Welcome to CSE21!

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture A00</td>
<td>Andrew Kahng</td>
<td>MW 6:30pm – 7:50pm</td>
<td>Center 212</td>
</tr>
<tr>
<td>Lecture B00</td>
<td>Miles Jones</td>
<td>MWF 1:00pm – 1:50pm</td>
<td>Center 214</td>
</tr>
</tbody>
</table>

http://vlsicad.ucsd.edu/courses/cse21-w17

January 9, 2017
About this course

Formulate & solve problems

Describe data

Analyze algorithms

Using math
Why is math part of the CS curriculum?

Proofs: key to convincing arguments, but also key part of software engineering

Vocabulary: basic language of Computer Science

Quantitative Analysis: are our solutions / programs / algorithms good enough? How much computational resources (time, memory, power) does our solution use?
Introductions
What do we assume you know?

Rosen Chapters 1, 2, some of 5, some of 9.

More precisely: You can describe algorithms and their correctness using precise mathematical terminology and techniques. For example:

- Sets, relations (equivalence relations, orders)
- Logical equivalence, conditionals, hypotheses, conditionals, contrapositives
- Universal and existential quantifiers
- Proof by contradiction (indirect proof)
- Proof by induction
- Algorithm invariants
Textbook: Rosen 7th Edition

Participation: Discussion (quizzes)

Exams:
First Midterm: Monday, February 6 (Week 5)
Second Midterm: Monday, February 27 (Week 8)
Final Exam: A00: Wednesday, March 22 (7-10pm)
 B00: Friday, March 24 (11:30-2:30pm)
Logistics, part 2

Miles's office hours: Mondays 2:30-4:00
Room 4208 CSE

Class Website: http://vlsicad.ucsd.edu/courses/cse21-w17
Homework assignments, calendar, announcements, study guides, contact info, lecture slides (avail. Day after lecture.)

Gradescope: gradescope.com
Homework submission and exam return.

Piazza: Announcements and Q&A. Contact instructors here! **No HW questions online.**

Office hours: Instructors, TAs, reader-tutors. Weekdays and weekends.
Discuss HW questions here, in person!

Work in groups up to 3 people.
Logistics, part 3

CSB 002 7 on Friday.

Exams (60%), HW (35%), Participation (5%)

Details on class website

• **Exams:** Can use handwritten note sheet. Drop lower MT score if do better on final.
• **Homeworks:** 8 HWs; drop lowest HW score.
• **Participation:** Credit if you attend and take a quiz at 7 discussions (your section). (Classroom and Piazza participation can potentially help as well.)

HW and exams answers evaluated not only on the correctness of your answers, but also on your ability to effectively communicate your ideas and convince the reader of your conclusions through proofs and logical reasoning.
Academic Integrity Scenarios

You’re working on a homework question and run across a definition you don’t understand. You Google the term and the first hit includes a full solution to the homework question. You avoid reading the solution and close the browser. You keep working on the solution and hand in the assignment, without mentioning the Google search since you didn’t use the result. Is this acceptable?

A. Yes B. No
Academic Integrity Scenarios

You’re not sure if you are interpreting a homework problem correctly. You write a post on Piazza showing what you did to answer it, and asking if this is the correct way of interpreting the question. Is this acceptable?

A. Yes B. No
You form a study group with two friends and start working on the next homework. Since there are 6 questions you each pick two questions, think about them, and write out your solutions in a shared Google doc. You glance over each other's work before turning in the assignment. Is this acceptable?

A. Yes B. No
Goals

1. **Learn concepts** which computer science relies upon:
 - Algorithms
 - Asymptotic notation
 - Recurrence relations
 - Graphs
 - Enumeration and data representation
 - Probability
An example of CS vocabulary: Trees

Data structure: Binary search trees

Stay tuned: Chapter 11 in Rosen, Week 6
Algorithm: parsing
An example of CS vocabulary: Trees

Model: possible paths of computation
An example of CS vocabulary: Trees

Model: Phylogenetic (evolutionary) tree
State space: possible configurations of a game
An example of CS vocabulary: Trees

Conclusion: Many different applications but same underlying idea.

• How do we define a tree?

• What properties are guaranteed by this definition?

• What algorithms can exploit these properties?
2. Solve problems.

Come up with *new* algorithms

Think of the homework questions as puzzles that you need to unravel: the solution or even the approach won't be clear right away.

You can work on homework in groups of 1-3 students.
* Assume elements of the set to be sorted have some underlying order
Which of the following collections of elements is listed in sorted order?

A. 42, 10, 30, 25
B. 10, 25, 30, 40
C. 40, 30, 25, 10
D. All of the above
E. None of the above
Why sort?

A TA facing a stack of exams needs to input all 400 scores into a spreadsheet where the students are listed in alphabetical order.

OR

You want to find all the duplicate values in a long list.
Why sort?

A TA facing a stack of exams needs to input all 400 scores into a spreadsheet where the students are listed in alphabetical order.

OR

You want to find all the duplicate values in a long list.

It's easier to access data when it is sorted because you know exactly where to find it.
1. **Find a group** of about 20 people nearby. Write your first names on separate papers.

2. **Sort** the names of the people in your group alphabetically by first name.

3. **Discuss as a group** the strategy you used to sort the papers, and how you might describe it to someone else.

4. **Write** a clear English description of the strategy your group used (each person should do this).

5. **Select** one representative to describe your group’s strategy on the board.
Discussion of Sorting Algorithms

- Is the strategy clear?
- Will the strategy always work?
- Does the strategy scale well to bigger groups?
General questions to ask about algorithms

1) **What** problem are we solving?
2) **How** do we solve the problem?
3) **Why** do these steps solve the problem?
4) **When** do we get an answer?
General questions to ask about algorithms

1) **What** problem are we solving? PROBLEM SPECIFICATION
2) **How** do we solve the problem? ALGORITHM DESCRIPTION
3) **Why** do these steps solve the problem? CORRECTNESS
4) **When** do we get an answer? RUNNING TIME PERFORMANCE
Given a list

\[a_1, a_2, \ldots, a_n \]

rearrange the values so that

\[a_1 \leq a_2 \leq \ldots \leq a_n \]

Values can be any type (with underlying total order). For simplicity, use integers.
Your approaches: HOW
Selection Sort (Min Sort)

"Find the first name alphabetically, move it to the front. Then look for the next one, move it, etc."
Selection Sort (MinSort) Pseudocode

Rosen page 203, exercises 41-42

procedure selection sort(a₁, a₂, ..., aₙ: real numbers with n ≥ 2)
for i := 1 **to** n-1
 m := i
 for j := i+1 **to** n
 if (aₖ < aₘ) **then** m := j
 interchange aᵢ and aₘ

{ a₁, ..., aₙ is in increasing order}
Bubble Sort

"Compare the first two cards, and if the first is bigger, keep comparing it to the next card in the stack until we find one larger than it. Repeat until the stack is sorted."
procedure bubble sort(a₁, a₂, ..., aₙ: real numbers with n >=2)
for i := 1 to n-1
 for j:= 1 to n-i
 if (aⱼ > aⱼ₊₁) then interchange aⱼ and aⱼ₊₁

{ a₁, ..., aₙ is in increasing order}
"We passed the cards from right to left, each individual inserting their own card in the correct position as they relayed the pile."
procedure insertion sort(a₁, a₂, ..., aₙ: real numbers with n ≥ 2)
for j := 2 to n
 i := 1
 while aₗ > aᵢ
 i := i+1
 m := aₗ
 for k := 0 to j-i-1
 aₗ-k := aₗ-k-1
 aᵢ := m

{ a₁, ..., aₙ is in increasing order}
"Call out from A to Z, collecting cards by first letter. If there are more than one with the same first letter, repeat with the second letter, and so on."
Bucket Sort – Pseudo pseudo code

- Create empty buckets that have an ordering.
- Put each of the elements of the list into the correct bucket.
- Sort within each bucket.
- Concatenate the buckets in order.
"We split into two groups and organized each of the groups, then got back together and figured out how to interleave the groups in order."
• If the list has just one element, return.
• Otherwise,
 • Divide list into two pieces:
 \[L_1 = a_1 \ldots a_{n/2} \quad \text{and} \quad L_2 = a_{n/2+1} \ldots a_n \]
 • \(M_1 = \text{Merge sort}(L_1) \)
 • \(M_2 = \text{Merge sort}(L_2) \)
 • Merge the two (sorted) lists \(M_1 \) and \(M_2 \)
Others?

- Bogo sort
- Quick sort
- Binary search tree traversal

Why so many algorithms?
Why so many algorithms?

Practice for homework / exam / job interviews.

Some algorithms are better than others. Wait, better?
Reminders

- Read syllabus on class website.
- Enroll in Piazza and Gradescope.
- Make sure to plan to attend your discussion section!!!
- Note: Problem Session A02, Fridays 7-8pm CSB002, will be used for extra “problem-solving” and/or review and tutorial sessions (solving recurrences, induction proofs, invariants, etc.)

Homework 1 is due in Gradescope next Tuesday (January 17) at 11:59pm.

In general, see Piazza for a list of things you should do right away.
Note #1: Basic Needs Resources

• Are you eating properly? Do you have adequate access to nutritious food? Do you have stable housing? Are you homeless or couch surfing?

• If you or someone you know is suffering from food and/or housing insecurities, please note:
 • The Triton Food Pantry (in the old Student Center), https://www.facebook.com/tritonfoodpantry/ is free and anonymous, and includes produce.
 • Financial aid resources, the possibility of emergency grant funding, and off-campus housing referral resources are available.
 • CAPS and college deans can connect students to the above resources, as well as other community resources and support.
The Office for the Prevention of Harassment & Discrimination (OPHD) provides assistance to students, faculty, and staff regarding reports of bias, harassment, and discrimination. OPHD is the UC San Diego Title IX office. Title IX of the Education Amendments of 1972 is the federal law that prohibits sex discrimination in educational institutions that are recipients of federal funds. Jacobs School students have the right to an educational environment that is free from harassment and discrimination.

Students have options for reporting incidents of sexual violence and sexual harassment. Sexual violence includes sexual assault, dating violence, domestic violence, and stalking. Information about reporting options may be obtained at OPHD at (858) 534-8298, ophd@ucsd.edu or http://ophd.ucsd.edu. Students may receive confidential assistance at CARE at the Sexual Assault Resource Center at (858) 534-5793, sarc@ucsd.edu or http://care.ucsd.edu or Counseling and Psychological Services (CAPS) at (858) 534-3755 or http://caps.ucsd.edu.

Students may feel more comfortable discussing their particular concern with a trusted employee. This may be a Jacobs School student affairs staff member, a department Chair, a faculty member or other University official. These individuals have an obligation to report incidents of sexual violence and sexual harassment to OPHD. This does not necessarily mean that a formal complaint will be filed.

If you find yourself in an uncomfortable situation, ask for help. The Jacobs School is committed to upholding University policies regarding nondiscrimination, sexual violence and sexual harassment.