INSTRUCTIONS: Be clear and concise. Write your answers in the space provided. Use the backs of pages, and/or the scratch page at the end, for your scratchwork. All graphs are assumed to be simple. Good luck!

You may freely use or cite the following subroutines from class:\(^1\):

- **explore\((G, s)\)**

 This returns three arrays of size \(|V|\): \texttt{pre}, \texttt{post}, and \texttt{visited}.

- **dfs\((G)\)**

 This returns three arrays of size \(|V|\): \texttt{pre}, \texttt{post}, and \texttt{cc}. If the graph has \(k\) connected components, then the \texttt{cc} array assigns each node a number in the range 1 to \(k\).

- **scc\((G)\)**

 This returns an array \texttt{scc} of size \(|V|\). If the graph has \(k\) strongly connected components, then the \texttt{scc} array assigns each node a number in the range 1 to \(k\).

- **bfs\((G, s)\), dijkstra\((G, \ell, s)\), bellman-ford\((G, \ell, s)\)**

 These all return two arrays of size \(|V|\): \texttt{dist} and \texttt{prev}.

- **dag-sp\((G, \ell, s)\)**

 This returns two arrays of size \(|V|\): \texttt{dist} and \texttt{prev}. The array \texttt{dist} contains the shortest paths from \(s\) to all other reachable nodes in \(G\). The algorithm is similar to \texttt{dag-lp} which instead returns the longest paths. These only work on directed acyclic graphs with and without negative edges.

\(^1\)We recall from class/text the following time complexities. (1) **dfs/explore**: \(O(|V| + |E|)\). (2) **scc**: \(O(|V| + |E|)\). (3) **bfs**: \(O(|V| + |E|)\). (4) **dijkstra**: \(O((|V| + |E|) \log |V|)\) assuming a simple binary heap implementation of the priority queue. (5) **bellman-ford**: \(O(|V| \cdot |E|)\). (6) **dag-sp**: \(O(|V| + |E|)\).
1. (10 points) For the directed graph below with non-negative edges, list the order in which nodes are processed by each of the following algorithms. Start all algorithms from node A and ignore edge lengths if they are not commonly used by an algorithm (e.g., dfs). Break any ties alphabetically (alphabetically-lowest first).

```
dfs
bfs
dijkstra
dag-sp
```

![Directed Graph](image-url)
2. **Short answer.** For true/false questions state whether the claim is true or false. If true, give a brief justification. If false, justify by providing a counterexample. *No points will be given for simply writing “true” or “false” without any justification!*

(a) (2 \(\frac{1}{2}\) points) True/False: Given two nodes \(s, t\), the shortest (simple) cycle containing \(s\) and \(t\) must also contain a shortest \(s-t\) path.

(b) (2 \(\frac{1}{2}\) points) True/False: For any directed graph \(G = (V, E)\) if all edge lengths are distinct (no two edge lengths are the same) then the shortest path between two nodes \(s\) and \(t\) is unique.
(c) (2 1/2 points) The running-time of a divide-and-conquer algorithm is characterized by the following recurrence: \(T(n) = 4T(n/2) + \log n \). Provide a tight big-O bound for the running-time of this algorithm.

(d) (2 1/2 points) True/False: Given a directed graph \(G = (V, E) \) and node \(s \in G \), with all nodes in \(V \) reachable from \(s \). We run the Bellman-Ford algorithm in \(G \), starting from node \(s \), and the stored dist values do not change from the \((|V|/2 - 1)^{st}\) iteration to the \((|V|/2)^{st}\) iteration. Then, \(G \) cannot have any negative cycles.
3. (10 points) You are given a nonempty array \(A \) with \(n \) distinct integer-valued elements. The values in the array decrease monotonically from \(A_1 \) to an element \(A_i \), and then increase monotonically from \(A_i \) to \(A_n \). The element \(A_i \) is called the *valley* element of \(A \). In other words:

\[
A_1 > A_2 > \ldots > A_i < A_{i+1} < A_{i+2} < \ldots < A_n
\]

In the following example the *valley* element is \(A_4 = -5 \):

\[[7, 1, -4, -5, -2, 0, 10, 23] \]

Design a divide-and-conquer algorithm to find the *valley* element \(A_i \). Briefly explain your algorithm, give a recurrence characterizing its time complexity, apply the master theorem to provide a big-\(O \) running-time, and provide pseudo-code.
4. Given a connected, directed graph $G = (V, E)$, we say that $v \in V$ is a root node in G if, for all $u \in V, u \neq v$, there exists a directed $v-u$ path in G.

(a) (2 points) Give an example with no more than four (4) nodes of a connected, directed acyclic graph (DAG) with no root node.

(b) (4 points) Suppose that you are given a connected, directed graph G and a known root node r. Give an efficient algorithm to find all other root nodes in G. (Possibly useful observation: if there is a directed path in G from a node u to r, then u is also a root node.) Briefly explain and justify your algorithm, analyze the time complexity, and provide pseudo-code.
(c) (4 points) Suppose that you are given a connected, directed graph \(G \) that may or may not have any root nodes. Explain (with pseudo-code if you wish) how to determine all of \(G \)'s root nodes, or indicate that no root nodes exist, in time \(O(|V| + |E|) \). Clearly state any algorithms from class that you use in your solution.
SCRATCH PAGE. DO NOT REMOVE.