?
A. When element we're looking for is the first in list.
B. When element we're looking for is i^{th} in list.
C. When element we're looking for is in the middle of the list.
D. When element we're looking for is last in list.
E. None of the above.
Selection Problem: WHEN

Given list of distinct integers $A = a_1, a_2, \ldots, a_n$ and integer i, $1 \leq i \leq n$, RandSelect(A,i)
1. If $n=1$ return a_1
2. Initialize lists S and B.
3. Pick integer j uniformly at random from 1 to n.
4. For each index k from 1 to n (except j):
 5. if $a_k < a_j$, add a_k to the list S.
 6. if $a_k > a_j$, add a_k to the list B.
7. Let s be the size of S.
8. If $s = i-1$, return a_j.
9. If $s \geq i$, return RandSelect(S, i).
10. If $s < i$, return RandSelect(B, $i-(s+1)$).

Performance depends on more than the input!
Selection Problem: WHEN

Given list of distinct integers $A = a_1, a_2, \ldots, a_n$ and integer i, $1 \leq i \leq n$,

$\text{RandSelect}(A, i)$

1. If $n=1$ return a_1
2. Initialize lists S and B.
3. Pick integer j uniformly at random from 1 to n.
4. For each index k from 1 to n (except j):
 5. if $a_k < a_j$, add a_k to the list S.
 6. if $a_k > a_j$, add a_k to the list B.
7. Let s be the size of S.
8. If $s = i-1$, return a_j.
9. If $s \geq i$, return $\text{RandSelect}(S, i)$.
10. If $s < i$, return $\text{RandSelect}(B, i-(s+1))$.

Minimum time if we happen to pick pivot which is the i^{th} smallest list element.

In this case, what's the runtime?

A. $\Theta(1)$
B. $\Theta(n)$
C. $\Theta(n \log n)$
D. $\Theta(n^2)$
E. None of the above
Selection Problem: WHEN

How can we give a time analysis for an algorithm that is allowed to pick and then use random numbers?

T(x): a random variable that represents the runtime of the algorithm on input x

Compute the **worst-case expected time**

\[ET(n) = \max_{x, |x| \leq n} E(T(x)) \]

== expected time on worst input of size n

worst case over all inputs of size n

average runtime incorporating random choices in the algorithm
Selection Problem: WHEN

Situation so far:

Sort then search takes worst-case $\Theta(n \log n)$

Randomized selection takes worst-case expected time $\Theta(n)$
Randomized Selection (1)

We can’t easily find a “magical”, “balanced” pivot p, so we choose p **randomly** from the array A

Worst case: $\Omega(n^2)$ but highly unlikely

$T(n) = \text{expected time for Select on array of size } n$

Suppose we could guarantee a “good” pivot, e.g., such that $n/4 \leq |S|, |B| \leq 3n/4$

\Rightarrow subproblem size $\leq 3n/4$

Then, $T(n) \leq T(3n/4) + O(n)$

... Does this give $T(n) = O(n)$?
Suppose we can guarantee a “good” pivot s.t. $n/4 \leq |S|, |B| \leq 3n/4$

\Rightarrow subproblem size $\leq 3n/4$

Let $R(n) \equiv$ expected number of pivot operations before array is reduced to $\leq 3n/4$ elements

$$T(n) \leq T(3n/4) + O(n \times R(n))$$

$R(n) =$ find balanced pivot element
$O(n) =$ perform pivot, make subproblem

$T(3n/4) =$ upper bound on time needed to solve subproblem
Randomized Selection (3)

Suppose we can guarantee a “good” pivot s.t. \(n/4 \leq |S|, |B| \leq 3n/4 \)

\[\Rightarrow \text{subproblem size} \leq 3n/4 \]

Let \(R(n) \equiv \text{expected number of split operations before array is reduced to} \leq 3n/4 \text{ elements} \)

\[\Rightarrow T(n) \leq T(3n/4) + O(n \times R(n)) \]

\(R(n) = \text{find balanced pivot element} \)

\(O(n) = \text{perform pivot, make subproblem} \)

\(T(3n/4) = \text{solve subproblem} \)

Fact: \(R(n) \leq 2 \implies T(n) \leq T(3n/4) + O(n) = O(n) \)

(*** Why is \(R(n) \leq 2 \) ?)
Analysis of Randomized Selection Complexity

Suppose: \(T(n) \leq dn + T(3n/4) \)

Claim: \(T(n) \leq kn \) for some \(k \) would follow

Proof strategy: **Constructive Induction** ("Substitution")

Strong Induction Hypothesis: \(T(m) \leq km \) for all \(m \leq n-1 \)

Induction Step: \(T(n) \leq dn + k(3n/4) \)
\[= (d + 3k/4)n \]
which we want to be equivalent to \(T(n) \leq kn \)

But this will be true as long as we pick a value of \(k \geq 4d \)
Announcements

Final Exam
- A00: Wednesday 3/22 7pm
 LOCATION = CENTER 101
- B00: Friday 3/24 11:30am

HW 8
Due Wednesday 11:59pm

OHs, 1-1s
Now is the time!

Two Final Exam Review Sessions
- Saturday 3/18 1-3pm York 2722
- Sunday 3/19 1-3pm Center 101

Final Exam PPs posted
TTK has been started