CSE 101, Winter 2018

Design and Analysis of Algorithms

Instructor: Prof. Andrew B. Kahng
Webpage: http://vlsicad.ucsd.edu/~abk/
Email: abk@cs.ucsd.edu
Telephone: 858-822-4884
Office Hours: Wed 12:30-1:30pm, Fri 1-2pm, and by appt
Office: EBU3B 2134

Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/
Goals of Course

- Introduction to design and analysis of algorithms
- “Problem-solving”
- Classic Problems
 - Sorting, Path-Finding, String-Matching, Arithmetic, …
- Tools
 - Recurrence Relations, Counting Techniques, Reduction, Probabilistic Analysis, NP-Completeness, …
- Frameworks
 - Divide-and-Conquer, Greed, Dynamic Programming, Branch-and-Bound, Heuristics, …
- Pedagogical choices
 - Order of material
 - “Analyze” vs. “Create” *I stress the latter = problem-solving*
 - Scope *You need to keep up*
What Is An Algorithm?

• An algorithm is a method for solving a problem (on a computer)

• Problem: “Given fraction m/n, reduce to lowest terms.”

• An algorithm must be effective
 → give a correct answer and terminate

• Problem: “Given undirected graph $G = (V,E)$ and vertices $s,t \in V$, is there a path in G from s to t?”

• QUESTION: State an algorithm for this problem
Undirected s-t Connectivity

• A1: BFS, DFS from s.
• A2: Take a random walk in G, starting at s.
 – *Is this an algorithm? (Does it halt?)*
• A3: Take a random walk in G for $5n^3$ steps starting at s ($n = |V|$); return NO iff we don’t visit t.
 – *Is this an algorithm?*
 – *Does it “almost always” return the correct answer?*

• Do A3, A1 differ in terms of **resources** used?
 – A3 “trades” time for space, is “memoryless”.
 – A3: **probabilistic** effectiveness.
Problem-Solving

- Problem solving = “The Spirit of Computing”
- Driven by real-world necessity
 - Autonomous robotics, autonomous vehicles
 - (managing smart highways, collision avoidance / path planning, …)
 - (driverless cars)
 - Logistics
 - (scheduling, resource allocation, …)
 - (stowage on container ships; airline logistics; …)
 - Design of integrated circuits
 - (placement, wiring, partitioning, floorplanning, clock distribution, logic synthesis, …)
 - Bioinformatics, personalized medicine
 - DNA sequencing
 - Gene expression network analysis
 - Evolutionary trees (edit distance, Steiner trees…)
 - Drug design, energy generation/transmission, AI / ML, …
Problem-Solving

• **Patterns**
 – Zeitz, *The Art and Craft of Problem Solving*
 – Polya, *How to Solve It*

• **Tools**
 – Counting
 – Recurrence Relations
 – Data Structures
 – ...

• **Concepts**
 – Problem classes and “solution classes”
 – Lower bounds \rightarrow at least this hard, at least this much effort
 – Reductions \rightarrow solving this boils down to solving that
 – Intractability \rightarrow believed impossible to solve efficiently
What is a Problem?

• A **problem** is defined by:
 – (i) input domain
 • e.g., all ordered pairs of positive integers
 – (ii) output specification
 • e.g., convert to an equivalent fraction in lowest terms

• A problem with the input specified is a problem instance
 – e.g., “convert the fraction 343/56 to lowest terms”

• Types of Problems:
 – **Decision**
 • Yes or No answer (e.g., Does there exist…?)
 – **Computation**
 • How many acyclic s-t paths in G?
 – **Construction** (more than one answer)
 • Construct (exhibit) an s-t path in G. *any s-t path, vs. shortest s-t path, vs. …*
 – **Optimization** (set of all alternatives; cost function)
 • Determine the **shortest** s-t path in G.
Problem-Solving First Example

• Tower of Hanoi
 – Rules: (i) One disk moves at a time, and (ii) Never put a larger disk onto a smaller disk
 – If you move one disk per second, when will all 64 disks be moved?
 – A more useful question: What is the minimum # of moves needed to transfer a stack of n disks?
 • Why is this more useful? \(\rightarrow\) Assumes optimal strategy, …

• Step 1. Define Notation
 – For a stack of n disks, call this number \(T_n\)

• Step 2. Look At Small Cases
 – \(T_0 = 0, \ T_1 = 1, \ T_2 = 3\)
Problem-Solving First Example (cont.)

• **Step 3. Can we reduce to a known problem?**
 – \(T_n \leq 2T_{n-1} + 1 \), \(n > 0 \)
 – Why?
 • Shift (n-1), move largest disk, shift again
 – Why \(\leq \) inequality?
 • \(2T_{n-1} + 1 \) suffices, but maybe can do better

– **Why does the lower bound (LB) \(T_n \geq 2T_{n-1} + 1 \) hold?**
 • Must move largest disk sometime; at this instant, have (n-1) on a single peg
 – \(\rightarrow T_n = 2T_{n-1} + 1, T_0 = 0 \)

• **Step 4. What is a general solution for \(T_n \)?**
 – \(\{ T \} = 0, 1, 3, 7, 15, 31, 63, ... \)
Problem-Solving First Example (cont.)

• Looks like \(T_n = 2^n - 1 \)

• **Step 5. let’s guess** this answer and try to prove it

 – **Claim:** \(T_n = 2^n - 1 \)

 – **Proof:** (by mathematical induction)

 Basis \((n = 0): T_0 = 0 = 2^0 - 1 \) holds

 I.H.: \(T_k = 2^k - 1 \ \forall k = 0, 1, \ldots, n - 1 \)

 I.S.: \(T_n = 2T_{n-1} + 1 = 2(2^{n-1} - 1) + 1 = 2^n - 1 \) (I.H.)

• Note the **kinds of steps** that we applied…

 Establish Notation, Study Small Cases,

 Reduce to a Known Problem, Seek a General Solution,

 Prove the Solution
Question: What Makes One Algorithm Better (or Worse) Than Another?

• **Efficiency with respect to resources** (= one aspect)

• Example: Determinant

 – det (2 \times 2 matrix) = ad – bc

 – Recursively defined det M = (...)

 • M_{ij} is the (i, j) cofactor matrix of n \times n matrix M

• Problem: Give an algorithm for computing det M

 – A1: Use definition to get recursive algorithm

 • **How many multiplications?** (About n!)

 – A2: Use Gaussian elimination to get lower-triangular M’

 • If M’ is lower-triangular, det M’ = \prod m'_{ii}

 • **How many multiplications?** (About n^3)

 • det M’ / (some scalar) = det M
 // scalar is from row operations

 – 1988 algorithms textbook (Brassard and Bratley): For n = 20, A1 takes 107 years; A2 takes 0.05 seconds
Problem-Solving Second Example

• Recall from before: Find m/n in lowest terms
• “Formal” Statement:
 – Input: integers $m \geq 0$, $n > 0$
 – Output: integers m', n' s.t. $m/n = m'/n'$, $(m,n) = (m',n')$, and m', n' are relatively prime.

• A1:
 – Cancel all 2’s
 – Cancel all 3’s
 – Cancel all 5’s
 – etc. until min (m,n) exceeded

• Why is this not so clever?
 – What’s the “worst case”?
 – We always have to check up to min (m,n)
Problem-Solving Second Example (cont.)

- **A1’**: // try divisors starting with largest possible
 - \(i \leftarrow \min (m,n) + 1 \)
 - repeat \(i \leftarrow i - 1 \) until ((i|m) and (i|n))
 - return i
 - may get lucky and stop after only a few divisions
 - but, worst case: \(m \approx n \), \((m,n) = 1\)

- **A2**:
 - find gcd(n,m) // \(gcd = greatest \ common \ divisor \)
 - return \(m' = m / \gcd(n,m) \), \(n' = n / \gcd(n,m) \)
 - We have recast the problem as finding gcd
Problem-Solving Second Example (cont.)

- gcd(n,m) [Euclid’s Algorithm] // assume w.l.o.g. n > m

 while m > 0 do
 t ← n mod m
 n ← m
 m ← t

 return n

Example: Calculation of gcd(81,21)

→ (21,18)
→ (18,3)
→ (3,0)

gcd(81,21) = 3
Problem-Solving Second Example (cont.)

– gcd(n,m) [Euclid’s Algorithm] // assume w.l.o.g. n > m
 while m > 0 do
 t ← n mod m
 n ← m
 m ← t
 return n

– Claim: If n > m then gcd(n,m) = gcd(m,n-m)
 • How do you prove an equality? Prove both inequalities.

– Proof: (1st inequality) Want gcd(m,n-m) ≥ gcd(n,m)
 i.e., if z|m and z|n then z|m, z|(n-m)

 z|m and z|n ⇒ m mod z = n mod z = 0
 ⇒ (n-m) mod z = 0
 ⇒ z|(n-m)
Problem-Solving Second Example (cont.)

- \(\text{gcd}(n,m) \) [Euclid’s Algorithm] \hspace{1em} // assume w.l.o.g. \(n > m \)

  ```
  while \( m > 0 \) do
    \( t \leftarrow n \mod m \)
    \( n \leftarrow m \)
    \( m \leftarrow t \)
  return \( n \)
  ```

- **Claim:** If \(n > m \) then \(\text{gcd}(n,m) = \text{gcd}(m,n-m) \)
 - *How do you prove an equality? Prove both inequalities.*

- **Proof:** (2nd inequality) Want \(\text{gcd}(m,n-m) \leq \text{gcd}(n,m) \)

 i.e., if \(z|m, z|(n-m) \) then \(z|m, z|n \)

 \(z|m \) and \(z|(n-m) \) \(\Rightarrow \) \([m+(n-m)] \mod z = 0 \)

 \(\Rightarrow z|n \)
Proving That the Algorithm is “Good”

- Euclid’s Algorithm is correct. *Is it efficient?*
- How many times can we go through main loop of gcd(n,m)?
 - Suppose m halves each time? (It doesn’t...)
 ⇒ Then, \(\log_2 m \) would be an upper bound on # passes
 - *Is any geometric decrease good enough?*
- **Notation:**
 - \((n_i, m_i)\) are values after \(i^{\text{th}}\) pass
 - Assume \(n_0 \geq m_0\)
 - Loop is executed a total of \(L\) times
Proving That the Algorithm is “Good”

\[\text{gcd}(n,m) \ [\text{Euclid’s Algorithm}] \quad (\text{assumes } n > m) \]

\[
\text{while } m > 0 \text{ do } \\
t \leftarrow n \mod m \\
n \leftarrow m \\
m \leftarrow t \\
\text{return } n
\]

- **Notation:**
 - \((n_i, m_i)\) are values after \(i^{th}\) pass
 - Assume \(n_0 \geq m_0\)
 - Loop is executed a total of \(L\) times

- **Claims:**
 - (i) \(m_i \leq n_i\) \(\forall\ 0 \leq i \leq L-1\) (true from algorithm statement)
 - (ii) \(n_{i+1} = m_i\) (true from algorithm statement)
 - (iii) \(m_{i+1} \leq n_i / 2\)
 - **Case 1:** \(m_i \leq n_i / 2 \Rightarrow m_{i+1} \leq n_i / 2\) since \(m_{i+1} < m_i\)
 - **Case 2:** \(m_i > n_i/2 \Rightarrow m_{i+1} = n_i \mod m_i = n_i - m_i \leq n_i/2\).
Proving That the Algorithm is “Good”

\[
gcd(n,m) \quad \text{[Euclid’s Algorithm]} \quad \text{(assumes } n > m)\\
\text{while } m > 0 \text{ do}\\
\quad t \leftarrow n \mod m\\
\quad n \leftarrow m\\
\quad m \leftarrow t\\
\text{return } n
\]

• **Claims:**
 – (i) \(m_i \leq n_i \) \(\forall \quad 0 \leq i \leq L-1 \) (true from algorithm statement)
 – (ii) \(n_{i+1} = m_i \) (true from algorithm statement)
 – (iii) \(m_{i+1} \leq n_i / 2 \)

• **Theorem:** \(m_{i+2} \leq m_i / 2 \)
 – **Proof:**
 - (ii) \(\Rightarrow \) \(n_{i+1} = m_i \)
 - (iii) \(\Rightarrow \) \(m_{i+2} \leq n_{i+1} / 2 \)

 – **Corollary:** If \(n_0 \geq m_0 \geq 1 \), then \(L \leq 2 \log_2 m_0 + 1 \)
Basketball Before You Were Born

• No 3-point field goal
• Hypothetical game score: UCSD 75, UCLA 64
• Assuming no 3-pointers, in how many ways could UCSD have accumulated 75 points?

• Notation:
 – $S(n) \equiv \# \text{ ways to score n points}$

• Small Cases:
 – $S(0) = 1$
 – $S(1) = 1$
 – $S(2) = 2$ 2 or 1-1
 – $S(3) = 3$ 2-1 or 1-2 or 1-1-1

is this familiar?
A “Recurrence Relation”

- **Problem**: What is $S(75)$?
 - **Notation**: write $F(n) = S(n-1)$

 $F(1) = F(2) = 1; \quad F(n) = F(n-1) + F(n-2)$

- **Fibonacci**: $1, 1, 2, 3, 5, 8, \ldots$
- So, $S(75)$ is the 76^{th} Fibonacci number

- (Solving the recurrence: See Slide 38)
Choosing Between Solutions

• Criteria:
 – Correctness
 – Time resources
 – Hardware resources
 – Simplicity, clarity (practical issues)

• Usually, will need:
 – Size, Complexity measures
 – Notion of “basic” machine operation(s)
The Basketball Question Again

• We wanted $S(75) = F(76)$, i.e., the 76$^{\text{th}}$ Fibonacci number

• “Give an efficient algorithm.”
 – For now, let’s equate “efficient” with “using few ‘elementary’ machine operations”; we will ignore size of operands and other issues

• $\text{fib1}(n)$ if $n < 2$ then return n
 else return $\text{fib1}(n-1) + \text{fib1}(n-2)$

 – Analysis: $T(n) = 1$ if $n<2$; $T(n) = T(n-1) + T(n-2)$ otherwise
 $T(n) = F(n)$, i.e., around $(1.64)^n$

• Question: What is wrong with fib1?
Save Your Work! = Cache (Sub-)Solutions

• fib2(n)

 \[f[1] = 1; \quad f[2] = 2; \]

 for \(j = 3 \) to \(n \) do
 \[f[j] = f[j - 1] + f[j - 2] \]

• Analysis: \(T(n) = n \)

 – Saving your work ("caching") can be useful!
 – Similar example: Pascal’s triangle (binomial coefficients)
 – But, can we do better?

• Idea: Use "natural structure"

 – We are applying the recurrence \(n \) times. Are there any shortcuts?
Not Obvious, But Here Is A Shortcut…

• fib3(n)
 – Consider 2x2 matrix M: \(m_{11} = 0, m_{12} = 1, m_{21} = 1, m_{22} = 1 \)
 – Observe: \([F(k) F(k+1)]^T = M \times [F(k-1) F(k)]^T\)
 \([F(n+1) F(n+2)]^T = M^n \times [F(1) F(2)]^T = M^n \times [1 1]^T\)

\[
\begin{bmatrix}
0 & 1 \\
1 & 1
\end{bmatrix}
\times
\begin{bmatrix}
F_{k-1} \\
F_k
\end{bmatrix}
=
\begin{bmatrix}
F_k \\
F_{k+1}
\end{bmatrix}
\]

– How does this help?
– Hint: \(76_{10} = 1001100_2 \)

• \(M^{76} = M^{64} \times M^8 \times M^4 \)
• \(\rightarrow \) fib3 uses “addition chains”
Quantifying “Better”, “Worse”

- Resources used depend on a **natural parameter**, \(n \), of the input
 - search/sort list # items \(x > y \)
 - matrix mult largest dim \(x \times y ; x + y \)
 - traverse tree # nodes follow ptr

- Asymptotic analysis = “as \(n \) grows large”
 - \(f \in O(g) \) if \(\exists c_1, c_2 > 0 \) s.t. \(f(n) \leq c_1 g(n) + c_2 \forall n > 0 \)
 - \(f \in O(g) \) if \(\exists c > 0, N \) s.t. \(\forall n > N, f(n) \leq c g(n) \)
 e.g., \(200x^2 \in O(2x^{2.5}) \)
 - \(f \in \Omega(g) \) if \(g \in O(f) \)
 - \(f \in \Theta(g) \) if \(g \in O(f) \) and \(f \in O(g) \)

- \(f \) is \(o(g) \) if \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \)
Using “Big-Oh” Notation

• Definition: f(n) is **monotonically growing** (non-decreasing) if \(n_1 \geq n_2 \Rightarrow f(n_1) \geq f(n_2) \)

• **Theorem**: For all constants \(c > 0, a > 1, \) and for all monotonically growing \(f(n) \), \((f(n))^c \in O(a^{f(n)}) \)

• **Corollary (take \(f(n) = n \))**: \(\forall c > 0, a > 1, n^c \in O(a^n) \)
 – Any exponential in \(n \) grows faster than any polynomial in \(n \)

• **Corollary (take \(f(n) = \log_a n \))**: \(\forall c > 0, a > 1, \) \((\log_a n)^c \in O(a^{\log_a n}) = O(n) \)
 – Any polynomial in \(\log n \) grows slower than \(n^{c'}, c' > 0 \)

 • Exercise: \(f \in O(s), g \in O(r) \Rightarrow f+g \in O(s+r) \)
 • Exercise: \(f \in O(s), g \in O(r) \Rightarrow f* g \in O(s*r) \)

• **So, we can count operations in an asymptotic sense.**
 But, what is an “operation”??
What Do We Measure?

• Traditional metrics:
 – Program Size static
 – Runtime dynamic
 – Memory Usage dynamic

• **Best Case (not informative)**
 – e.g., Bubble Sort? Insertion Sort? Quicksort?

• **Worst Case (easiest, most common)**
 – $t_A(I) \equiv$ time used by algorithm A on instance I
 – $D(n) \equiv$ set of all instances of size n
 – $WC_A(n) = \max \{t_A(I) \mid I \in D(n)\}$ max time taken by alg A over all instances of size n

• **Average Case (useful, but often less tractable)**
 – $p(I) \equiv$ probability that instance I occurs
 – $AC_A(n) = \sum_{I \in D(n)} p(I)t_A(I)$ average time taken by alg A over all instances of size n

• **Amortized Effort (avg over series of operations)**
Can Characterize **Problem** Complexity

- **Upper Bounds:**
 - Alg A has UB $f(n)$: $\forall I \in D(n), t_A(I) \leq f(n)$
 - **Problem P has UB $f(n)$:** \exists Alg A for P with UB $f(n)$
 - P has UB $O(f)$: \exists Alg A with UB $g(n)$; $g \in O(f)$

- **Lower Bounds:**
 - Alg A has LB $f(n)$: \exists infinitely many n s.t. $\exists I \in D(n)$ where $t_A(I) \geq f(n)$
 - **Problem P has LB $f(n)$:** \forall Alg A for P, \exists infinitely many m s.t. $\exists I \in D(m)$ for which $t_A(I) \geq f(m)$

- **How Do We Argue UB?**
 - Constructively (, reductions)

- **How Do We Argue LB?**
 - e.g., comparison tree model, reductions
Comparison-Based LB Arguments - Sorting

• Observe: Sorting ⇔ Identifying Permutation
• Binary Tree: Root at level (height) 0

Sorting three elements using comparisons:

(figure source: DPV p.52, Section 2.3)
Comparison-Based LB Arguments - Sorting

• Observe: Sorting \equiv Identifying Permutation

• Binary Tree: Root at level (height) 0

• Theorem:
 – There exists $c > 0$ such that for all algorithms that use comparisons to sort, and for all input sizes n, at least one input requires $cn \log n$ comparisons

• Fact:
 – Binary tree of height h has at most 2^h leaves

• Observe:
 – $n!$ leaves needed \Rightarrow decision (comparison) tree must have $h \geq \log(n!)$, where h is max # comparisons needed to sort input of size n using the corresponding algorithm
Fun (!), Interesting, Useful Questions

• MaxMin
 • Given a list of N numbers, return the largest and smallest.

• Finding a Celebrity
 • Given a set S of N people, assume that for any pair I, J exactly one of the following is true: I “knows” J, or J “knows” I. Further, define a “celebrity” as someone who knows no one (and who is therefore known by everyone else). Given the “knows” relation over S, determine whether S contains a celebrity.

• Reduction
 • SORTING problem
 Input: a set of numbers
 Output: the elements of the set, in sorted order
 • CONVEX HULL problem
 Input: a set of points in \(\mathbb{R}^2 \)
 Output: the convex hull of these points, i.e., polygon vertices in order
 \(\rightarrow \) Is “ease” of SORTING “related” to “ease” of CONVEX HULL?
Administrative Notes, January 8

• Slides will be posted in advance of lectures
 – Any updated slides and notes will be posted after lecture
• PAs are due Fridays of Weeks 3, 5, 7, 9
• HWs are due Fridays of Weeks 2, 4, 6, 8, 10
• Please pay attention to class webpage and Piazza!
 – Piazza = discussion boards and announcements
 – Gradesource = posted grades
 – Discussion times, TA/tutor/my OHs all posted on webpage
• Pipecleaner HW #0, PA #0 for up to +1% credit
 – HW #0 is posted (due Friday of Week 1, 11:59pm PT)
 • Tests gradescope flow; ungraded; 0.5% credit for turning in
 – PA #0 is posted (due Friday of Week 1, 11:59pm PT)
 • Tests github / ieng6 / build-test flow; up to 0.5% credit
• HW #1 is posted (due Friday of Week 2, 11:59pm PT)
EXTRA SLIDES
Motivation for a Resource Model

When we count big-O time complexity, what operations take “unit time?"

- Suppose \texttt{factorial}, \texttt{mod} are “unit-cost” on some computer.

 \begin{verbatim}
 WILSON(n)
 if (n-1)! +1 \equiv 0 \mod n then return TRUE
 else return FALSE
 \end{verbatim}

 - Gives us one-step primality testing ... which sounds fishy...

- What if \texttt{return max}_i x_i (max of a set of #’s) was “unit-cost”?

 - Is this reasonable, given that there is a speed-of-light limit to signal propagation on wires, and finite (non-zero) dimensions of transistors and wires?

 - Physical models (what can be embedded in our 3-D world) are increasingly relevant!
The RAM (Random-Access Machine) Model

- finite stored program
- finite collection of registers
 - each stores single integer or real
- array of n words of memory
 - each stores single integer or real
 - has unique address in \([1, \ldots, n]\)
- **In one step:**
 - Perform arithmetic, logical operation on register content
 - \(R_j := M_{R_k}\) or \(M_{R_j} := R_k\) (access contents of word whose address is in register)
 - JNZ, HALT, etc.
The RAM Model (cont.)

• **Q:** On a RAM machine, how large a number can be manipulated in constant time?

• Two variants:
 – uniform cost
 – log cost

• **Exercise:** What are costs for each, under the two variants?

 (i) `sum_1_to_N(n)`

  ```
  sum ← 0
  for i ← 1 to n do sum ← sum + i
  return sum
  ```

(ii) `fib4(n)`

  ```
  i ← 1, j ← 0
  for k ← 1 to n do
    j ← i + j
    i ← j - i
  return j
  ```

• Other: Turing, pointer machines; straight-line program, decision/comparison tree, …
Addendum: Solving the Fibonacci Recurrence

- Problem: What is $S(75)$?
 - Notation: write $F(n) = S(n-1)$

 $F(1) = F(2) = 1$; $F(n) = F(n-1) + F(n-2)$

 - Guesses: try $F(n) = a^n$ for some a

 $a^n = a^{n-1} + a^{n-2} \Rightarrow a^2 = a + 1 \Rightarrow a^2 - a - 1 = 0$

 Roots: $a_1 = (1 + \sqrt{5})/2$; $a_2 = (1 - \sqrt{5})/2$

 Inspection: $F(n)$ seems close to $(a_1)^n$ What’s missing?

 - Use all of the information

 $F(1) = 1$; $F(2) = 1$ (initial conditions)

 - Homogeneous linear recurrence: any linear combination of $(a_1)^n$, $(a_2)^n$ is also a solution.

 - $c_1 (a_1)^1 + c_2 (a_2)^1 = F(1) = 1$; $c_1 (a_1)^2 + c_2 (a_2)^2 = F(2) = 1$

 Get $c_1 = 1 / \sqrt{5}$, $c_2 = -1 / \sqrt{5}$

 1845 result of Lame (see Knuth, volume 2, section 4.5.3): If $m,n \leq F(k)$, then L in $\text{gcd}(m,n) \leq k$, with equality when $(m,n) = (F(k-1),F(k))$.