CSE 101 Practice Problems - big-O notation

Running-Time Analysis

For the pseudo-code below, give the asymptotic running time in \(\Theta \) notation:

1. for \(i = 1 \) to \(n \) do
 \(j = i \)
 while \(j < n \) do
 \(j = j + 3 \)

 Answer: The running time is approximately the following sum: \(\sum_{i=1}^{n} (n-i)/3 \) which is \(\Theta(n^2) \).

2. for \(i = 1 \) to \(n \) do
 for \(j = 2*i \) to \(n \) do
 \(s = s+1 \)

 Answer: The running time is approximately the following sum: \(\sum_{i=1}^{n/2} n - 2i + \sum_{i=n/2+1}^{n} 1 \) which is \(\Theta(n^2) \).

3. for \(i = 1 \) to \(n \) do
 \(j = i \)
 while \(j < n \) do
 \(j = 2*j \)

 Answer: The running time is approximately the following sum: \(\sum_{i=1}^{n} 1 + \log(n/i) \) which is \(\Theta(n) \).

4. for \(i = 1 \) to \(n \) do
 \(j = n \)
 while \(i*i < j \) do
 \(j = j - 1 \)

 Answer: The running time is approximately the following sum: \(\sum_{i=1}^{\sqrt{n}} n - i^2 + \sum_{i=\sqrt{n}+1}^{n} 1 \) which is \(\Theta(n^{3/2}) \).

5. for \(i = 1 \) to \(n \) do
 \(j = 2 \)
 while \(j < i \) do
 \(j = j*j \)

 Answer: The running time is approximately the following sum: \(\sum_{j=2}^{n} \log j = \log \prod_{j=2}^{n} j \log j \) The log of the product can be approximated with \(\Theta(n \log \log n) \).

(source: Berkeley CS 170, Fall 2009, HW 1)