Problems (must be written up and turned in; refer to or use a solution template to understand the required elements of your answer)

1. There is a robot on the line at coordinate 1. In one move, the robot can get from coordinate \(i \) to any one of the coordinates \(i + 1, i + 2, \ldots, i + k \). Give an algorithm to determine how many distinct ways the robot can get from coordinate 1 to coordinate \(n \), where \(n \) and \(k \) are positive integer numbers and \(k \leq n \). Your algorithm must have \(O(n) \) time complexity and \(O(k) \) space complexity.

2. You are given a set of integer numbers \(A = \{a_1, a_2, \ldots, a_n\} \), where \(1 \leq a_i \leq m \) for all \(1 \leq i \leq n \) and for a given positive integer \(m \). Give an algorithm which determines whether you can represent a given positive integer \(k \leq nm \) as a sum of some numbers from \(A \), if each number from \(A \) can be used at most once. Your algorithm must have \(O(nk) \) time complexity.

3. You are given a sequence of \(n \) numbers \(A = (a_1, a_2, \ldots, a_n) \). At one step, you can erase any number except for the leftmost and the rightmost ones. Erasing number \(a_i \) costs \(a_{i-1} \cdot a_{i+1} \). Your goal is to erase all the numbers \(a_i \) where \(1 < i < n \), in some order, such that the total cost is minimized. Give an algorithm to accomplish your goal, with \(O(n^3) \) time complexity.

4. We consider some sequence \((b_1, b_2, \ldots, b_m)\) to be interesting if \(|b_{i+1} - b_i| < K \) for all \(1 \leq i \leq m - 1 \), where \(K \) is a given positive number. You are given a sequence of \(n \) numbers: \((a_1, a_2, \ldots, a_n)\) and a number \(K \). Give an algorithm which finds the length of the longest interesting subsequence of the given sequence. The time complexity of your algorithm should be \(O(n^2) \).

5. You are given a two-dimensional array \(A \) of dimensions \(k \times n \). The elements of the array are integer numbers. Your goal is to find the sum of the following sequence \(D = (d_1, d_2, \ldots, d_n) \):

 \[(a) \quad d_i \in \{A[1][i], A[2][i], \ldots, A[k][i]\} \text{ for all } 1 \leq i \leq n, \text{ i.e., } d_i \text{ is some element in the array } A \text{ at column } i.

 \(b) \text{ Neighboring elements in } D \text{ can’t be from the same row in array } A. \text{ For example, if } d_i = A[x][i] \text{ for some } x, \text{ then } d_{i-1} \neq A[x][i-1] \text{ and } d_{i+1} \neq A[x][i+1].

 \(c) \text{ The sum of all elements in } D, \text{ i.e., } d_1 + d_2 + \ldots + d_n, \text{ is maximized. Your goal is to find the sum of the sequence } D.\]

Provide a solution with \(O(nk) \) time and \(O(k) \) space complexity for full credit.