UCSD CSE 21, Spring 2014

Mathematics for Algorithms and System Analysis

Week 4?

Class URL: http://vlsicad.ucsd.edu/courses/cse21-s14/
Administrivia

• Attendance in this discussion is counted via clicker questions
• Homework Four is due 4/27/2014
• Midterm In-class on May 1 (ABK) and May 2 (RRR)
 – 30% of final grade
• This week:
 – Functions (one-to-one, onto, bijective)
 – Counting Functions
 – Mop-up from CL
Mop-Up from CL

• Topics that were not carefully covered from the text
 – Stirling’s numbers of the second kind
 – Birthday paradox
Stirling’s numbers of the second kind

• Briefly: A Stirling number of the second kind (or Stirling partition number) is the number of ways to partition a set of n objects into k non-empty subsets and is denoted by $S(n,k)$.
Stirling’s numbers of the second kind

• Stirling: Set of size 3,
 \[S(3,1) = 1 \]
 \[S(3,2) = 3 \]
 \[S(3,3) = 1 \]
• See how it is different than choose?
Birthday Paradox

• See Prof. Khang’s upcoming lecture slides.
• Be aware of this problem
Functions

• Let f be a function from the integers to the integers
 - Let $f(i) = |i|$ for every integer i
 - i.e, $f(-3) = 3$, $f(2) = 2$

• Is f bijective?
 A: yes B: no C: yes D: no E: maybe
 (we’re not moving on until nobody answered E)
Functions

• Let \(f \) be a function from the integers to the integers
 - Let \(f(i) = |i| \) for every integer \(i \)
 - ie, \(f(-3) = 3, f(2) = 2 \)

• Is \(f \) onto?
 A: yes B: no C: yes D: no E: maybe
 (we’re not moving on until nobody answered E)
Functions

• Let f be a function from the integers to the integers
 - Let $f(i) = |i|$ for every integer i
 - ie, $f(-3) = 3$, $f(2) = 2$

• Is f injective?
 A: yes B: no C: yes D: no E: maybe
 (we’re not moving on until nobody answered E)
Functions

• Let f be a function from the integers to the integers
 - Let $f(i) = |i|$ for every integer i
 - ie, $f(-3) = 3$, $f(2) = 2$

• Is f onto its range?
 A: yes B: no C: yes D: no E: maybe
 (we’re not moving on until nobody answered E)
Functions

• New function!!

• Let f be a function from the integers to the **EVEN** integers
 - Let $f(i) = 2i$ for every integer i
 - i.e., $f(-3) = -6$, $f(2) = 4$

• Is f bijective?
 A: yes B: no C: yes D: no E: maybe

(we’re not moving on until nobody answered E)
Functions

• Let f be a function from the integers to the **EVEN** integers
 - Let f(i) = 2i for every integer i
 - ie, f(-3) = -6, f(2) = 4

• Is f onto?
 A: yes B: no C: yes D: no E: maybe
 (we're not moving on until nobody answered E)
Functions

• Let f be a function from the integers to the $EVEN$ integers
 - Let $f(i) = 2i$ for every integer i
 - ie, $f(-3) = -6$, $f(2) = 4$

• Is f one-to-one?
 A: yes B: no C: yes D: no E: maybe
 (we’re not moving on until nobody answered E)
Functions

• Pictures Help:

A function
A one-to-one function (Not onto)
An onto function (Not one-to-one)
A bijection
Functions

• Facts to live by:
 – If f: A→ B is onto and g: B→ C is onto, then for a in A, then g*f :A→ C is onto as well
 – If f is strictly increasing, ie, if x > y means that f(x)>f(y) (strictly!!) then f is one-to-one
Permutations

• Simplify this cycle notation permutation on the digits:
 \[(1 \ 2 \ 3)(2 \ 3 \ 4)(3 \ 4 \ 5)(4 \ 5 \ 6)\]
 = ?