From Application to Algorithm Design

- Find all maximal regularly-spaced, collinear subsets of given pointset
- Lower bound?
 - $\Omega(n^2)$
- Naïve algorithm?
 - n^2
 - $n^2 \log n$
- Simpler variants?

$$O(n^2) \quad \text{total} \quad \left[\text{all } A - B - C \text{ triples in } O(n) \text{ per each "A"} \right]$$
What is an EFFICIENT Algorithm?

• The algorithms we have studied so far have runtimes that are typically bounded by some polynomial in the size of the input.

• We call these efficient algorithms.

• But for many problems, no polynomial-time algorithm is known.

• We suspect that many of these problems can never be solved efficiently.

"Efficiency" is in the eye of the beholder or application.
Boolean Satisfiability

• Conjunctive normal form (CNF) = Product of Sums
 \[(x \lor y \lor \overline{z}) \land (\overline{x} \lor y \lor z) \land \]

• A Boolean expression S in CNF is the product (and) of several sums (or)
 \[S = (\overline{x} + \overline{y} + \overline{z}) \bullet (\overline{x} + y + z) \bullet (x + \overline{y} + \overline{z}) \land \]
Boolean Satisfiability

- Conjunctive normal form (CNF) = Product of Sums

- A Boolean expression S in CNF is the product (and) of several sums (or)

$$S = (x + y + z) \cdot (\overline{x} + y + z) \cdot (x + \overline{y} + z)$$

- A Boolean expression is **satisfiable** if there exists an assignment of 0’s and 1’s to its variables such that the expression evaluates to 1.
The Satisfiability Problem (SAT)

\(F = (x + y + z) \cdot (\overline{x} + y) \cdot (x + z) \cdot (\overline{z} + y) \cdot (x + y + \overline{z}) \)

- \((\text{one is true})\)
- \((\text{all are same})\)
- \((\text{one is false})\)

\textbf{SAT}(F): Given a Boolean formula F in CNF, is there a satisfying assignment of truth values to the variables? Y/N \textit{i.e.}, DECISION

- This is a \textit{“Decision”} question: Answer is \textbf{YES} or \textbf{NO}
- If F has \(n \) variables, there are \(2^n \) different truth assignments

\textbullet\ Answer in above case: \(\text{NO} \)
A Problem is a “Language”

- **Decision problem:** A problem whose answer (to any instance) is either “yes” or “no.”
 - Example: RodCutIncome(R,k) Can income of k be obtained from RodCut instance R?

- A decision problem can be viewed as a *language-recognition problem*
 - Is (R,k) ∈ RodCutIncome?
 - U: the set of possible inputs to the decision problem
 - L ⊆ U is the set of inputs which yield “yes”
 - L: the language corresponding to the problem
A Problem is a “Language”

Example Input:

8 // The initial length of rod
1 1 // A length of rod and the price it sells at
2 5 // <- this means a rod of length 2 sells for 5 profit
6 17
7 19

Example Output:

Maximum profit: 22

\[\text{RodCutIncome}(R, k) = \]

Example Input:

8 // The initial length of rod
25 // k
1 1 // A length of rod and the price it sells at
2 5 // <- this means a rod of length 2 sells for 5 profit
6 17
7 19

Example Output:

\[\boxed{\text{NO}} \]

Example Input:

8 // The initial length of rod
4 // k
1 1 // A length of rod and the price it sells at
2 5 // <- this means a rod of length 2 sells for 5 profit
6 17
7 19

Example Output:

\[\boxed{\text{YES}} \]
A Problem is a “Language”

- **Decision problem**: A problem whose answer is either “yes” or “no”
 - Example: TSP(G,k): Does there exist a TSP tour in graph G that has total edge length $\leq k$?

- A decision problem can be viewed as a *language-recognition problem*
 - Is $(G,k) \in \text{TSP}$? \Rightarrow is $w \in \text{TSP}$?
 - U: the set of possible inputs w to the decision problem
 - $L \subseteq U$ is the set of inputs which yield “yes”
 - L: the language corresponding to the problem
A Problem is a "Language"

TSP(G, 15) = \text{?}

TSP(G, 15) = \text{NO} \quad \text{"Does there exist a TSP tour in G with cost \(\leq 15\)?}

\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{YES}}}}}}}}}}}}}} \iff w \in L_{\text{TSP}}

TSP(G, 50) = \text{YES}

\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{NO}}}}}}}}}}}} \iff w \notin L_{\text{TSP}}

G:\begin{align*}
&v_1 &v_2 &v_3 &v_4 \\
&7 &5 &2 &3 \\
&20 & & & \\
&3 &2 & & \\
\end{align*}

w:\begin{align*}
&(1,2,7); \\
&(1,3,5); \\
&(1,4,20); \\
&(2,3,2); \\
&(3,4,3); \\
\end{align*}
Polynomial-Time Reducibility

Let L_1 and L_2 be two languages from the input spaces U_1 and U_2.

Definition: L_1 is **polynomially reducible** to L_2 if there exists a polynomial-time algorithm that converts each input $u_1 \in U_1$ to another input $u_2 \in U_2$ such that $u_1 \in L_1$ iff $u_2 \in L_2$.

Recall:

Reduction from Sorting to Convex Hull
- Input: an arbitrary instance I_{SORT} of SORT
- Transform $I_{\text{SORT}} = (x_1, x_2, \ldots, x_n)$ into an instance $I_{\text{C-HULL}} = ((x_1, x_1^2), (x_2, x_2^2), \ldots, (x_n, x_n^2))$ of C-HULL
- Solve the C-HULL problem for instance $I_{\text{C-HULL}}$
- Transform solution of $I_{\text{C-HULL}}$ to solution of I_{SORT}
Polynomial-Time Reducibility

• “SORT reduces to CHULL”

 What is $u_1 \in U_1$?
 What is $u_2 \in U_2$?
 such that $u_1 \in L_1$ iff $u_2 \in L_2$

Reduction from Sorting to Convex Hull
- Input: an arbitrary instance I_{SORT} of SORT
- Transform $I_{\text{SORT}} = \{x_1, x_2, \ldots, x_n\}$ into an instance $I_{\text{C-HULL}} = ((x_1, x_1^2), (x_2, x_2^2), \ldots, (x_n, x_n^2))$ of C-HULL
- Solve the C-HULL problem for instance $I_{\text{C-HULL}}$
- Transform solution of $I_{\text{C-HULL}}$ to solution of I_{SORT}
L_1 is \textit{polynomially reducible} to L_2 if there exists a polynomial-time algorithm that converts each input $u_1 \in U_1$ to another input $u_2 \in U_2$ such that $u_1 \in L_1$ iff $u_2 \in L_2$.

Note: “polynomial-time” in size of input $u_1 \Rightarrow$ size of u_2 is also polynomial in the size of u_1. (Why?)
Polynomial-Time Reducibility

- **Definition:** X is *polynomial-time reducible* to Y, written $X \leq_P Y$, if there exists an algorithm for solving X that would be polynomial if we took no account of the time needed to solve arbitrary instances of Y.

- **Examples of Decision questions:** For convenience, require $n > 2$.
 - $X(n)$: *Is_It_Prime*?
 - $Y(n)$: *Is_Largest_Factor_Other Than_Itself_Greater_Than_Or_Equal_To_2*?
 - $Z(n,k)$: *Is_Number_Of_Distinct_Factors_Greater_Than_k*?

Claim 1: $X \leq_P Y$

Claim 2: $X \leq_P Z$
Polynomial-Time Reducibility

• **Definition:** X is *polynomial-time reducible* to Z, written \(X \leq_P Z \), if there exists an algorithm for solving X that would be polynomial if we took no account of the time needed to solve arbitrary instances of Z.

• **Example:**
 - \(X(n) \): Is_It_Prime?
 - \(Z(n,k) \): Is_Number_Of_Distinct_Factors_Greater_Than_k?

Claim: \(X \leq_P Z \)
Polynomial-Time Reducibility

• **Definition:** X is *polynomial-time reducible* to Y, written \(X \leq_P Y \), if there exists an algorithm for solving X that would be polynomial if we took no account of the time needed to solve arbitrary instances of Y.

• **Example:**
 – \(X(n) \): Is_It_Prime?
 – \(Y(n) \): Is_Largest_Factor_OtherThan_Itself_Greater_Than_Or_Equal_To_2?

Claim: \(X \leq_P Y \)
Observations About Poly-Time Reducibility

• \(L_1 \leq_p L_2 \) and \(L_2 \leq_p L_3 \) \(\Rightarrow \) \(L_1 \leq_p L_3 \)

• \(L_1 \leq_p L_2 \) and \(L_2 \leq_p L_1 \) \(\Rightarrow \) \(L_2, L_1 \) are polynomially equivalent

\(\) (polynomials are closed under composition)
Observations About Poly-Time Reducibility

1. $L_1 \leq_p L_2$ and $L_2 \leq_p L_3 \implies L_1 \leq_p L_3$

2. $L_1 \leq_p L_2$ and $L_2 \leq_p L_1 \implies L_2, L_1$ are polynomially equivalent

Where this is going:
- “Solvable” problems have polynomial-time algorithms
- Some problems (TSP, SAT, etc.) are “hard” (“non-solvable”)
- The “hard” problems have equivalent difficulty: they are all polynomially equivalent.
 - \implies If we can solve any one of them in polynomial time, then we can solve them all in polynomial time
Checkpoint

• Suppose A reduces to B. i.e., A is poly-time reducible to B

What can we conclude:

- If B is easy → A must be easy
- If A is easy → NOTHING (about B)
- If A is hard → B must be hard
- If B is hard → NOTHING
$n!$ (deterministic)

vs. n (non-deterministic)

4 “non-deterministic steps”

vs. $4!$ “deterministic steps”
The Classes P and NP

Classes of Decision Problems

• \(\mathbf{P} \): Problems for which there exists a \textit{deterministic} polynomial-time algorithm

• \(\mathbf{NP} \): Problems for which there exists a \textit{non-deterministic} polynomial-time algorithm

• What is “non-deterministic polynomial-time”?
 – Solutions are small (== polynomial-size)
 – Guessing is free, but solutions must be checkable in polynomial time
 • “Succinct Certificate”

• \(\mathbf{P} \subseteq \mathbf{NP} \), but whether \(\mathbf{P} = \mathbf{NP} \) is not known
 – Most people believe \(\mathbf{P} \neq \mathbf{NP} \), which would imply \(\mathbf{P} \subset \mathbf{NP} \)
NP-Hard, NP-Complete

- **NP-Hard**: Problem X is NP-hard if *every* problem in NP is *polynomially reducible* to X

- **NP-Complete**: Problem X is NP-complete if:
 - X belongs to NP, and
 - X is NP-hard

- Also, Y is NP-complete if $Y \in$ NP and some NP-complete problem X is *polynomially reducible* to Y

- NP-Complete problems are the *hardest* problems in NP
Picture of P, NP, NP-Hard, NP-Complete
Picture of P, NP, NP-Hard, NP-Complete

\[\sqrt{P \subseteq NP} \]

? \[P = NP \]

\[NP = P = NPC \]

\[NP \text{-hard} \]
SAT is NP-Complete (Cook, 1971)

- **Cook’s theorem (1971):** The SAT problem is NP-complete
 - Also, Levin (1972)

- Once we know an NP-complete problem, proving other problems NP-complete becomes easier

- **A new problem Y is NP-complete if:**
 - (1) Y is in NP
 - (2) SAT or any other NP-complete problems, is *polynomially reducible* to Y
 - I.e., “reduce from SAT to Y”
NP-Complete Problems 0, 0’

- **Number Partition:** Given a set of numbers $S = \{x_1, x_2, \ldots, x_n\}$, is there a disjoint partition of S into S_1, S_2 (i.e., where $S_1 \cup S_2 = S$, and $S_1 \cap S_2 = \emptyset$) such that the sum of numbers in $S_1 = \text{sum of numbers of } S_2$?

- **k-Tolerant Number Partition:** Given a set of numbers $S = \{x_1, x_2, \ldots, x_n\}$ and a number k, is there a disjoint partition of S into S_1, S_2 (i.e., where $S_1 \cup S_2 = S$, and $S_1 \cap S_2 = \emptyset$) such that $|\text{sum of numbers in } S_1| - |\text{sum of numbers of } S_2| \leq k$?

- **Task:** Reduce k-Tolerant Number Partition to Number Partition
NP-Complete Problems 0, 0’

- **Number Partition**: Given a set of numbers $S = \{x_1, x_2, \ldots, x_n\}$, is there a disjoint partition of S into S_1, S_2 (i.e., where $S_1 \cup S_2 = S$, and $S_1 \cap S_2 = \emptyset$) such that the sum of numbers in $S_1 = \text{sum of numbers of } S_2$?

- **k-Tolerant Number Partition**: Given a set of numbers $S = \{x_1, x_2, \ldots, x_n\}$ and a number k, is there a disjoint partition of S into S_1, S_2 (i.e., where $S_1 \cup S_2 = S$, and $S_1 \cap S_2 = \emptyset$) such that $|\text{sum of numbers in } S_1| - |\text{sum of numbers of } S_2| \leq k$?

- **Task**: Reduce k-Tolerant Number Partition to Number Partition
Two Parts To An NP-Completeness Proof

• Problem is in NP

• A known NP-complete problem reduces to it
NP-Complete Problems 0, 0’

- Reduce k-Tolerant Number Partition to Number Partition
NumPart, Bin-Packing

• **NumPart(S):** Given a set of numbers $S = \{x_1, x_2, \ldots, x_n\}$ with $0 < x_i \leq 1$, there a disjoint partition of S into S_1, S_2 (i.e., where $S_1 \cup S_2 = S$, and $S_1 \cap S_2 = \emptyset$) such that $\sum_{x_i \in S_1} = \sum_{x_j \in S_2}$?

• **Bin-Packing(L,B):** Given a list of items $L = \{x_1, x_2, \ldots, x_n\}$ with $0 < x_i \leq 1$, and a number B, can L be packed into B unit-capacity bins?

Given that NumPart is NP-complete, prove that Bin-Packing is NP-complete
NP-Complete Problems #1, #2, #3

The following five problems are NP-complete
(Manber, Introduction to Algorithms: A Creative Approach)

• **Definition:** A *vertex cover* of $G = (V, E)$ is $V' \subseteq V$ such that every edge in E is incident to some $v \in V'$.

• **VC(G,k):** Given undirected $G = (V, E)$ and integer k, does G have a vertex cover with $\leq k$ vertices?

• **CLIQUE(G,k):** Does G contain a clique of size $\geq k$?

• **3COLOR(G):** Is G properly colorable with 3 colors?
NP-Complete Problems #1, #2, #3

- **VC(G,k):** Given undirected $G = (V, E)$ and integer k, does G have a vertex cover with $\leq k$ vertices?

- **CLIQUE(G,k):** Does G contain a clique of size $\geq k$?

- **3COLOR(G):** Is G properly colorable with 3 colors?
NP-Complete Problems #4, #5

• **Definition:** A dominating set D of G = (V, E) is $D \subseteq V$ such that every $v \in V$ is either in D or adjacent to at least one vertex of D.

• **DS(G,k):** given G, k, does G have a dominating set of size $\leq k$?

• **3SAT(F):** Given Boolean expression F in CNF such that each clause has *exactly* 3 variables, is F satisfiable?
To prove NP-completeness of a new problem:
 - Prove that the problem belongs to NP
 - Show polynomial reducibility from a known NP-complete problem

This slide shows the order in which we will develop some classic reductions.
NP-Completeness Proof: Vertex Cover (VC)

- **Problem:** Given undirected $G = (V, E)$ and integer k, does G have a vertex cover with $\leq k$ vertices?
- **Theorem:** The VC problem is NP-complete.
- **Proof:**
 - **Approach:** Reduction from CLIQUE
 - I.e., given that CLIQUE is NP-complete, we will prove that VC is NP-complete
 - **VC is in NP.** This is true since we can guess a cover of size $\leq k$ and check it in polynomial time
 - **Goal:** Transform arbitrary CLIQUE instance into VC instance such that CLIQUE answer is “yes” iff VC answer is “yes”
NP-Completeness Proof: Vertex Cover (VC)

- **Claim**: CLIQUE(G, k) has *same* answer as VC
 \((G^c, n-k)\), where \(n = |V|\).
- **Observe**: If \(C = (u, F)\) clique in \(G\), then \(v-u\) is VC in \(G^c\).
NP-Completeness Proof: Vertex Cover (VC)

- **Observe:** If D is a VC in \overline{G}, then \overline{G} has no edge between vertices in $V-D$.

 So, we have that a k-clique in $G \iff$ a size $(n-k)$ VC in \overline{G}

- Can transform in *polynomial time*.
Definition: A dominating set D of $G = (V, E)$ is $D \subseteq V$ such that every $v \in V$ is either in D or adjacent to at least one vertex of D

- **Problem**: given G, k does G have a dominating set of size $\leq k$?

- **Theorem**: DS is NP-complete

- **Proof**: (reduction from VC)
 - $DS \in NP$
 - Given instance (G,k) of VC, make every edge of G into a triangle and answer DS.
NP-Completeness Proof: DS

- G’ has DS D of size k \textbf{iff} G has VC C of size k.
 - Without loss of generality, assume $D \subseteq V$, D is a DS \Rightarrow every edge hits some vertex in $D \Rightarrow D$ is a VC in G
 - C is a VC \Rightarrow new and old vertices dominated
NP-Completeness Proof: 3SAT

- **3SAT**: Given a Boolean expression in CNF such that each clause has *exactly* 3 variables, determine satisfiability.

- **Theorem**: 3SAT is NP-Complete

- **Proof**:
 - **3SAT \(\in \) NP
 - Let \(E \) be an arbitrary instance of SAT
 - For \(k \geq 4 \)
 - \(C' = (x_1 + x_2 + y_1) \cdot (x_3 + y_1 + y_2) \cdot (x_4 + y_2 + y_3) \cdot \ldots \cdot (x_{k-1} + x_k + y_{k-3}) \) arbitrary clause of \(E \)
NP-Completeness Proof: 3SAT

C’ is satisfiable iff C is satisfiable:
– C’= 1 ⇒ at least one \(x_i = 1 \) ⇒ C = 1
– C = 1 ⇒ at least one \(x_i = 1 \) ⇒ can set \(y_i \)'s so that C’ = 1

\[
C = (x_1 + x_2)
\]

\[
C = (x_1 + x_2 + y) \cdot (x_1 + x_2 + \bar{y})
\]

\[
C = (x_1)
\]

\[
C = (x_1 + y_1 + y_2) \cdot (x_1 + \bar{y}_1 + y_2) \cdot (x_1 + y_1 + \bar{y}_2) \cdot (x_1 + \bar{y}_1 + \bar{y}_2)
\]
NP-Completeness Proof: CLIQUE

- **Problem:** Does G=(V,E) contain a clique of size k?
- **Theorem:** Clique is NP-Complete. (reduction from SAT)
- **Idea:** Make “column” of k vertices for each clause with k variables.
 - No edge within a column.
 - All other edges present except between x and \overline{x}.
NP-Completeness Proof: CLIQUE

- Example: $E = (x + y + z) \bullet (\overline{x} + \overline{y} + z) \bullet (y + \overline{z})$

 $G =$

- G has m-clique (m is the number of clauses in E), iff E is satisfiable.
 (Assign value 1 to all variables in clique)