CSE 101, Winter 2018
Design and Analysis of Algorithms

Lecture 6: BFS, SPs, Dijkstra

Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/

- "Successive approximation" (Bellman-Ford)
- "Subsolution of an optimal solution"
- "Principle of Optimality is itself optimal" (Dynamic Programming)
Distance in a Graph

• The distance between two nodes is the length of the shortest path between them (e.g., edges in unweighted graph).

 Often, “S” or “v0” is “special” = “source” or “sink”.

Figure 4.2 A physical model of a graph.

• E.g., $d(S,B) = 2$; $d(S,D) = 1$; etc.
Limitations of DFS

• From given starting node s, DFS finds
 ✓ All nodes reachable from s
 ✓ Explicit paths to these nodes (= a DFS tree)

• So, DFS determines whether a path exists between nodes in a graph
 – But it does not always find the shortest path

• DFS finds a path of length 5 from A to F, but the shortest A-F path has length 1.
Breadth-First Search: The Idea

- Imagine vertices of the graph as balls and edges as strings tied to the balls.
- To find shortest paths: “lift the start vertex off the ground” → get *layered* view of the graph
- **IDEA:** Find vertices at distance 0, then 1, 2, etc.
- Suppose we’ve found all nodes at distance \(\leq d \)
 - A node is at distance \(d+1 \) if:
 - it is adjacent to a node at distance \(d \)
 - it hasn’t been seen yet
Breadth-First Search Algorithm

procedure BFS(G,s)

Input: Graph G = (V,E), (starting) vertex \(s \in V \)
Output: for each \(u \in V \) reachable from \(s \), dist[\(u \)] is set to \(u \)'s distance from \(s \)

for each \(u \in V \)
\[
\text{dist}[u] \leftarrow \infty
\]
\[
\text{dist}[s] \leftarrow 0
\]
\(Q \leftarrow [s] \) // queue containing just \(s \)
while \(Q \) is not empty
\(u \leftarrow \text{eject}(Q) \)
for each edge \((u,w) \in E \)
if \(\text{dist}[w] = \infty \): // i.e., \(w \) not seen yet
\(\text{inject}(Q,w) \)
\(\text{dist}[w] \leftarrow \text{dist}[u] + 1 \)
BFS Example

Queue	d(A)	d(B)	d(C)	d(D)	d(E)	d(F)
[A] | 0 | ∞ | ∞ | ∞ | ∞ | ∞
[B D F] | 0 | 1 | ∞ | 1 | ∞ | 1
[D F C] | 0 | 1 | 2 | 1 | ∞ | 1
[F C E] | 0 | 1 | 2 | 1 | 2 | 1
[C E] | 0 | 1 | 2 | 1 | 2 | 1
[E] | 0 | 1 | 2 | 1 | 2 | 1
[*] | 0 | 1 | 2 | 1 | 2 | 1

* = All nodes at level 0, 1, 2 (respectively, per each *) have been processed
Correctness of BFS by Induction

• **Statement:** For any distance \(d = 0,1,2,... \) there is a point in time at which 3 conditions hold:
 – BFS has correctly set \text{dist}[] \text{ for all nodes at distance } \leq d
 – All other nodes have \text{dist}[] = \infty
 – \text{Q contains precisely the nodes at distance } d

• **Base Case:** \(d = 0 \)
 – This holds immediately before the first iteration

• **General Case:** Assume true for \(d \); will show for \(d+1 \)
 – By induction hypothesis, there is a point in time at which our 3 conditions hold for level \(d \). Let \(\text{Q} \) be the state of the queue at that time.
 – Then the 3 conditions hold for level \(d+1 \) when all level \(d \) nodes have been ejected from the queue.
BFS Runtime Analysis

- Initializing the dist[] array takes time \(\mathcal{O}(|V|) \)
- The outer while loop runs \(|V| \) times, once per node \(u \in V \) each node enqueued, dequeued exactly once
- The time taken on node \(u \) is proportional to the degree of \(u = \) the number of edges out of \(u \)
- Therefore, the total runtime of the algorithm is

\[
\mathcal{O}(|V| + \sum_{u \in V} \text{deg}(u)) = \mathcal{O}(|V| + |E|)
\]

Food for Thought (already asked in Lecture 1): What would a graph search look like that is “in between” DFS and BFS?
Edge Lengths: Toward Dijkstra’s Algorithm

- BFS treats all edges as having the same length
 - But this is not true in many applications
- Notation: length or weight of \(e = (u,w) \equiv l(e) \) or \(l(u,w) \)
- Sometimes, edge lengths / weights can be negative
 - Can you think of examples?
Extending BFS

• Suppose graph G has positive, integral edge lengths
• Simple trick: add dummy nodes to make G’ with unit-length edges
 – For ‘real nodes’, distances in G = distances in G’
 – We know how to run BFS on G’
• But BFS on G’ could waste a lot of time

→ Can we adapt BFS to ‘work’ only when there is something interesting to do?
“Alarm Clocks”

• Idea
 – Snooze through visits to dummy nodes
 – ‘Alarm’ should wake us up whenever something interesting is happening, i.e., when BFS encounters a real node

• Alarm for each real node = estimated time of arrival based on edges currently being traversed
 – $T = 0$: set alarms for A (100), B (200); snooze
 – $T = 100$: wake up, BFS is at A; set alarm for B (150); snooze
 – $T = 150$: wake up; done.

\[\text{Only update alarms adjacent to the one that just went off}\]
“Alarm Clock Algorithm”

• Set an alarm for node s at time T = 0
• If the next alarm goes off at time T, for node u, then:
 – The shortest path distance to u is T
 – For each edge \((u, w) \in E\)
 • If no alarm has been set for w, then set an alarm at time \(T + l(u, w)\)
 • If an alarm has been set, but at a time later than \(T + l(u, w)\), then move it to this earlier time

(1) Exactly simulates BFS on \(G’\)
(2) This is also known as Dijkstra’s algorithm
(3) What data structure helps implementation?
An Excursion on Shortest Paths

Prof. T. C. Hu
(founding faculty of UCSD CSE)
Algorithm Design Key Ideas (Shortest Paths)

• For SOME problems, the following property enables an efficient solution:

 “Principle of Optimality”: Any subsolution of an optimal solution is itself an optimal solution

• For such problems, solution strategies can include:

 “Tabulate (cache) Subproblem Solutions”: Avoid recomputation by creating a table of subproblem solutions

 “Relaxation / Successive Approximation”: Make multiple passes, each time solving a less restricted version of the original problem

 • Eventually, solve completely unrestricted = original problem instance
Shortest Path Problem Types

- Given a graph $G=(V,E)$ and $w: E \rightarrow \mathbb{R}$
 - (1 to 2) “s-t”: Find a shortest path from s to t
 - (1 to all) “single-source” or “SSSP”: Find a shortest path from a source s to every other vertex $v \in V$
 - (All to all) “all-pairs” or “APSP”: Find a shortest path from every vertex to every other vertex

- The weight or cost of path $v_1, \ldots, v_k = \sum w(v_i, v_{i+1})$

- Sometimes: no negative edges
 - Examples of “negative edges”: travel cost incentives, exothermic chemical reactions, unprofitable transactions in arbitrage, …

- Always: no negative cycles
 - Otherwise, the shortest-path problem isn’t well-defined
SSSP When Edges Have Positive Length

- **Condition 1:** $d_{i,j} > 0$
 - All edges have positive length
 - (Notation: $d_{i,j} = \text{length of } (v_i,v_j) \text{ edge}$)

- **Condition 2:** $d_{i,j} + d_{j,k} < d_{i,k}$ for some i,j,k
 - Otherwise, shortest-path problem is trivial !!!
 - (All shortest paths would be direct edges from the source)
SSSP When Edges Have Positive Length

- **Condition 1**: \(d_{i,j} > 0 \)
 - All edges have positive length
 - (Notation: \(d_{i,j} \) = length of \((v_i,v_j)\) edge)

- **Condition 2**: \(d_{i,j} + d_{j,k} < d_{i,k} \) for some \(i,j,k \)
 - Otherwise, shortest-path problem is trivial !!!
 - (All shortest paths would be direct edges from the source)

- **Fact 1**: Length of a path > length of any of its subpaths
 - (Because all edges have positive length)
SSSP When Edges Have Positive Length

Condition 1: \(d_{i,j} > 0 \)

- All edges have positive length
- (Notation: \(d_{i,j} = \text{length of } (v_i, v_j) \text{ edge} \))

Condition 2: \(d_{i,j} + d_{j,k} < d_{i,k} \) for some \(i,j,k \)

- Otherwise, shortest-path problem is trivial !!!
- (All shortest paths would be direct edges from the source)

Fact 1: Length of a path > length of any of its subpaths

Fact 2: Any subpath of a shortest path is itself a shortest path

"Principle of Optimality"

If there is a shorter path from \(v_i \) to \(v_j \), then we wouldn’t have had a shortest s-t path
SSSP When Edges Have Positive Length

- **Condition 1**: \(d_{i,j} > 0 \)
 - All edges have positive length
 - (Notation: \(d_{i,j} \) = length of \((v_i,v_j)\) edge)

- **Condition 2**: \(d_{i,j} + d_{j,k} < d_{i,k} \) for some \(i,j,k \)
 - Otherwise, shortest-path problem is trivial !!!
 - (All shortest paths would be direct edges from the source)

- **Fact 1**: Length of a path > length of any of its subpaths

- **Fact 2**: Any subpath of a shortest path is itself a shortest path

- **Fact 3**: Any shortest path contains \(\leq |V| - 1 \) edges

 By the Pigeonhole Principle \((\text{if } |V| \text{ or more edges}) \)

(Note: requires that there are no negative or zero-cost cycles)
Back to Dijkstra’s Algorithm
Shortest Paths – Dijkstra’s Algorithm

• **Scenario:** All shortest paths from \(v_0 = \text{source} \) to other nodes are ordered by increasing length:
 - \(|P_1| \leq |P_2| \leq \ldots \leq |P_{n-1}|\)
 - Index the nodes accordingly

• **What Dijkstra’s Algorithm Does:** Find \(P_1 \), then find \(P_2 \), etc.

• **Question:** How many edges are there in \(P_1 \)?
 - **Exactly** 1 edge, else can find a subpath that is shorter

• **Question:** How many edges are there in \(P_k \)?
 - **At most** \(k \) edges, else can find \(k \) (shorter) subpaths, which would contradict the definition of \(P_k \)
Shortest Paths – Dijkstra’s Algorithm

- **Scenario:** All shortest paths from $v_0 = \text{source}$ to other nodes are ordered by increasing length:
 - $|P_1| \leq |P_2| \leq \ldots \leq |P_{n-1}|$
 - Index nodes accordingly

- **Algorithm Idea:** Find P_1, then find P_2, etc.

- **Fact 4:** P_k contains $\leq k$ edges

- To find P_1: only look at 1-edge paths ($\min = P_1$)
- To find P_2: only look at 1- and 2-edge paths
 - BUT: need only consider 2-edge paths of form $d_{01} + d_{1i}$
 - Else more than one path shorter than P_2, a contradiction

Why is this picture impossible?
Section 4.4.2: Dijkstra’s Algorithm

• Terminology
 – Permanent label: Know true SP distance from \(v_0 \) to \(v_i \)
 – Temporary label: Know restricted SP distance from \(v_0 \) to \(v_i \)
 (going through only existing permanently-labeled nodes)

Set of permanently labeled nodes = “R” in the textbook

• Dijkstra’s Algorithm
 0. All vertices \(v_i \), \(i = 1, \ldots, n-1 \), receive temporary labels \(l_i \) with value \(d_{0i} \)

LOOP:
 1. Among all temporary labels, pick \(l_k = \min_i l_i \) and change \(l_k \) to \(l_k^* \) (i.e., make vertex \(v_k \)’s label permanent)
 // stop if no temporary labels left
 2. Replace all temporary labels of \(v_k \)’s neighbors, using
 \[l_i \leftarrow \min (l_i, l_k^* + d_{ki}) \]
Example

Execute Dijkstra with S as source

LABELS:

A: 8 \quad \min\ (8, 2 + \infty) = 8
B: 3 \quad \min\ (3, 2 + \infty) = 3
C: \infty \quad \min\ (\infty, 2 + 2) = 4
D: 2 \quad (2^*)
Example

LABELS:

A 8 \quad \text{min}(8, 2+\infty) = 8 \quad \text{min}(8, 3+4) = 7 \quad \text{min}(7, 4+1) = 5*

B 3 \quad \text{min}(3, 2+\infty) = 3*

C 8 \quad \text{min}(\infty, 2+2) = 4 \quad 4*

D 2* \quad (2*)
Figure 4.10: Single-Edge Extensions of SPs

- Find shortest path to v_{k+1} by extending by a single edge the shortest path to one of v_0, v_1, \ldots, v_k
Figure 4.10: Single-Edge Extensions of SPs

- Find shortest path to v_{k+1} by extending by a single edge the shortest path to one of v_0, v_1, \ldots, v_k
Proof of Dijkstra Correctness
Proof of Dijkstra Correctness

Note: P is the entire purported path Dijkstra failed to find. P' is the s-v part of P.

Suppose v gets next permanent label.

(by def'n of temp label of y)

Can path P' be shorter than s-u-v path ???

Suppose P is shorter...

\[\text{length}(P) \geq \text{length}(P') + l(x,y) \geq d^*(x) + l(x,y) \geq l(y) \geq l(v) \]
Dijkstra key points …

- Greedy
- Can be incorrect if \(\exists \) a neg-weight edge
- \(\min \text{ label} \leftrightarrow \text{PQ} \) (log \(|V| \) insertion if binary heap)

\[
V \cdot \log V \\
E \cdot \log V
\] \rightarrow O((V+E) \log V)
Negative Edges

• Dijkstra’s algorithm assumes that the shortest path from \(s \) to \(v \) must pass through vertices that are closer to \(s \) than \(v \).

• This fails when there are negative edges in \(G \) (Figure 4.12)

![Graph with negative edge](image)
1-Slide Proof of Dijkstra

From Kevin Wayne slides for Kleinberg/Tardos Algorithm Design textbook

- Invariant. For each node $u \in R$, $d(u)$ is the length of the shortest s-u path.
- Let $\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e$, = shortest path cost to some u in the explored part (R), followed by a single edge
- Proof. (by induction on $|R|$)
- Base case: $|R| = 1$ is trivial.
- Inductive hypothesis: Assume true for $|R| = k \geq 1$.
 - Let v be next node added to R, and let u-v be the chosen edge.
 - The shortest s-u path plus (u, v) is an s-v path of length $\pi(v)$.
 - Consider any s-v path P. We'll see that it's no shorter than $\pi(v)$.
 - Let x-y be the first edge in P that leaves R, and let P' be the subpath to x.
 - Essentially, P is already too long, by the inequalities below.

$$\ell(P) \geq \ell(P') + \ell(x,y) \geq d(x) + \ell(x, y) \geq \pi(y) \geq \pi(v)$$

- $\ell(P')$ nonnegative weights
- $\ell(P') + \ell(x,y)$ inductive hypothesis
- $\ell(x, y)$ defn of $\pi(y)$
- $\pi(y)$ Dijkstra chose v instead of y
Prim’s Algorithm vs. Dijkstra’s Algorithm

- **Prim:** Iteratively add edge $e(u,v)$ to T, such that $u \in T$, $v \notin T$, and $d_{u,v}$ is minimum.
- **Dijkstra:** Iteratively add edge $e(u,v)$ to T, such that $u \in T$, $v \notin T$, and $l_u + d_{u,v}$ is minimum.
- **Both are building trees, in similar ways!**
 - **Prim:** Minimum Spanning Tree
 - **Dijkstra:** Shortest Path Tree
- **INTERESTING QUESTION:** What kind of tree does the following algorithm build?
- **“Prim-Dijkstra”:** Iteratively add edge $e(u,v)$ to T, such that $u \in T$, $v \notin T$, and $c \cdot l_u + d_{u,v}$ is minimum $\quad // \quad 0 \leq c \leq 1$