CSE 101, Winter 2018
Discussion Section
Week 5

February 5 - February 12
Topics

1. Minimum spanning trees
2. Prim’s algorithm
3. Kruskal’s algorithm
4. Binary search the answer
5. Greedy algorithms: exchange method
A minimum spanning tree (MST) of an undirected weighted graph $G = (V, E)$ is a subgraph $G' = (V', E')$, such that:

- $V' = V$ (covers all the nodes in G)
- G' is connect and doesn’t have any cycles (G' is a tree)
- The total sum of all weights in G' is as small as possible

Example:
The cost of the MST is
$5 + 4 + 8 + 8 + 11 + 6 = 42$
Minimum Spanning Tree

Statement. You are given an undirected weighted graph $G = (V, E)$. Output MST of this graph.

There are two popular greedy algorithms that solve this problem: Prim’s algorithm and Kruskal’s algorithm.
Prim’s algorithm

1. Pick any node s in V. Initialize $G' = (V' = \{s\}, E' = \{\})$
2. Among all edges (u, v) in E, such that u belongs V' and v doesn’t belong V', choose the one that has the smallest weight.
3. Add v to V' and (u, v) to E': $G' = (V'\ add \{v\}, E'\ add \ (u, v))$
4. If $|V'| < |V|$ go to step 2.
5. G' is a MST of G.

Can be implemented in $O(|V|^2)$ or in $O(|V|\log|E|)$ (with priority queues)
(Example on the board)
Kruskal’s algorithm

1. Initialize $G' = (V' = \{\}, E' = \{\})$
2. Sort all edges in E in an increasing order of their weights.
3. For every (u, v) in E (in an increasing order of their weights)
 a. Add edge (u, v) to G', if G' won’t have any cycles afterwards

Can be implemented in $O(|E|\log|V|)$ with Disjoint-Set-Union data structure
(Example on the board)
Recall question from the midterm: you are given an undirected weighted graph $G = (V, E)$, two nodes s and t, and capacity L. You can go from node u to v, if there is an edge (u, v) and its weight is no greater than L. Determine whether there is a valid path from s to t.

Solution. Run DFS/BFS on the graph starting from s and ignore all edges with edge weights greater than L. If, at some point, we visit t, then there is a valid path from s to t.
Binary search the answer

Now, let’s find the minimum possible L, such that there is a valid path from s to t in the graph G.

We can answer whether we can get from s to t in G for a fixed L. Let’s say we have some function f(L, G, s, t) which returns true, if there is a valid path from s to t, and false otherwise.

Can we find minimum L using this function?
Binary search the answer

Let’s find the range for L. If $s = t$, then the answer is 0. If $s \neq t$, then optimal value for L will be equal to some edge weight (think why). Let M be the maximum of all edge weights.

We could run our function $f(L, G, s, t)$ for all integer values L: $0 \leq L \leq M$. The moment the function returns "true", we take that value for L as an answer. The overall complexity will be $O(M(|V| + |E|))$.

Can you optimize this algorithm?
We can run our function $f(L, G, s, t)$ for values that are weights of some edges. We can iterate through weights of edges in an increasing order (adding value zero to the beginning) and apply the same algorithm. The complexity will be $O(|E|(|V| + |E|))$. This may be better, if $|E| < M$.
Binary search the answer

The better optimization is the following: we can see the following property of function f:

If $f(L, G, s, t) = \text{true}$, then $f(L', G, s, t) = \text{true}$ for any $L' \geq L$

If $f(L, G, s, t) = \text{false}$, then $f(L', G, s, t) = \text{false}$ for any $L' \leq L$

We can perform binary search using parameter L over the range $[0, M]$
Binary search the answer

Ans = M

BinarySearch(G, s, t, Left, Right):
 If Left > Right:
 return
 L = (Left + Right) / 2
 If f(L, G, s, t) == true:
 Ans = L
 BinarySearch(G, s, t, Left, L - 1)
 Else:
 BinarySearch(G, s, t, L + 1, Right)
Binary search the answer

The complexity of the binary search is $O(\log M)$. At each step of the binary search, we run function $f(L, G, s, t)$, which runs in $O(|V| + |E|)$.

So, the overall time complexity is $O((|V| + |E|)\log M)$.
Greedy algorithms: exchange method

- Make the decision that gives you the most immediate benefit
- Not always optimal, but can be useful for providing an approximation when solving the exact optimal solution would be prohibitively expensive or very complicated
Greedy algorithms: exchange method

- Identify greedy parameter - the value you want to increase the most with each iteration
- Figure out how you want to order the elements you will be selecting
- Define your selection procedure
Greedy algorithms: exchange method

- Suppose that you are driving from San Diego to Los Angeles. The distance is D miles. Suppose that you can drive only m miles on a full tank of gas.

- You know that there are n gas stations $s_1, ..., s_n$ along the way (on the line). Each gas station s_i is at a distance d_i miles from the start of the drive (at coordinate d_i), where $0 < d_{i-1} < d_i < D$ for all i. You are at coordinate zero.

- You want to determine the sequence of gas stations you should stop at to minimize the number of stops. Find an algorithm that will produce one such sequence of gas stations.
Greedy algorithms: exchange method

- What is the greedy parameter?
 - The amount of distance traveled between stopping for gas
- Keep driving as far as you can before stopping for gas. Choose the farthest away gas station reachable from the previously chosen gas station.
- Proof of optimality: ??
Greedy algorithms: exchange method

- Assume for contradiction that some optimal solution exists that is different from the solution produced by your greedy method
- Eventually its solution must differ from your greedy solution
- It may be possible to change parts of the assumed optimal solution without changing its optimality
- Prove that the greedy method does just as well or better than the optimal method
Greedy algorithms: exchange method

- Call the optimal solution s_1, \ldots, s_k and the greedy solution g_1, \ldots, g_m, where m and k are positive integers.
- The solutions may be the same in the prefix, but eventually there will be some index i for which $s_i \neq g_i$.
- Furthermore, g_i must be farther along than s_i because our algorithm chooses the farthest away possible gas station.
- Therefore, the optimal solution has fallen behind our greedy solution.
- We can change s_i by g_i. Since $s_i \leq g_i$, it will not make the optimal solution worse.
- By performing the same exchange method for all $s_i \neq g_i$, we will turn the optimal solution into our greedy solution, thus, $k = m$.