CSE21 - Math for Algorithm and Systems Analysis

http://vlsicad.ucsd.edu/courses/cse21-s14/
http://webwork.cse.ucsd.edu/webwork2/CSE21_Spring2014/
Homework 3 available!
https://piazza.com/ucsd/spring2014/cse21/home

Is it your unbirthday?
Cloudy with a Chance of Madvillain

- Introduction to Probability (Motivation)
 - Predicting the future
 - Failure analysis
 - Model(l)ing
- Poker probabilities
- Coin Tosses, Dice Rolls
- Birthday Paradox
 - Hash Collisions
- Further Reading (optional)
Tossin Coins

Given one fair coin, the likelihood of Heads or Tails is equally likely.

- \(P(\text{heads}) = P(\text{tails}) = \frac{1}{2} = 0.5 \)
Tossin Coins

Given one fair coin, the likelihood of Heads or Tails is equally likely.

- $P(\text{heads}) = P(\text{tails}) = \frac{1}{2} = 0.5$

Given two fair coins, what is the probability of getting two heads?
Tossin Coins

Given one fair coin, the likelihood of Heads or Tails is equally likely.

\[
P(\text{heads}) = P(\text{tails}) = \frac{1}{2} = 0.5
\]

Given two fair coins, what is the probability of getting two heads?

Let’s count! What are the possible outcomes?
Given one fair coin, the likelihood of Heads or Tails is equally likely.

\[P(\text{heads}) = P(\text{tails}) = \frac{1}{2} = 0.5 \]

Given two fair coins, what is the probability of getting two heads? Let’s count! What are the possible outcomes?

\[\{HH, HT, TH, TT\} \]
Tossing Coins

Given one fair coin, the likelihood of Heads or Tails is equally likely.

- \(P(\text{heads}) = P(\text{tails}) = \frac{1}{2} = 0.5 \)

Given two fair coins, what is the probability of getting two heads? Let’s count! What are the possible outcomes?

\[\{HH, HT, TH, TT\} \]

\[P(\text{heads, heads}) = \frac{1}{4} \]
Tossin Coins

Given one fair coin, the likelihood of Heads or Tails is equally likely.

- \(P(\text{heads}) = P(\text{tails}) = \frac{1}{2} = 0.5 \)

Given two fair coins, what is the probability of getting two heads? Let’s count! What are the possible outcomes?

\[\{HH, HT, TH, TT\} \]

\[P(\text{heads, heads}) = \frac{1}{4} \]

Given three fair coins, what is the probability of getting three tails?
Tossin Coins

Given one fair coin, the likelihood of Heads or Tails is equally likely.

- \(P(\text{heads}) = P(\text{tails}) = \frac{1}{2} = 0.5 \)

Given two fair coins, what is the probability of getting two heads?
Let’s count! What are the possible outcomes?

\[
\{HH, HT, TH, TT\}
\]

\(P(\text{heads, heads}) = \frac{1}{4} \)

Given three fair coins, what is the probability of getting three tails?

\[
\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}
\]
Tossin Coins

Given one fair coin, the likelihood of Heads or Tails is equally likely.

\[P(\text{heads}) = P(\text{tails}) = \frac{1}{2} = 0.5 \]

Given two fair coins, what is the probability of getting two heads?
Let’s count! What are the possible outcomes?

\[\{HH, HT, TH, TT\} \]

\[P(\text{heads, heads}) = \frac{1}{4} \]

Given three fair coins, what is the probability of getting three tails?

\[\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \]

\[P(\text{tails, tails, tails}) = \frac{1}{8} \]
Tossing Four Coins

Let's start with all possibilities for tossing two coins again:

H H
H T
T H
T T
Tossing Four Coins

Let's start with all possibilities for tossing three coins again (repeat the outcomes for two coins twice)

\[
\begin{array}{ccc}
H & H & H \\
H & H & T \\
H & T & H \\
H & T & T \\
T & H & H \\
T & H & T \\
T & T & H \\
T & T & T \\
\end{array}
\]
Tossing Four Coins

Let's start with all possibilities for tossing three coins again:

- H H H
- H H T
- H T H
- H T T
- T H H
- T H T
- T T H
- T T T
Tossing Four Coins

Repeat the outcomes for three coins twice once for the fourth coin heads and once for the fourth coin tails.

- H H H H T H H H H
- H H H T T H H H T
- H H T H T H H T H
- H H T T T H T T T T
- H T H H T T T H H
- H T H T T T H T T
- H T T H T T T T H
- H T T T T T T T T
What is probability of getting three heads when you toss a fair coin four times?
What is probability of getting three heads when you toss a fair coin four times?

\[
P(3 \text{ heads}) = \frac{4}{16} = \frac{1}{4} = 0.25
\]

We could have also counted the number of ways to have three heads in four tosses by \(\binom{4}{3} = \binom{4}{1} = 4 \).
Happy Unbirthday