CSE 101, Winter 2018

Design and Analysis of Algorithms

Lecture 7: Bellman-Ford, SPs in DAGs, PQs

Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/
Figure 4.10: Single-Edge Extensions of SPs

- Find shortest path to \(v_{k+1} \) by extending by a single edge the shortest path to one of \(v_0, v_1, \ldots, v_k \)

\[R \]

Known region

\[s \]

\[u \]

\[v \]

\(\forall x \in R: \) know true SP costs from \(s \)

\(\heartsuit \) if Dijkstra picks \(v \) to have next permanent label, then there is no "closer" vertex to \(s \) (not already in \(R \))

\(\times \) green path cannot have shorter path cost
Proof of Dijkstra Correctness

Suppose v gets next permanent label

(by def'n of temp label of y)

Can path P be shorter than $s \rightarrow u \rightarrow v$ path ???

because Dijkstra chose v!

Suppose P is shorter...

$\text{length}(P) \leq \text{length}(P^{'}) + l(x,y) + \text{length}(\text{green subpath})$ from y to v.

P is the shortest path from s to v.

Note: P is the entire purported path Dijkstra found but Dijkstra failed to part of P.

$\star \text{length}(P) = \text{length}(P^{'}) + l(x,y) + \text{length} (\text{green subpath})$

$SP(s,x) \equiv \text{not necessarily } P'$

all edge weights non-neg

$\text{SP cost from } s \text{ to } x$

$\text{SP}(s,x)$

$\star \text{length}(P) = \text{length}(P^{'}) + l(x,y) \geq d^*(x) + l(x,y) \geq l(y) \geq l(v)$
Dijkstra key points ...

- **Greedy**
- Can be incorrect if \(\exists \) a neg-weight edge
- \(\min \) label \(\leftrightarrow \) \(PQ \) \(\quad (\log V) \) \(\) insertion if binary heap

\[V \cdot \log V \]
\[E \cdot \log V \]

\[\Rightarrow O((V+E) \log V) \]
Negative Edges

- Dijkstra’s algorithm assumes that the shortest path from s to v must pass through vertices that are closer to s than v.
- This fails when there are negative edges in G (Figure 4.12)
Familiar Recurrence: Pascal’s Triangle

- \(\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \)

 #combinations of \(n \) objects taken \(k \) at a time

2 cases:

1. “my choice includes the \(n \)th object”

2. “my choice does not include the \(n \)th object”
Bellman-Ford Algorithm

- Idea: Successive Approximation / Relaxation
 - Find SP using \(\leq 1 \) edges
 - Find SP using \(\leq 2 \) edges
 - ...
 - Find SP using \(\leq n-1 \) edges \(\Rightarrow \) have true shortest paths
- Let \(l_j^{(k)} \) denote shortest \(v_0 - v_j \) pathlength using \(\leq k \) edges

Each iteration "grows the edge budget by one (edge)"
Bellman-Ford Algorithm

- **Idea:** Successive Approximation / Relaxation
 - Find SP using \(\leq 1 \) edges
 - Find SP using \(\leq 2 \) edges
 - \(\ldots \)
 - Find SP using \(\leq n-1 \) edges \(\rightarrow \) have true shortest paths

- Let \(l^{(k)}_j \) denote shortest \(v_0 - v_j \) path length using \(\leq k \) edges

- Then, \(l^{(1)}_j = d_{0j} \ \forall \ j = 1, \ldots, n-1 \) \(\quad // \ d_{ij} = \infty \) if no \(i-j \) edge

- In general, \(l^{(k+1)}_j = \min \{ l^{(k)}_j, \ \min_i (l^{(k)}_i + d_{ij}) \} \)
 - \(l^{(k)}_j \): don’t need \(k+1 \) arcs
 - \(\min_i (l^{(k)}_i + d_{ij}) \): view as length-\(k \) SP plus a single edge
Want SP costs from v_0 to each v_j

Vertices

\[j = 1, 2, 3, \ldots, n-1 \]

\[k = 1, 2, 3, \ldots, n-1 \]

\[\leq \text{#edges} \]

\[O(E) \]

\[l^{(2)} \]

\[l^{(1)} \]

\[= \min \left(l^{(1)}, l^{(2)} \right) \]

\[\min_{i \neq 1} l^{(1)} + d^{(1)} \]

\[6 \]

\[10 \]

\[20 \]

\[3 + 2 \]

\[\infty + 15 \]

\[= 5 \]
Bellman-Ford Takeaways

- Relaxing or successively approximating the shortest paths from source \((v_0)\) to all other vertices \((v_j)'s\) in passes that “grow” the “edge budget” (number of edges allowed in SPs)

- There are \(O(V)\) passes

- There is a “recurrence” that has two cases (looking back from the \((k+1)^{st}\) pass to the \(k^{th}\)-pass shortest-path costs): either the \((k+1)^{st}\) edge didn’t help (red case), or else it helped (blue case)

- Delivers correct shortest-path costs even if negative-weight edges are present (but, would not if there are negative-weight cycles)

- Can detect presence of negative-weight cycles by seeing if path costs when \(k = |V|\) have decreased from path costs when \(k = |V| - 1\)

- Each pass requires \(O(E)\) work because we look at all incident (incoming, in directed case) edges of each vertex (blue case in previous slide) when we take a min over “how to get to \(v_i\) in \(\leq k\) edges, plus the edge cost from \(v_i\) to \(v_j\)”
Bellman-Ford Execution (w/unneeded work)

PASS: 1

LABEL
A 8 \(\min(8, 3+4, \infty+1, 2+\infty) = 7 \)

B 3 \(\min(3, 8+4, \infty+\infty, 2+\infty) = 3 \)

C \(\infty \) \(\min(\infty, 8+1, 3+\infty, 2+2) = 4 \)

D 2 \(\min(2, 8+\infty, 3+\infty, \infty+2) = 2 \)

EXAMPLE: \(\text{SP}(S, A) = S \rightarrow D \rightarrow C \rightarrow A \)

\(S \rightarrow D \rightarrow C \) is found at Pass 2, allowing \(S \rightarrow D \rightarrow C \rightarrow A \) to be found at Pass 3
Bellman-Ford (avoiding unneeded work)

PASS: 1 2 3 4

LABEL A 8 \(\min(8, 3+4, \infty +1) = 7\) etc.

B 3 \(\min(3, 8+4) = 3\) etc.

C \(\infty\) \(\min(\infty, 8+1, 2+2) = 4\) etc.

D 2 \(\min(2, \infty+2) = 2\) etc.

EXAMPLE: \(SP(S, A) = S \rightarrow D \rightarrow C \rightarrow A\)

\(S \rightarrow D \rightarrow C\) is found at Pass 2, allowing \(S \rightarrow D \rightarrow C \rightarrow A\) to be found at Pass 3
Dijkstra Execution

PASS: 1 2 3 4
Label A min([8], 2+\infty) = 8 min([8], 3+4) = 7 min([7], 4+1) = 5*
B min([3], 2+\infty) = 3*
C min([\infty], 2+2) = 4 min(4, 3+\infty) = 4*
D 2*
Special Case: Longest/Shortest Paths in DAGs

- (Single-Source) Longest-Path Problem: well-defined only when there are no cycles

- **DAG:** can topologically sort the vertices
 - labels v_1, \ldots, v_n s.t. all edges directed from v_i to v_j, $i < j$

- Let l_j denote *longest* $v_0 - v_j$ pathlength
 - $l_0 = 0$
 - $l_1 = d_{01}$ // $d_{ij} = -\infty$ if no i-j edge
 - $l_2 = \max(d_{01} + d_{12}, d_{02})$
 - In general, $l_k = \max_{j<k} (l_j + d_{jk})$

- $l(z) = \max(l(x) + d_{xz}, l(y) + d_{yz})$
Special Case: Longest/Shortest Paths in DAGs

- **(Single-Source) Longest-Path Problem**: well-defined only when there are no cycles
- **DAG**: can topologically sort the vertices
 - labels v_1, \ldots, v_n s.t. all edges directed from v_i to v_j, $i < j$

- Let l_j denote **longest** $v_0 - v_j$ pathlength
 - $l_0 = 0$
 - $l_1 = d_{01}$ // $d_{ij} = -\infty$ if no i-j edge
 - $l_2 = \max(d_{01} + d_{12}, d_{02})$
 - In general, $l_k = \max_{j<k} (l_j + d_{jk})$

- **Shortest** pathlength in DAG
 - replace max by **min**
 - // use $d_{ij} = +\infty$ if no i-j edge

\[
\begin{align*}
l(z) &= \min(l(x) + d_{xz}, l(y) + d_{yz})
\end{align*}
\]
DAG Longest/Shortest Paths Complexity

• Generic Bellman-Ford = $O(VE)$
• In a DAG: Topological sort = $O(V+E)$ (DFS)

• Edges out of vertex v aren’t “processed” (traversed) until after all edges into v have been processed
 – Runtime $O(V+E)$
 – Exercise: Understand why runtime is $O(V+E)$ for both longest-path and shortest-path in a DAG

• Application: PERT (program evaluation and review technique) — critical path is the longest path in the DAG
Lecture 1 Fun Problems

- Triangle finding in a graph
 \[(i, j, k) \text{ s.t. } (v_i, v_j), (v_j, v_k), (v_i, v_k) \in E \]

- Celebrity Problem

- Max-Min Problem
 \(O(n) \) possible
 LB's
 DFS/sink?
Any Other Questions About MT?

• Bring a dark writing implement and photo ID

• Know where you are seated (seating chart)

• General structure is known; “advice” Doc is posted;
Figure 4.8 Dijkstra’s shortest-path algorithm.

procedure \textit{dijkstra}\((G, l, s)\)

Input: Graph \(G = (V, E)\), directed or undirected;
positive edge lengths \(\{l_e : e \in E\}\); vertex \(s \in V\)

Output: For all vertices \(u\) reachable from \(s\), \(\text{dist}(u)\) is set to the distance from \(s\) to \(u\).

\[
\begin{align*}
\text{for all } u & \in V: \\
\text{dist}(u) & = \infty \\
\text{prev}(u) & = \text{nil} \\
\text{dist}(s) & = 0
\end{align*}
\]

\(H = \text{makequeue}(V)\) (using \text{dist}-values as keys)

while \(H\) is not empty:
\(u = \text{deletemin}(H)\)

\[
\text{for all edges } (u, v) \in E: \\
\text{if } \text{dist}(v) > \text{dist}(u) + l(u, v): \\
\text{dist}(v) = \text{dist}(u) + l(u, v) \\
\text{prev}(v) = u \\
\text{decreasekey}(H, v)
\]
PQ Implementations

Which heap is best?
The running time of Dijkstra’s algorithm depends heavily on the priority queue implementation used. Here are the typical choices.

Implementation	delete/\min	insert/decrease\key	\(V	\times \text{delete/\min} + (V	+	E) \times \text{insert}\)				
Array	\(O(V)\)	\(O(1)\)	\(O(V	^2)\)						
Binary heap	\(O(\log	V)\)	\(O(\log	V)\)	\(O((V	+	E) \log	V)\)
d-ary heap	\(O\left(\frac{d \log	V	}{\log d}\right)\)	\(O\left(\frac{\log	V	}{\log d}\right)\)	\(O\left((V	\cdot d +	E) \frac{\log	V	}{\log d}\right)\)
Fibonacci heap	\(O(\log	V)\)	\(O(1)\) (amortized)	\(O(V	\log	V	+	E)\)		

So for instance, even a naive array implementation gives a respectable time complexity of \(O(|V|^2)\), whereas with a binary heap we get \(O((|V| + |E|) \log |V|)\). Which is preferable?

This depends on whether the graph is sparse (has few edges) or dense (has lots of them). For all graphs, \(|E|\) is less than \(|V|^2\). If it is \(\Omega(|V|^2)\), then clearly the array implementation is the faster. On the other hand, the binary heap becomes preferable as soon as \(|E|\) dips below \(|V|^2/\log |V|\).
Dynamic Sets

• Dynamic sets (data structures):
 – change a dictionary, e.g., add/remove words
 – reuse of **structured** information
 – fast updating for on-line algorithms

• Elements:
 – **key** is element ID
 • dynamic set of key values
 – **satellite** information associated with key

• Operations
 – **query**: return information about the set
 – **modify**: change the set
Dynamic Set Operations

- **Search(S,k)**
 - Given set S and key value k, return pointer x to an element of S such that key[x] = k, or NIL if no such element.

- **Insert(S,x)**
 - Augment set S with element pointed to by x.

- **Delete(S,x)**
 - Given pointer x to an element in set S, remove x from S.

- **Minimum(S)** / **Maximum(S)**
 - Given totally ordered set S, return pointer to element of S with smallest / largest key.
Dynamic Set Operations

- **Predecessor / Successor**(S, x)
 - Given element x whose key is from a totally ordered set S, return a pointer to next smaller / larger element in S, or NIL if x is minimum / maximum element

- **Union**(S, S')
 - Given two sets S, S', return a new set $S = S \cup S'$
Elementary Data Structures

- Different data structures support/optimize different operations
- Stack has top, LIFO policy
 - insert = push x: top(S) = top(S)+1; S[top(S)] = x \(O(1)\)
 - delete = pop \(O(1)\)

```
1 2 3 4 5 6 7
15 6 2 9 [ ] [ ] [ ]
```

- Queue has head, tail, FIFO policy
 - insert = enqueue: add element to the tail \(O(1)\)
 - delete = dequeue: remove element from the head \(O(1)\)

```
1 2 3 4 5 6 7
[ ] [ ] [ ] [ ] [15 6 2 9]
```

- After push(S,17)
 - top[S] = 5

```
1 2 3 4 5 6 7
15 6 2 9 17 [ ] [ ]
```

- After enqueue(Q,8)
 - tail = 7
Priority Queue (PQ) Abstract Data Structure

• Operations:
 – Insert(S,x) : add element x
 – Minimum(S) / Maximum(S): return element with min/max key
 – DeleteMin(S) / DeleteMax(S): return min/max key, remove element

• Applications
 – Simulation systems: key \equiv \text{event time}
 – OS scheduler: key \equiv \text{job priority}
 – Numerical methods key \equiv \text{inherent error in operation}
 – Dijkstra’s shortest-path algorithm
 – Prim’s minimum spanning tree algorithm

• Question: How do we use a PQ to sort?
What Are Naïve PQ Implementations?

- **Answer**: Insert elements one by one; perform DeleteMin n times

- Unordered list
 - Insert $O(1)$
 - DeleteMin $O(n)$

- Ordered list
 - Insert $O(n)$
 - DeleteMin $O(1)$

- **Observation**: If Insert, DeleteMin could each be accomplished in $O(\log n)$ time, then we would have an $O(n \log n)$ sorting algorithm (= heapsort)
Heaps

• A heap is a binary tree of depth d such that
 – (1) all nodes not at depth $d-1$ or d are internal nodes
 \rightarrow each level is filled before the next level is started
 – (2) at depth $d-1$ the internal nodes are to the left of the leaves and have degree 2, except perhaps for the rightmost, which has a left child
 \rightarrow each level is filled left to right

• A max heap (min heap) is a heap with node labels from an ordered set, such that the label at any internal node is $\geq (\leq)$ the label of any of its children
 \rightarrow All root-leaf paths are monotone
Heaps, and Sorting With Heaps

- **Fact:** Every node in a heap is the root of a heap (!)

- **How do we store a heap?**
 - Implicit data structure:
 // maxheap example

 | Array index: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
 | Value: | 20 | 11 | 5 | 5 | 3 | 2 | 3 | 4 | 1 | 2 |

- **How do we sort using a heap?**
 - **Insert:** Put new value at A[n]; fix violation of heap condition ("re-heapify")
 - **DeleteMax:** Remove root; replace by A[n]; re-heapify
 - If maxheap, DeleteMax (return largest element first)
 - If minheap, DeleteMin (return smallest element first)
Heaps

- **Pointers:**
 - **Parent** \(\text{parent of } A[i] \text{ has index } = i \div 2 \)
 - **Left, Right (children)** \(\text{children of } A[i] \text{ have indices } 2i, 2i+1 \)
- **Parent \(\leq \) Child \(\rightarrow \) this is a minheap example
Heap Operations

Insert(S, x): $O($height$) \rightarrow O(\log n)$

Extract-min(S): return head, replace head key with the last key, float down $\rightarrow O(\log n)$

"Float down": If heap condition violated, swap with smaller child
O(n log n) Heapsort

- Build heap easy time bound: \(n \times O(\log n) \) time
 - for \(i = 1..n \) do \text{insert} \((A[1..i], A[i])\)

- Extract elements in sorted order: \(n \times O(\log n) \) time
 - for \(i = n..2 \) do
 - \text{Swap} \((A[1] \leftrightarrow A[i])\)
 - \text{Heapsize} = \text{Heapsize-1}
 - \text{Float down} \(A[1]\)
Actual Time To Build Heap: O(n)

- Heapify \((i,j) \) makes range \([i,j]\) satisfy heap property:

 Heapify \((i,j) \) // minheap

 if \(i \) not a leaf and child of \(i \) is < \(i \)

 let \(k = \) smaller child of \(i \)

 interchange \(a[i], a[k] \)

 Heapify \((k,j) \)

BuildHeap: for \(i = n \) to 1 do Heapify \((i,n) \)
Actual Time To Build Heap: O(n)

- Heapify (i,j) makes range [i,j] satisfy heap property:
  ```
  Heapify (i,j)   // minheap
  if i not a leaf and child of i is < i
  let k = smaller child of i
  interchange a[i], a[k]
  Heapify (k,j)
  ```

BuildHeap: for i = n to 1 do Heapify (i,n)

- We will show that BuildHeap actually takes O(n) time (!)

- Observation: If vertices i+1, ..., n are roots of heaps, then
 after Heapify(i,n) vertices i,...,n will be roots of heaps
Actual Time To Build Heap: $O(n)$

- **BuildHeap**: for $i=1$ to n do Heapify (i,n)
- Observation: If vertices $i+1, \ldots, n$ are roots of heaps, then after Heapify(i,n) vertices i, \ldots, n will be roots of heaps

- Let $T(h) \equiv$ time for Heapify on v at height h $\Rightarrow T(h) = O(h)$
Actual Time To Build Heap: $O(n)$

- **BuildHeap**: for $i=n$ to 1 do Heapify (i,n)
- Observation: If vertices $i+1$, ..., n are roots of heaps, then after Heapify(i,n) vertices $i,...,n$ will be roots of heaps

- Let $T(h) \equiv$ time for Heapify on v at height h \rightarrow $T(h) = O(h)$

- Heapify called once for each v
 \Rightarrow total BuildHeap time is $O(\Sigma v \cdot h(v))$

- Vertex at height i is root of heap with 2^{i+1} nodes
 $\Rightarrow \lceil n/2^{i+1} \rceil$ vertices at height i
 $\Rightarrow \Sigma i \cdot n/2^i$ is upper bound on BuildHeap time

Fact: $\Sigma i/2^i = 2$ \Rightarrow $O(n)$ bound

\[
X = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \ldots = \left[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} \ldots\right] + \left[\frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \ldots\right] = 1 + \frac{X}{2} = 2
\]