1. Consider a DP algorithm which takes as input an array A of n elements. Subproblems of the given problem are contiguous subarrays $[A_i, \ldots, A_j]$ where $1 \leq i \leq j \leq n$. The DP algorithm computes solutions to all possible subproblems before it returns the desired result for the given problem $[A_1, \ldots, A_n]$. The number of subproblems for which solutions are computed by the DP algorithm is then: (Answer: $\Theta(n^2)$)

(a) $\Theta(\log n)$
(b) $\Theta(n \log n)$
(c) $\Theta(n^2)$
(d) $\Theta(n^3)$

Solution
$\Theta(n^2)$. i and j can each vary in the range $[1 \ldots n]$, and hence there are possibly $n \times n$ different subproblems of the kind $[A_i, \ldots, A_j]$. As $i \leq j$ always, we only have to compute approximately $1/2$ of the entries in a table of size $n \times n$. Since $1/2$ is a constant factor, this is still $\Theta(n^2)$.

2. What is the worst-case running time of the DP algorithm for String Reconstruction presented in lecture if we know that the maximum length of any word in the dictionary is k, and we implement the DP algorithm to take advantage of this fact? (Answer: $\Theta(kn)$)

(a) $\Theta(kn^2)$
(b) $\Theta(n \log n)$
(c) $\Theta(kn)$
(d) $\Theta(\sqrt{n})$

Solution
The DP algorithm formulates problem recursively using subproblems. The number of subproblems is n and the maximum length of any
word is k. The algorithm looks up the dictionary in $\Theta(k)$ for given n subproblems. Therefore, the worst-case running time of the String Reconstruction problem is $\Theta(kn)$.

3. Which of the following algorithms is not Dynamic Programming based? (Answer: Prim’s algorithm)
 (a) Computing the binomial coefficient $C(n,k)$ using Pascal’s Triangle
 (b) Floyd-Warshall algorithm for all-pairs shortest paths
 (c) Bellman-Ford algorithm for single-source shortest paths
 (d) Prim’s algorithm for minimum spanning tree

 Solution

 Prim’s algorithm for minimum spanning tree is a greedy algorithm, not a DP algorithm.

4. In the problem of finding the Longest Common Subsequence in two strings $X[1 \ldots m]$ and $Y[1 \ldots n]$ as described in lecture, each subproblem seeks a subsolution $c[i,j]$, the length of the LCS of $X[1 \ldots i]$ and $Y[1 \ldots j]$. The recurrence relation given in lecture is:

 $$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \\ \max\{c[i,j-1], c[i-1,j]\} & \text{otherwise} \end{cases}$$

 Consider the table of subsolutions computed by the algorithm. What are the initial conditions for this recurrence? (Answer: (c))
 (a) $c[0,0] = 0$, i.e., the top-left element of the table is 0.
 (b) $c[i,i] = 0 \ \forall i$, i.e., the diagonal elements of the table are 0.
 (c) $c[0,j] = 0 \ \forall j$ and $c[i,0] = 0 \ \forall i$, i.e., the 0th row and the 0th column of the table have all 0s.
 (d) $c[0,0] = c[0,1] = c[1,0] = 0$, i.e., the three top-left elements of the table are 0.

 Solution

 $c[0,j] = 0 \ \forall j$ and $c[i,0] = 0 \ \forall i$, i.e., the 0th row and the 0th column of the table have all 0s since the recurrence looks up only three previously-computed subproblems’ solutions.

5. Given n types of coins with values v_1, v_2, \ldots, v_n and a target value C. (You may assume $v_1 = 1$ so that it is always possible to find a set of coins that exactly achieves any given target value.) A DP algorithm that finds the smallest number of coins required to sum to C is:

 $$M(j) = \begin{cases} 0, & \text{if } j = 0 \\ \min_{i=1,\ldots,n}\{M(j-v_i) + 1\} & \text{else} \end{cases}$$
(In this recurrence, \(M(j) \) is the minimum number of coins required to sum to the value \(j \).) What is the worst-case running time of the given algorithm? (Answer: \(\Theta(Cn) \))

(a) \(\Theta(Cn) \)
(b) \(\Theta(n^2) \)
(c) \(\Theta(Cn^2) \)
(d) \(\Theta(n \log n) \)

Solution

\(M \) has \(C \) elements and computing each element takes \(\Theta(n) \) time so the worst-case running time of the given algorithm is \(\Theta(Cn) \).

6. Given a sequence of \(n \) real numbers, \(a_1, a_2, \ldots, a_n \), a DP algorithm that finds the maximum sum of any contiguous (i.e., consecutively occurring) subsequence of elements in the given sequence is:

\[
M(j) = \begin{cases}
 a_j, & \text{if } j = 1 \\
 \max\{M(j-1) + a_j, a_j\}, & \text{else}
\end{cases}
\]

(In this recurrence, \(M(j) \) is the maximum sum of contiguous subsequence of elements found within the first \(j \) elements of the given sequence) What is the worst-case running time of the given algorithm? (Answer: \(\Theta(n) \))

(a) \(\Theta(n) \)
(b) \(\Theta(n^2) \)
(c) \(\Theta(n^3) \)
(d) \(\Theta(n \log n) \)

Solution

\(M \) is size \(n \) and evaluating each element of \(M \) takes \(\Theta(1) \) time for \(\Theta(n) \) time to create \(M \). Scanning \(M \) also takes \(\Theta(n) \) time for a total time of \(\Theta(n) \).

7. Consider the DP algorithm for the Knapsack problem as described in lecture. The subproblem is defined as \(F_k(y) \), the maximum value possible using only the first \(k \) item types, when the weight limit is \(y \). The recurrence relation in this problem is:

\[
F_k(y) = \max\{F_{k-1}(y), F_k(y - w_k) + v_k\}
\]

where \(k \) ranges from 1 to \(n \), the number of item types, and \(y \) ranges from 1 to \(b \), the weight limit of the knapsack. \(w_k \) and \(v_k \) indicate the weight and value of item type \(k \), respectively. Consider the array of subsolutions \(F \) filled in by the DP algorithm according to this recurrence. Which of the following best describes this array? (Answer: \((c) \))
(a) The array F is a one-dimensional array of size b (not accounting for the 0th element), in which each value is calculated exactly once using $O(1)$ operations.

(b) The array F is a one-dimensional array of size n (not accounting for the 0th element), in which each value is updated b times.

(c) The array F is a two-dimensional array of dimensions $n \times b$ (not accounting for the 0th row and 0th column), in which each value is calculated exactly once using $O(1)$ operations.

(d) The array F is a two-dimensional array of dimensions $n \times b$ (not accounting for the 0th row and 0th column), in which each value is updated b times.

Solution
The array F is a two-dimensional array of dimensions $n \times b$ (not accounting for the 0th row and 0th column), in which each value is calculated exactly once using $O(1)$ operations since the algorithm looks up two previously-computed subproblems’ solutions; $F_{k-1}(y)$ for the k^{th} item not used and $F_k(y-w_k) + v_k$ for the k^{th} item used once.

8. What is the definition of the subproblem in the DP algorithm for finding All-Pairs Shortest Paths? (Answer: (b))

(a) $c_{ij}^{(m)}$, the shortest distance between any two vertices i and j achieved by paths that use at most m edges.

(b) $c_{ij}^{(m)}$, the shortest distance between any two vertices i and j achieved by paths that pass only through vertices in the set $\{1, 2, \ldots, m\}$.

(c) c_{ij}, the shortest distance between any two vertices i and j achieved by paths that use only vertices from an arbitrary set $S \subset V$.

Solution
(b) is the definition of the subproblem for the Floyd-Warshall dynamic programming algorithm.

9. Consider the problem of finding the Minimum Edit Distance between two strings $x[1 \ldots n]$ and $y[1 \ldots m]$. In the DP solution to this problem, the recurrence is formulated as:

$$E[i, j] = \min\{1 + E[i - 1, j], 1 + E[i, j - 1], \text{diff}(i, j) + E[i - 1, j - 1]\}$$

Based upon this recurrence, how much time does computing each subproblem require? (Answer: $\Theta(1)$)

(a) One subsolution requires $\Theta(1)$ to compute.

(b) One subsolution requires $\Theta(m)$ to compute.
(c) One subsolution requires $\Theta(n)$ to compute.

Solution

One subsolution requires $\Theta(1)$ to compute since the recurrence looks up only three previously-computed subproblems’ solutions.