Goals of Course

• Introduction to design and analysis of algorithms
• “Problem-solving”
• (Classic) Problems
 – Sorting, Path-Finding, String-Matching, Arithmetic, …
• Tools
 – Recurrence Relations, Counting Techniques, Reduction, Probabilistic Analysis, NP-Completeness, …
• Frameworks
• Pedagogical choices
 – Order of material
 – “Analyze” vs. “Create” I stress the latter = problem-solving
 – Scope You need to keep up
What Is An Algorithm?

• An **algorithm** is a **method** for solving a problem (on a **computer**)

 \[
 \frac{m'}{n'} \quad \text{where} \quad \frac{m}{n} = \frac{m'}{n'}
 \]

 \(\gcd(m', n') = 1 \)

 i.e., \(\frac{m'}{n'} \) where \(\frac{m}{n} = \frac{m'}{n'} \)

• **Problem**: “Given fraction \(\frac{m}{n} \), reduce to lowest terms.”

• **Problem**: “Given undirected graph \(G = (V,E) \) and vertices \(s,t \in V \), is there a path in \(G \) from \(s \) to \(t \) ?”

• **QUESTION**: State an algorithm for this problem
Undirected s-t Connectivity

- A1: BFS, DFS from s.
- A2: Take a random walk in G, starting at s.
 - Is this an algorithm? (Does it halt?)
- A3: Take a random walk in G for $5n^3$ steps starting at s ($n = |V|$); return NO iff we don't visit t.
 - Is this an algorithm?
 - Does it “almost always” return the correct answer?

Do A3, A1 differ in terms of resources used?
- A3 “trades” time for space, is “memoryless”.
- A3: probabilistic effectiveness.
Problem-Solving

- **Problem solving = “The Spirit of Computing”**
- Driven by real-world necessity
 - Autonomous robotics, autonomous vehicles
 - (managing smart highways, collision avoidance / path planning, ...)
 - (driverless cars)
 - Logistics
 - (scheduling, resource allocation, ...)
 - (stowage on container ships; airline logistics; ...)
 - Design of integrated circuits
 - (placement, wiring, partitioning, floorplanning, clock distribution, logic synthesis, ...)
 - Bioinformatics, personalized medicine
 - DNA sequencing
 - Gene expression network analysis
 - Evolutionary trees (edit distance, Steiner trees...)
 - Drug design, energy generation/transmission, AI / ML, ...
Problem-Solving

• Patterns
 – Zeitz, The Art and Craft of Problem Solving
 – Polya, How to Solve It

• Tools
 – Counting
 – Recurrence Relations
 – Data Structures
 – ...

• Concepts
 – Problem classes and “solution classes”
 ✔ Lower bounds ⇒ at least this hard, at least this much effort
 ✔ Reductions ⇒ solving this boils down to solving that
 ✔ Intractability ⇒ believed impossible to solve efficiently
What is a Problem?

• A problem is defined by:
 – (i) input domain
 • e.g., all ordered pairs of positive integers
 – (ii) output specification
 • e.g., convert to an equivalent fraction in lowest terms

• A problem with the input specified is a problem instance
 – e.g., “convert the fraction $\frac{343}{56}$ to lowest terms”

• Types of Problems:
 – Decision
 • Yes or No answer (e.g., Does there exist…?)
 – Computation
 • How many acyclic $s-t$ paths in G?
 – Construction (more than one answer)
 • Construct (exhibit) an $s-t$ path in G. any $s-t$ path, vs. shortest $s-t$ path, vs. …
 – Optimization (set of all alternatives; cost function)
 • Determine the shortest $s-t$ path in $G.$
• Problem-Solving First Example

• Tower of Hanoi
 – Rules: (i) One disk moves at a time, and (ii) Never put a larger disk onto a smaller disk
 – If you move one disk per second, when will all 64 disks be moved?
 – A more useful question: What is the minimum # of moves needed to transfer a stack of n disks?
 • Why is this more useful? → Assumes optimal strategy, …

• Step 1. Define Notation
 – For a stack of n disks, call this number T_n

• Step 2. Look At Small Cases
 – $T_0 = 0$, $T_1 = 1$, $T_2 = 3$
Problem-Solving First Example (cont.)

• Step 3. Can we reduce to a known problem?
 – \(T_n \leq 2T_{n-1} + 1 \), \(n > 0 \)
 – Why?
 • Shift (n-1), move largest disk, shift again
 – Why \(\leq \) inequality? (i.e., an upper bound for \(T_n \))
 • \(2T_{n-1} + 1 \) suffices, but maybe can do better
 – Why does the lower bound (LB) \(T_n \geq 2T_{n-1} + 1 \) hold?
 • Must move largest disk sometime; at this instant, have (n-1) on a single peg
 – \(\rightarrow T_n = 2T_{n-1} + 1, T_0 = 0 \)

• Step 4. What is a general solution for \(T_n \)?
 – \{ \(T \) \} = 0, 1, 3, 7, 15, 31, 63, ...
 (notice a pattern)
Problem-Solving First Example (cont.)

• Looks like $T_n = 2^n - 1$

• **Step 5. let’s guess this answer and try to prove it**

 – **Claim:** $T_n = 2^n - 1$

 – **Proof:** (by mathematical induction)

 Basis ($n = 0$): $T_0 = 0 = 2^0 - 1$ holds

 I.H.: $T_k = 2^k - 1$ $\forall k = 0, 1, \ldots, n - 1$

 I.S.: $T_n = 2T_{n-1} + 1 = 2(2^{n-1} - 1) + 1 = 2^n - 1$ (I.H.)

• **Note the kinds of steps that we applied…**

 Establish Notation, Study Small Cases, Reduce to a Known Problem, Seek a General Solution, Prove the Solution
Question: What Makes One Algorithm Better (or Worse) Than Another?

- **Efficiency with respect to resources** (= one aspect)

- **Example: Determinant**
 - det (2 × 2 matrix) = ad – bc
 - Recursively defined det M = (…)
 - M_{ij} is the (i, j) cofactor matrix of n × n matrix M

- **Problem: Give an algorithm for computing det M**
 - A1: Use definition to get recursive algorithm
 - **How many multiplications?** (About n!)
 - A2: Use Gaussian elimination to get lower-triangular M'
 - If M' is lower-triangular, det M' = \(\prod m'_{ii} \)
 - **How many multiplications?** (About n^3)
 - det M' / (some scalar) = det M // scalar is from row operations
 - 1988 algorithms textbook (Brassard and Bratley): For n = 20, A1 takes 107 years; A2 takes 0.05 seconds
Problem-Solving Second Example

- Recall from before: “Find m/n in lowest terms”
- “Formal” Statement:
 - Input: integers $m \geq 0$, $n > 0$
 - Output: integers m', n' s.t. $m/n = m'/n'$, $(m,n) = (m',n')$, and m', n' are relatively prime.

- A1:
 - Cancel all 2’s // find common divisor \to update m', n'
 - Cancel all 3’s
 - Cancel all 5’s
 - etc. until min (m',n') exceeded

- Why is this not so clever?
 - What’s the “worst case”?
 - Have to check possible common divisors up to min (m,n)
Problem-Solving Second Example (cont.)

• A1’: // try divisors starting with largest possible
 – \(i \leftarrow \min(m,n) + 1 \)
 – \textbf{repeat} \(i \leftarrow i - 1 \) \textbf{until} \((i|m) \text{ and } (i|n))\)
 – \textbf{return} \(i \)
 – may get lucky and stop after only a few divisions
 – but, worst case: \(m \approx n, \ (m,n) = 1 \)

• A2:
 – find \(\gcd(n,m) \) \(// \gcd = \text{greatest common divisor} \)
 – return \(m' = m / \gcd(n,m), \ n' = n / \gcd(n,m) \)
 – \textbf{We have recast the problem as finding} \ \gcd \ \checkmark
Problem-Solving Second Example (cont.)

- \(\text{gcd}(n,m) \) [Euclid’s Algorithm] // assume w.l.o.g. \(n > m \)

\[
\text{while } m > 0 \text{ do} \\
\quad t \leftarrow n \mod m \\
\quad n \leftarrow m \\
\quad m \leftarrow t \\
\text{return } n
\]

Example: Calculation of \(\text{gcd}(81,21) \)

\[
\begin{array}{c c}
81 & 21 \\
21 & 18 \\
18 & 3 \\
3 & 0
\end{array}
\]

\(\text{gcd}(81,21) = 3 \)
Problem-Solving Second Example (cont.)

- \(\text{gcd}(n,m) \) [Euclid’s Algorithm] \hspace{1em} // \text{assume w.l.o.g. } n > m

 \hspace{1em} \text{while } m > 0 \text{ do}

 \hspace{1.5em} t \leftarrow n \mod m

 \hspace{1.5em} n \leftarrow m

 \hspace{1.5em} m \leftarrow t

 \hspace{1.5em} \text{return } n

- **Claim:** If \(n > m \) then \(\text{gcd}(n,m) \leq \text{gcd}(m,n-m) \)

 - **How do you prove an equality?** Prove both inequalities.

- **Proof:** (1st inequality) Want \(\text{gcd}(m,n-m) \geq \text{gcd}(n,m) \)

 i.e., if \(z|m \) and \(z|n \) then \(z|m, z|(n-m) \)

 \[z|m \text{ and } z|n \Rightarrow m \mod z = n \mod z = 0 \]

 \[\Rightarrow (n-m) \mod z = 0 \]

 \[\Rightarrow z|(n-m) \]

- **Comment:** Anything that divides both of these must also divide both of these.
Problem-Solving Second Example (cont.)

– \text{gcd}(n,m) \ [\text{Euclid’s Algorithm}] \quad \text{// assume w.l.o.g. } n > m

\begin{algorithm}
\text{while } m > 0 \text{ do}
\quad t \leftarrow n \mod m
\quad n \leftarrow m
\quad m \leftarrow t
\end{algorithm}
\text{return } n

– \textbf{Claim: } If \ n > m \text{ then } \text{gcd}(n,m) = \text{gcd}(m,n-m)

 \begin{itemize}
 \item \textit{How do you prove an equality? Prove both inequalities.}
 \end{itemize}

– \textbf{Proof:} (2^{\text{nd}} \text{ inequality}) Want \ \text{gcd}(m,n-m) \leq \text{gcd}(n,m)

 i.e., if \ z|n, z|(n-m) \text{ then } z|m, z|n

 \[z|m \text{ and } z|(n-m) \Rightarrow [m+(n-m)] \mod z = 0\]
 \[\Rightarrow z|n\]

 \(\rightarrow\) \text{Correct!}
Proving That the Algorithm is “Good”

- Euclid’s Algorithm is correct. *Is it efficient?*
- How many times can we go through main loop of gcd(n, m)?
 - Suppose m halves each time? (It doesn’t...)
 - Then, $\log_2 m$ would be an upper bound on # passes
 - *Is any geometric decrease good enough?*
- **Notation:**
 - (n_i, m_i) are values after i^{th} pass
 - Assume $n_0 \geq m_0$
 - Loop is executed a total of L times
Proving That the Algorithm is “Good”

\[\gcd(n,m) \ [\text{Euclid’s Algorithm}] \quad (\text{assumes } n > m) \]

while \(m > 0 \) do
 \(t \leftarrow n \mod m \)
 \(n \leftarrow m \)
 \(m \leftarrow t \)
return \(n \)

• Notation:
 – \((n_i, m_i)\) are values after \(i\)th pass
 – Assume \(n_0 \geq m_0 \)
 – Loop is executed a total of \(L\) times

• Claims:
 – (i) \(m_i \leq n_i \quad \forall \ 0 \leq i \leq L-1 \) (true from algorithm statement)
 – (ii) \(n_{i+1} = m_i \) (true from algorithm statement)
 – (iii) \(m_{i+1} \leq n_i / 2 \) [Case 1: \(m_i \leq n_i / 2 \rightarrow m_{i+1} \leq n_i / 2 \) since \(m_{i+1} < m_i \).]
 Case 2: \(m_i > n_i/2 \rightarrow m_{i+1} = n_i \mod m_i = n_i - m_i \leq n_i/2. \]
Proving That the Algorithm is “Good”

\[\gcd(n, m) \] [Euclid’s Algorithm] \hspace{1cm} (\text{assumes } n > m)

\begin{algorithm}
\textbf{while} \hspace{0.5em} m > 0 \hspace{0.5em} \textbf{do}
\begin{align*}
 t &\leftarrow n \mod m \\
 n &\leftarrow m \\
 m &\leftarrow t
\end{align*}
\textbf{return} \hspace{0.5em} n
\end{algorithm}

\begin{itemize}
 \item \textbf{Claims:}
 \begin{itemize}
 \item (i) \hspace{0.5em} m_i \leq n_i \hspace{0.5em} \forall \hspace{0.5em} 0 \leq i \leq L-1 \hspace{0.5em} \text{(true from algorithm statement)}
 \item (ii) \hspace{0.5em} n_{i+1} = m_i \hspace{0.5em} \text{(true from algorithm statement)}
 \item (iii) \hspace{0.5em} m_{i+1} \leq n_i / 2
 \end{itemize}
 \item \textbf{Theorem:} \hspace{0.5em} m_{i+2} \leq m_i / 2
 \begin{itemize}
 \item \textbf{Proof:}
 \begin{align*}
 (ii) &\Rightarrow \hspace{0.5em} n_{i+1} = m_i \\
 (iii) &\Rightarrow \hspace{0.5em} m_{i+2} \leq n_{i+1} / 2
 \end{align*}
 \end{itemize}
 \item \textbf{Corollary:} If \(n_0 \geq m_0 \geq 1 \), then \(L \leq 2 \log_2 m_0 + 1 \)
\end{itemize}
Basketball Before You Were Born

• No 3-point field goal
• Hypothetical game score: **UCSD 75, UCLA 64**
• Assuming no 3-pointers, in how many ways could UCSD have accumulated 75 points?

Notation:
- \(S(n) \equiv \# \text{ ways to score } n \text{ points} \)

Small Cases:
- \(S(0) = 1 \)
- \(S(1) = 1 \)
- \(S(2) = 2 \) 2 or 1-1
- \(S(3) = 3 \) 2-1 or 1-2 or 1-1-1

Is this familiar?
A “Recurrence Relation”

- **Problem:** What is $S(75)$?
 - **Notation:** write $F(n) = S(n-1)$

 $F(1) = F(2) = 1; \quad F(n) = F(n-1) + F(n-2)$

- **Fibonacci:** 1, 1, 2, 3, 5, 8, …
- **So, $S(75)$ is the 76th Fibonacci number**

- *(Solving the recurrence: See Slide 38)*
Choosing Between Solutions

• Criteria:
 – Correctness
 – Time resources
 – Hardware resources
 – Simplicity, clarity (practical issues)

• Usually, will need:
 – Size, Complexity measures
 – Notion of “basic” machine operation(s)
The Basketball Question Again

• We wanted $S(75) = F(76)$, i.e., the 76th Fibonacci number.

• “Give an efficient algorithm.”
 – For now, let’s equate “efficient” with “using few ‘elementary’ machine operations”; we will ignore size of operands and other issues.

• $\text{fib1}(n)$ if $n < 2$ then return n
 else return $\text{fib1}(n-1) + \text{fib1}(n-2)$
 – Analysis: $T(n) = 1$ if $n < 2$; $T(n) = T(n-1) + T(n-2)$ otherwise.
 $T(n) = F(n)$, i.e., around $(1.64)^n$

• **Question:** What is wrong with fib1?
Save Your Work! = Cache (Sub-)Solutions

• **fib2(n)**

 \[
 f[1] = 1; \quad f[2] = 2;
 \]

 for j = 3 to n do

 \[
 f[j] = f[j - 1] + f[j - 2]
 \]

• Analysis: \(T(n) = n \)

 – Saving your work ("caching") can be useful!

 – Similar example: Pascal’s triangle (binomial coefficients)

 – But, can we do better?

• Idea: Use “natural structure”

 – We are applying the recurrence \(n \) times. Are there any shortcuts?

See: Problem 0.4 in DPV
Not Obvious, But Here Is A Shortcut…

- **fib3(n)**
 - Consider 2x2 matrix M: \(m_{11} = 0, m_{12} = 1, m_{21} = 1, m_{22} = 1 \)
 - Observe: \([F(k) \ F(k+1)]^T = M \times [F(k-1) \ F(k)]^T\)
 \([F(n+1) \ F(n+2)]^T = M^n \times [F(1) \ F(2)]^T = M^n \times [1 \ 1]^T\)

\[
\begin{bmatrix}
 0 & 1 \\
 1 & 1 \\
\end{bmatrix} \times
\begin{bmatrix}
 F_{k-1} \\
 F_k \\
\end{bmatrix} =
\begin{bmatrix}
 F_k \\
 F_{k+1} \\
\end{bmatrix}
\]

- How does this help?
- **Hint:** \(76_{10} = 1001100_2 \)
- \(M^{76} = M^{64} \times M^8 \times M^4 \)
- \(\rightarrow \) **fib3** uses “addition chains”
Quantifying “Better”, “Worse”

- Resources used depend on a **natural parameter**, n, of the input
 - search/sort list
 # items
 $x > y$
 - matrix mult
 largest dim
 $x \times y ; x + y$
 - traverse tree
 # nodes
 follow ptr

- Asymptotic analysis = “as n grows large”
 - $f \in O(g)$ if $\exists c_1, c_2 > 0$ s.t. $f(n) \leq c_1 g(n) + c_2 \ \forall n > 0$
 - $f \in O(g)$ if $\exists c > 0, N$ s.t. $\forall n > N, f(n) \leq c g(n)$
 - e.g., $200x^2 \in O(2x^{2.5})$
 - $f \in \Omega(g)$ if $g \in O(f)$
 - $f \in \Theta(g)$ if $g \in O(f)$ and $f \in O(g)$

- f is $o(g)$ if $\lim_{n \to \infty} f(n)/g(n) = 0$
Using “Big-O” Notation

- Definition: \(f(n) \) is **monotonically growing** (non-decreasing) if \(n_1 \geq n_2 \Rightarrow f(n_1) \geq f(n_2) \)

- **Theorem:** For all constants \(c > 0, \ a > 1, \) and for all monotonically growing \(f(n) \), \((f(n))^c \in O(a^{f(n)}) \)

- **Corollary (take \(f(n) = n \)):** \(\forall \ c > 0, \ a > 1, \ n^c \in O(a^n) \)
 - Any exponential in \(n \) grows faster than any polynomial in \(n \)

- **Corollary (take \(f(n) = \log_a n \)):** \(\forall \ c > 0, \ a > 1, \ (\log_a n)^c \in O(a^{\log a n}) = O(n) \)
 - Any polynomial in \(\log n \) grows slower than \(n^{c', \ c'>0} \)

- Exercise: \(f \in O(s), \ g \in O(r) \Rightarrow f+g \in O(s+r) \)
- Exercise: \(f \in O(s), \ g \in O(r) \Rightarrow f* g \in O(s*r) \)

- **So, we can count operations in an asymptotic sense.**
 But, what is an “operation” ???
What Do We Measure?

- Traditional metrics:
 - Program Size static
 - Runtime dynamic
 - Memory Usage dynamic

- Best Case (not informative)
 - e.g., Bubble Sort? Insertion Sort? Quicksort?

- Worst Case (easiest, most common)
 - $t_A(I) \equiv$ time used by algorithm A on instance I
 - $D(n) \equiv$ set of all instances of size n
 - $WC_A(n) = \max \{t_A(I) | I \in D(n)\}$
 - max time taken by alg A over all instances of size n

- Average Case (useful, but often less tractable)
 - $p(I) \equiv$ probability that instance I occurs
 - $AC_A(n) = \sum_{I \in D(n)} p(I)t_A(I)$
 - average time taken by alg A over all instances of size n

- Amortized Effort (avg over series of operations)
Can Characterize **Problem** Complexity

- **Upper Bounds:**
 - Alg A has UB $f(n)$: $\forall I \in D(n), \ t_A(I) \leq f(n)$
 - Problem P has UB $f(n)$: \exists Alg A for P with UB $f(n)$
 - P has UB $O(f)$: \exists Alg A with UB $g(n); \ g \in O(f)$

- **Lower Bounds:**
 - Alg A has LB $f(n)$: \exists infinitely many n s.t. $\exists I \in D(n)$ where $t_A(I) \geq f(n)$
 - Problem P has LB $f(n)$: \forall Alg A for P, \exists infinitely many m s.t. $\exists I \in D(m)$ for which $t_A(I) \geq f(m)$

- How Do We Argue UB?
 - Constructively (, reductions)

- How Do We Argue LB?
 - e.g., comparison tree model, reductions

… if it is solved by an algorithm that has $O(f)$ complexity

No matter what algorithm we devise to solve P, there are infinitely many instance sizes m for which some instance forces $> f(m)$ runtime
Comparison-Based LB Arguments - Sorting

• Observe: Sorting \equiv Identifying Permutation
• Binary Tree: Root at level (height) 0

Sorting three elements using comparisons:

This comparison tree IS a sorting algorithm (for inputs of 3 elements)!

(figure source: DPV p.52, Section 2.3)
Comparison-Based LB Arguments - Sorting

• Observe: Sorting \equiv Identifying Permutation

• Binary Tree: Root at level (height) 0

• Theorem:
 – There exists $c > 0$ such that for all algorithms that use comparisons to sort, and for all input sizes n, at least one input requires $cn \log n$ comparisons

• Fact:
 – Binary tree of height h has at most 2^h leaves

• Observe:
 – $n!$ leaves needed to distinguish $n!$ possible permutations
 \Rightarrow decision (comparison) tree must have $h \geq \log(n!)$, where h is max # comparisons needed to correctly sort any input of size n [using the corresponding algorithm]
Fun (!), Interesting, Useful Questions

• MaxMin
 • Given a list of N numbers, return the largest and smallest.

• Finding a Celebrity
 • Given a set S of N people, assume that for any pair I, J exactly one of the following is true: I “knows” J, or J “knows” I. Further, define a “celebrity” as someone who knows no one (and who is therefore known by everyone else). Given the “knows” relation over S, determine whether S contains a celebrity.

• Reduction
 • SORTING problem
 Input: a set of numbers
 Output: the elements of the set, in sorted order
 • CONVEX HULL problem
 Input: a set of points in \mathbb{R}^2
 Output: the convex hull of these points, i.e., polygon vertices in order

→ Is “ease” of SORTING “related” to “ease” of CONVEX HULL?
Administrative Notes, January 9

• Slides will be posted in advance of lectures
 – Any updated slides and notes will be posted after lecture
• PAs are due Fridays of Weeks 3, 5, 7, 9
• HWs are due Fridays of Weeks 2, 4, 6, 8, 10
• Please pay attention to class webpage and Piazza!
 – Piazza = discussion boards and announcements
 – Gradesource = posted grades
 – Discussion slides, OHs, resources all posted on webpage
• Pipecleaner HW #0, PA #0 for up to +1% credit
 – HW #0 is posted (due Friday of Week 1, 11:59pm PT)
 • Tests gradescope flow; ungraded; 0.5% credit for turning in
 – PA #0 is posted (due Friday of Week 1, 11:59pm PT)
 • Tests github / ieng6 / build-test flow; up to 0.5% credit
• HW #1 is posted (due Friday of Week 2, 11:59pm PT)
Motivation for a Resource Model

When we count big-O time complexity, what operations take "unit time?"

• Suppose factorial, mod are "unit-cost" on some computer.
 \[
 \text{WILSON}(n) \\
 \quad \text{if } (n-1)! + 1 \equiv 0 \mod n \text{ then return TRUE} \\
 \quad \text{else return FALSE}
 \]
 – Gives us one-step primality testing … which sounds fishy…

• What if return \(\max_i x_i \) (max of a set of #'s) was "unit-cost"?
 – Is this reasonable, given that there is a speed-of-light limit to signal propagation on wires, and finite (non-zero) dimensions of transistors and wires?
 – Physical models (what can be embedded in our 3-D world) are increasingly relevant!
The RAM (Random-Access Machine) Model

- finite stored program
- finite collection of registers
 - each stores single integer or real
- array of \(n \) words of memory
 - each stores single integer or real
 - has unique address in \([1, \ldots, n]\)

- In one step:
 - Perform arithmetic, logical operation on register content
 - \(R_j := M_{R_k} \) or \(M_{R_j} := R_k \) (access contents of word whose address is in register)
 - JNZ, HALT, etc.
The RAM Model (cont.)

• **Q:** On a RAM machine, how large a number can be manipulated in constant time?

• Two variants:
 – uniform cost
 – log cost

• **Exercise:** What are costs for each, under the two variants?
 (i) \(\text{sum}_1\text{to}_N(n) \)
 \[
 \text{sum} \leftarrow 0 \\
 \text{for } i \leftarrow 1 \text{ to } n \text{ do } \text{sum} \leftarrow \text{sum} + i \\
 \text{return sum}
 \]
 (ii) \(\text{fib4}(n) \)
 \[
 i \leftarrow 1, \ j \leftarrow 0 \\
 \text{for } k \leftarrow 1 \text{ to } n \text{ do } \\
 \quad j \leftarrow i + j \\
 \quad i \leftarrow j - i \\
 \text{return j}
 \]

• Other: Turing, pointer machines; straight-line program, decision/comparison tree, …
Addendum: Solving the Fibonacci Recurrence

- **Problem:** What is $S(75)$?
 - **Notation:** write $F(n) = S(n-1)$

 \[F(1) = F(2) = 1; \quad F(n) = F(n-1) + F(n-2) \]
 - **Guesses:** try $F(n) = a^n$ for some a

 \[a^n = a^{n-1} + a^{n-2} \Rightarrow a^2 = a + 1 \Rightarrow a^2 - a - 1 = 0 \]

 Roots: $a_1 = (1 + \sqrt{5})/2$; $a_2 = (1 - \sqrt{5})/2$

 Inspection: $F(n)$ seems close to $(a_1)^n$

 What’s missing?
 - Use all of the information

 \[F(1) = 1; \quad F(2) = 1 \quad \text{(initial conditions)} \]
 - Homogeneous linear recurrence: any linear combination of $(a_1)^n$, $(a_2)^n$ is also a solution.

 \begin{itemize}

 \item $c_1 (a_1)^1 + c_2 (a_2)^1 = F(1) = 1$; $c_1 (a_1)^2 + c_2 (a_2)^2 = F(2) = 1$
 \end{itemize}

 Get $c_1 = 1 / \sqrt{5}$, $c_2 = -1 / \sqrt{5}$

 - 1845 result of Lame (see Knuth, volume 2, section 4.5.3): If $m,n \leq F(k)$, then L in $gcd(m,n) \leq k$, with equality when $(m,n) = (F(k-1),F(k))$.

