Discussion 2

1. Consider the following pseudocode.

 procedure AlgorithmX(n > 1)
 1. for i := 1 to n
 2. Statement A.
 3. for j := 1 to n
 4. Statement B.

 procedure AlgorithmY(n > 1)
 1. for i := 1 to n
 2. for j := 1 to n
 3. Statement C.

 How many times are statements A, B and C executed? What is the order of AlgorithmX and AlgorithmY in O notation?

2. Suppose that an element is known to be among the first four elements in a list of 32 elements. Would a linear search or a binary search locate this element more rapidly? (cf. Rosen 3.3 Exercise 7)

3. Consider the following pseudocode.

 \[
 \begin{align*}
 i &:= 1 \quad (1) \\
 t &:= 0 \quad (2) \\
 \text{while } i \leq n \quad (3) \\
 &\quad t := t + i \quad (4) \\
 &\quad i := 2i \quad (5)
 \end{align*}
 \]

 Count the number of operations (as a function of n) of this program, where an operation is an addition or a multiplication (ignore the comparisons used to test the conditions in the while loop).

 (cf. Rosen 3.3 Exercise 4)

4. Arrange the functions \((1.5)^n, n^{100}, (\log n)^3, \sqrt{n} \log n, 10^n, (n!)^2, n^{99} + n^{98}\) in a list so that each function is big-O of the next function.

 (cf. Rosen 3.2 Exercise 22)
5. Consider the following pseudocode.

procedure Statements($n > 1$)

1. for $i := 1$ to 10
2.
 Statement A.
3. for $j := 1$ to n
4.
 Statement B.
5. for $k := 1$ to 4
6. for $\ell := 1$ to n
7.
 Statement C.

Which statement (A, B, or C) is executed the most number of times?

Suppose that Statement A requires $3n$ comparison operations, Statement B requires n^2 comparisons, and Statement C requires 30 comparisons. How many total comparisons does the entire pseudocode segment require? What is the order of this algorithm in Θ notation?