CSE 101, Winter 2016

Design and Analysis of Algorithms

Instructor: Prof. Andrew B. Kahng
Webpage: http://vlsicad.ucsd.edu/~abk/
Email: abk@cs.ucsd.edu
Telephone: 858-822-4884
Office Hours: Wed 12:30-1:30pm, Fri 1-2pm, and by appt
Office: EBU3B 2134

Class URL: http://vlsicad.ucsd.edu/courses/cse101-w16/
Goals of Course

• Introduction to design and analysis of algorithms
• “Problem-solving”
• Classic Problems
 – Sorting, Path-Finding, String-Matching, Arithmetic, …
• Tools
 – Recurrence Relations, Counting Techniques, Reduction, Probabilistic Analysis, NP-Completeness, …
• Frameworks
• Pedagogical choices
 – Order of material
 – “Analyze” vs. “Create” \(\ast\) \(\ast\) I stress the latter = problem-solving
 – Scope \(\ast\) You need to keep up
What Is An Algorithm?

• An algorithm is a method for solving a problem (on a computer)

• Problem: “Given fraction m/n, reduce to lowest terms.”

• An algorithm must be effective
 \(\rightarrow\) give a correct answer and terminate

• Problem: “Given undirected graph \(G = (V,E)\) and vertices \(s,t \in V\), is there a path in \(G\) from \(s\) to \(t\)?”

• QUESTION: State an algorithm for this problem
Undirected s-t Connectivity

• A1: BFS, DFS from s.
• A2: Take a random walk in G, starting at s.
 – *Is this an algorithm? (Does it halt?)*
• A3: Take a random walk in G for \(5n^3\) steps starting at s (\(n = |V|\)); return NO iff we don’t visit t.
 – *Is this an algorithm?*
 – *Does it “almost always” return the correct answer?*
• Do A3, A1 differ in terms of **resources** used?
 – A3 “trades” time for space, is “memoryless”.
 – A3: **probabilistic** effectiveness.
Problem-Solving

• Problem solving = “The Spirit of Computing”
• Driven by real-world necessity
 – DNA Sequencing
 • Evolutionary Trees (edit distance, Steiner trees...)
 • Finding homologues, evolutionary significance (string-matching)
 – Conformational Analysis
 • Drug Design (minimum-energy configuration)
 – Autonomous Robotics, Vehicles
 • (managing smart highways, collision avoidance, path planning, …)
 – Logistics
 • (scheduling, resource allocation, …)
 • (stowage on container ships; airline logistics; …)
 – Design of integrated circuits
 • (placement, wiring, partitioning, floorplanning, clock distribution, logic synthesis, …)
Problem-Solving

• Patterns
 – Zeitz, The Art and Craft of Problem Solving
 – Polya, How to Solve It

• Tools
 – Counting
 – Recurrence Relations
 – Data Structures
 – ...

• Concepts
 – Problem classes and “solution classes”
 – Lower bounds \rightarrow at least this hard, at least this much effort
 – Reductions \rightarrow solving this boils down to solving that
 – Intractability \rightarrow believed impossible to solve efficiently
What is a Problem?

• A problem is defined by:
 – (i) input domain
 • e.g., all ordered pairs of positive integers
 – (ii) output specification
 • e.g., convert to an equivalent fraction in lowest terms

• A problem with the input specified is a problem instance
 – e.g., “convert the fraction 343/56 to lowest terms”

• Types of Problems:
 – Decision
 • Yes or No answer (e.g., Does there exist…?)
 – Computation
 • How many acyclic s - t paths in G?
 – Construction (more than one answer)
 • Construct (exhibit) an s - t path in G. *any s-t path, vs. shortest s-t path, vs. …*
 – Optimization (set of all alternatives; cost function)
 • Determine the shortest s - t path in G.
Problem-Solving First Example

- **Tower of Hanoi**
 - Rules: (i) One disk moves at a time, and (ii) Never put a larger disk onto a smaller disk
 - If you move one disk per second, when will all 64 disks be moved?
 - A more useful question: What is the minimum # of moves needed to transfer a stack of n disks?
 - *Why is this more useful?* → Assumes optimal strategy, ...

- **Step 1. Define Notation**
 - For a stack of n disks, call this number T_n

- **Step 2. Look At Small Cases**
 - $T_0 = 0$, $T_1 = 1$, $T_2 = 3$
Problem-Solving First Example (cont.)

Step 3. Can we reduce to a known problem?

- \(T_n \leq 2T_{n-1} + 1 \), \(n > 0 \)
 - Why?
 - Shift \((n-1)\), move largest disk, shift again
 - Why \(\leq \) inequality?
 - \(2T_{n-1} + 1 \) suffices, but maybe can do better
 - Why does the lower bound (LB) \(T_n \geq 2T_{n-1} + 1 \) hold?
 - Must move largest disk sometime; at this instant, have \((n-1)\) on a single peg
 - \(\rightarrow T_n = 2T_{n-1} + 1 \), \(T_0 = 0 \)

Step 4. What is a general solution for \(T_n \)?

- \(\{ T \} = 0, 1, 3, 7, 15, 31, 63, \ldots \)
Problem-Solving First Example (cont.)

• Looks like $T_n = 2^n - 1$

• **Step 5. let’s guess this answer and try to prove it**

 – **Claim:** $T_n = 2^n - 1$
 – **Proof:** (by mathematical induction)

 Basis ($n = 0$): $T_0 = 0 = 2^0 - 1$ holds

 I.H.: $T_k = 2^k - 1$ for all $k = 0, 1, \ldots, n - 1$

 I.S.: $T_n = 2T_{n-1} + 1 = 2(2^{n-1} - 1) + 1 = 2^n - 1$ (I.H.)

• **Note the kinds of steps that we applied…**

 Establish Notation, Study Small Cases,

 Reduce to a Known Problem, Seek a General Solution,

 Prove the Solution
Question: What Makes One Algorithm Better (or Worse) Than Another?

- **Efficiency** with respect to resources (= one aspect)

- Example: Determinant
 - det (2 × 2 matrix) = ad – bc
 - Recursively defined det M = (…)
 - M_{1j} is the (1, j) cofactor matrix of n x n matrix M

- Problem: Give an algorithm for computing det M
 - A1: Use definition to get recursive algorithm
 - *How many multiplications?* (About $n!$)
 - A2: Use Gaussian elimination to get lower-triangular M’
 - If M’ is lower-triangular, det M’ = $\prod m'_{ii}$
 - *How many multiplications?* (About n^3)
 - det M’ / (some scalar) = det M // scalar is from row operations
 - 1988 algorithms textbook (Brassard and Bratley):
 For n = 20, A1 takes 107 years; A2 takes 0.05 seconds
Problem-Solving Second Example

• Recall from before: Find m/n in lowest terms

• “Formal” Statement:
 – Input: integers $m \geq 0, \ n > 0$
 – Output: integers m', n' s.t. $m/n = m'/n'$, $(m,n) = (m',n')$, and m', n' are relatively prime.

• A1:
 – Cancel all 2’s
 – Cancel all 3’s
 – Cancel all 5’s
 – etc. until min (m,n) exceeded

• Why is this not so clever?
 – What’s the “worst case”?
 – We always have to check up to min (m,n)
Problem-Solving Second Example (cont.)

- **A1’**: \(\text{// try divisors starting with largest possible} \)
 - \(i \leftarrow \min(m,n) + 1 \)
 - \(\text{repeat } i \leftarrow i - 1 \text{ until } ((i|m) \text{ and } (i|n)) \)
 - \(\text{return } i \)
 - may get lucky and stop after only a few divisions
 - but, worst case: \(m \approx n, \ (m,n) = 1 \)

- **A2**:
 - find gcd(n,m) \(\text{// gcd = greatest common divisor} \)
 - return \(m' = m / \text{gcd}(n,m), \ n' = n / \text{gcd}(n,m) \)
 - \(\frac{m'}{n'} = \frac{5}{3} \)
 - We have recast the problem as finding gcd
Problem-Solving Second Example (cont.)

- gcd(n,m) [Euclid’s Algorithm] // assume w.l.o.g. \(n > m \)

  ```
  while m > 0 do
    t \( \leftarrow \) n mod m
    n \( \leftarrow \) m
    m \( \leftarrow \) t
  return n
  ```

 Example: Calculation of gcd(81,21)

 \[
 \begin{align*}
 81 &= 3 \times 21 + 18 \\
 21 &= 1 \times 18 + 3 \\
 18 &= 6 \times 3 + 0
 \end{align*}
 \]

 \(\text{gcd}(81,21) = 3 \)
Problem-Solving Second Example (cont.)

- **gcd(n,m) [Euclid’s Algorithm]** // assume w.l.o.g. \(n > m \)

  ```
  while \( m > 0 \) do \\
  \( t \leftarrow n \mod m \) \\
  \( n \leftarrow m \) \\
  \( m \leftarrow t \) \\
  return \( n \)
  ```

- **Claim:** If \(n > m \) then \(\gcd(n,m) = \gcd(m,n-m) \)

 - *How do you prove an equality? Prove both inequalities.*

- **Proof:** (1\text{st} inequality) Want \(\gcd(m,n-m) \geq \gcd(n,m) \)

 i.e., if \(z|m \) and \(z|n \) then \(z|m, z|(n-m) \)

 \[z|m \text{ and } z|n \Rightarrow m \mod z = n \mod z = 0 \]

 \[\Rightarrow (n-m) \mod z = 0 \]

 \[\Rightarrow z|(n-m) \]
Problem-Solving Second Example (cont.)

– gcd(n,m) [Euclid’s Algorithm] \(\text{\textit{\textbf{// assume w.l.o.g. } } n > m\text{\textit{\textbf{)}}}}\)

\[
\text{while } m > 0 \text{ do}
\]
\[
t \leftarrow n \mod m
\]
\[
n \leftarrow m
\]
\[
m \leftarrow t
\]
\[
\text{return } n
\]

– \textbf{Claim:} If \(n > m\) then \(\text{gcd}(n,m) = \text{gcd}(m,n-m)\)

 • \textit{How do you prove an equality? Prove both inequalities.}

– \textbf{Proof:} (2nd inequality) Want \(\text{gcd}(m,n-m) \leq \text{gcd}(n,m)\)

 i.e., if \(z|m, z|(n-m)\) then \(z|m, z|n\)

\[
z|m \text{ and } z|(n-m) \Rightarrow [m+(n-m)] \mod z = 0
\]
\[
\Rightarrow z|n
\]
Proving That the Algorithm is “Good”

• Euclid’s Algorithm is correct. *Is it efficient?*

• How many times can we go through main loop of gcd(n,m)?
 – Suppose m halves each time? (It doesn’t...)
 ⇒ Then, $\log_2 m$ would be an upper bound on # passes
 – *Is any geometric decrease good enough?*

• **Notation:**
 – (n_i, m_i) are values after i^{th} pass
 – Assume $n_0 \geq m_0$
 – Loop is executed a total of L times
Proving That the Algorithm is “Good”

\[
gcd(n,m) \ [\text{Euclid’s Algorithm}] \ (assumes \ n > m)
\]

\[
\begin{align*}
\text{while } & \ m > 0 \ \text{do} \\
&t \leftarrow n \ \text{mod} \ m \\
&n \leftarrow m \\
&m \leftarrow t \\
\text{return } & n
\end{align*}
\]

• Notation:
 – \((n_i, m_i)\) are values after \(i\)th pass
 – Assume \(n_0 \geq m_0\)
 – Loop is executed a total of \(L\) times

• Claims:
 – (i) \(m_i \leq n_i \ \forall \ 0 \leq i \leq L-1\) (true from algorithm statement)
 – (ii) \(n_{i+1} = m_i\) (true from algorithm statement)
 – (iii) \(m_{i+1} \leq n_i / 2\) \(\text{[Case 1: } m_i \leq n_i / 2 \rightarrow m_{i+1} \leq n_i / 2 \text{ since } m_{i+1} < m_i\].}
 \text{Case 2: } m_i > n_i/2 \rightarrow m_{i+1} = n_i \ \text{mod} \ m_i = n_i - m_i \leq n_i/2.]\]
Proving That the Algorithm is “Good”

\[
gcd(n, m) \text{ [Euclid’s Algorithm]} \quad (\text{assumes } n > m)
\]

\[
\text{while } m > 0 \text{ do}
\]
\[
\begin{align*}
 & t \leftarrow n \mod m \\
 & n \leftarrow m \\
 & m \leftarrow t
\end{align*}
\]
\[
\text{return } n
\]

• **Claims:**

 – (i) \(m_i \leq n_i \ \ \forall \ 0 \leq i \leq L-1 \) (true from algorithm statement)

 – (ii) \(n_{i+1} = m_i \) (true from algorithm statement)

 – (iii) \(m_{i+1} \leq n_i / 2 \)

• **Theorem:** \(m_{i+2} \leq m_i / 2 \)

 – **Proof:**

 (ii) \(\Rightarrow \ n_{i+1} = m_i \)

 (iii) \(\Rightarrow \ m_{i+2} \leq n_{i+1} / 2 \)

- **Corollary:** If \(n_0 \geq m_0 \geq 1 \), then \(L \leq 2 \log_2 m_0 + 1 \)
Basketball Before You Were Born

• No 3-point field goal
• Hypothetical game score: UCSD 75, UCLA 64
• Assuming no 3-pointers, in how many ways could UCSD have accumulated 75 points?

• Notation:
 – $S(n) \equiv \# \text{ ways to score } n \text{ points}$

• Small Cases:
 – $S(0) = 1$
 – $S(1) = 1$
 – $S(2) = 2 \quad 2 \text{ or } 1-1$
 – $S(3) = 3 \quad 2-1 \text{ or } 1-2 \text{ or } 1-1-1$

 Is this familiar?
A “Recurrence Relation”

• **Problem**: What is $S(75)$?
 – **Notation**: write $F(n) = S(n-1)$

 $F(1) = F(2) = 1; \quad F(n) = F(n-1) + F(n-2)$

• **Fibonacci**: 1, 1, 2, 3, 5, 8, …

• So, $S(75)$ is the 76th Fibonacci number

• **Solving the recurrence**: See Slide 37
Choosing Between Solutions

• Criteria:
 – Correctness
 – Time resources
 – Hardware resources
 – Simplicity, clarity (practical issues)

• Will need:
 – Size, Complexity measures
 – Notion of “basic” machine operation
The Basketball Question Again

• We wanted $S(75) = F(76)$, i.e., the 76th Fibonacci number

• “Give an efficient algorithm.”
 – For now, let’s equate “efficient” with “using few ‘elementary’ machine operations”; we will ignore size of operands and other issues

• $\text{fib1}(n)$ if $n < 2$ then return n
 else return $\text{fib1}(n-1) + \text{fib1}(n-2)$
 – Analysis: $T(n) = 1$ if $n<2$; $T(n) = T(n-1) + T(n-2)$ otherwise
 \[T(n) = F(n), \text{ i.e., around } (1.64)^n \]

• **Question:** What is wrong with fib1?
Save Your Work! = Cache (Sub-)Solutions

- **fib2(n)**

 \[
 f[1] = 1; \quad f[2] = 2; \\
 \text{for } j = 3 \text{ to } n \text{ do} \\
 \quad f[j] = f[j - 1] + f[j - 2]
 \]

- **Analysis:** \(T(n) = n \)
 - Saving your work ("caching") can be useful!
 - Similar example: Pascal's triangle (binomial coefficients)
 - But, can we do better?

- **Idea:** Use “natural structure”
 - We are applying the recurrence \(n \) times. Are there any shortcuts?
Not Obvious, But Here Is A Shortcut…

• \(\text{fib3}(n) \)
 – Consider 2x2 matrix \(M: m_{11} = 0, m_{12} = 1, m_{21} = 1, m_{22} = 1 \)
 – Observe: \([F(k) \ F(k+1)]^T = M \times [F(k-1) \ F(k)]^T \)
 \[
 [F(n+1) \ F(n+2)]^T = M^n \times [F(1) \ F(2)]^T = M^n \times [1 \ 1]^T
 \]

\[
\begin{bmatrix}
0 & 1 \\
1 & 1 \\
\end{bmatrix}
\times
\begin{bmatrix}
F_{k-1} \\
F_k \\
\end{bmatrix}
=
\begin{bmatrix}
F_k \\
F_{k+1} \\
\end{bmatrix}
\]

– How does this help?
– \textbf{Hint:} \(76_{10} = 1001100_2 \)

• \(M^{76} = M^{64} \times M^8 \times M^4 \)
• \(\rightarrow \text{fib3 uses “addition chains”} \)
Quantifying “Better”, “Worse”

- Resources used depend on a **natural parameter**, \(n \), of the input
 - search/sort list \(\# \text{ items} \) \(x > y \)
 - matrix mult \(\text{largest dim} \) \(x \times y ; x + y \)
 - traverse tree \(\# \text{ nodes} \) \(\text{follow ptr} \)

- Asymptotic Notation “as \(n \) grows large”
 - \(f \in O(g) \) if \(\exists c_1, c_2 > 0 \) s.t. \(f(n) \leq c_1 g(n) + c_2 \) \(\forall n > 0 \)
 - \(f \in O(g) \) if \(\exists c > 0, N \) s.t. \(\forall n > N, f(n) \leq c g(n) \)
 - \(e.g., 200x^2 \in O(2x^{2.5}) \)
 - \(f \in \Omega(g) \) if \(g \in O(f) \)
 - \(f \in \Theta(g) \) if \(g \in O(f) \) and \(f \in O(g) \)
 - \(f \) is \(o(g) \) if \(\lim_{n \to \infty} f(n)/g(n) = 0 \)
Using “Big-Oh” Notation

• Definition: \(f(n) \) is **monotonically growing** (non-decreasing) if \(n_1 \geq n_2 \Rightarrow f(n_1) \geq f(n_2) \)

• **Theorem:** For all constants \(c > 0, a > 1, \) and for all monotonically growing \(f(n), (f(n))^c \in O(a^{f(n)}) \)

• **Corollary (take \(f(n) = n \)):** \(\forall c > 0, a > 1, n^c \in O(a^n) \)
 – Any exponential in \(n \) grows faster than any polynomial in \(n \)

• **Corollary (take \(f(n) = \log_a n \)):** \(\forall c > 0, a > 1, (\log_a n)^c \in O(a^{\log a n}) = O(n) \)
 – Any polynomial in \(\log n \) grows slower than \(n^{c'}, c' > 0 \)

 • **Exercise:** \(f \in O(s), g \in O(r) \Rightarrow f+g \in O(s+r) \)
 • **Exercise:** \(f \in O(s), g \in O(r) \Rightarrow f* g \in O(s*r) \)

• *So, we can count operations in an asymptotic sense. But, what is an “operation” ???
What Do We Measure?

• Traditional metrics:
 – Program Size static
 – Runtime dynamic
 – Memory Usage dynamic

• Best Case (not informative)
 – e.g., Bubble Sort? Insertion Sort? Quicksort?

• Worst Case (easiest, most common)
 – $t_A(I)$ \equiv \text{time used by algorithm A on instance I}
 – $D(n)$ \equiv \text{set of all instances of size n}
 – $WC_A(n) = \max \{t_A(I) | I \in D(n)\}$ \text{max time taken by alg A over all instances of size n}

• Average Case (useful, but often less tractable)
 – $p(I) \equiv \text{probability that instance I occurs}$
 – $AC_A(n) = \sum_{I \in D(n)} p(I)t_A(I)$ \text{average time taken by alg A over all instances of size n}

• Amortized Effort (avg over series of operations)
Can Characterize **Problem** Complexity

- **Upper Bounds:**
 - Alg A has UB $f(n)$: $\forall I \in D(n), \ t_A(I) \leq f(n)$
 - Problem P has UB $f(n)$: \exists Alg A for P with UB
 - P has UB $O(f)$: \exists Alg A with UB $g(n); \ g \in O(f)$

- **Lower Bounds:**
 - Alg A has LB $f(n)$: \exists infinitely many n s.t. $\exists I \in D(n)$ where $t_A(I) \geq f(n)$
 - Problem P has LB $f(n)$: \forall Alg A for P, \exists infinitely many m s.t. $\exists I \in D(m)$ for which $t_A(I) \geq f(m)$

- **How Do We Argue UB?**
 - Constructively (, reductions)

- **How Do We Argue LB?**
 - e.g., comparison tree model, reductions
Comparison-Based LB Arguments - Sorting

• Observe: Sorting \equiv Identifying Permutation
• Binary Tree: Root at level (height) 0
• Theorem:
 \[\exists c > 0 \text{ s.t. } \forall \text{ algorithms which use comparisons to sort, and } \forall \text{ input sizes } n, \text{ at least one input requires } c n \log n \text{ comparisons} \]
• Fact:
 \[\forall \text{ Binary tree of height } h \text{ has at most } 2^h \text{ leaves} \]
• Observe:
 \[\forall n! \text{ leaves needed } \Rightarrow \text{ decision (comparison) tree must have } h \geq \log(n!), \text{ where } h \text{ is max # comparisons needed to sort input of size } n \text{ using the corresponding algorithm} \]
Fun (!), Interesting, Useful Questions

- **MaxMin**
 - Given a list of N numbers, return the largest and smallest.

- **Finding a Celebrity**
 - Given a set S of N people, assume that for any pair I, J exactly one of the following is true: I “knows” J, or J “knows” I. Further, define a “celebrity” as someone who knows no one (and who is therefore known by everyone else). Given the “knows” relation over S, determine whether S contains a celebrity.

- **Reduction**
 - **SORTING problem**
 - Input: a set of numbers
 - Output: the elements of the set, in sorted order
 - **CONVEX HULL problem**
 - Input: a set of points in \mathbb{R}^2
 - Output: the convex hull of these points, i.e., polygon vertices in order

→ Is “ease” of SORTING “related” to “ease” of CONVEX HULL?
Administrative Notes, January 5

• Slides will be posted in advance of lectures
 – Any updated slides and notes will be posted after lecture
• Programming assignments will be due Fridays of Weeks 3, 5, 7, 9
• Homeworks will be due Thursdays on Weeks 2, 4, 6, 8, 10
• Please pay attention to the class webpage and to Piazza!
 – Piazza = discussion boards and announcements
 – Gradesource = posted grades
 – Discussion sections, TA OH’s and my OH’s are all posted on the class webpage
• **HW #1** is posted (due Thursday of Week 2 at the beginning of class)
EXTRA SLIDES
Motivation for a Resource Model

When we count big-O time complexity, what operations take “unit time?"

• Suppose \texttt{factorial}, \texttt{mod} are “unit-cost” on some computer.
 \begin{verbatim}
 WILSON(n)
 \text{if (n-1)! +1 \equiv 0 \text{ mod } n then return TRUE}
 \text{else return FALSE}
 \end{verbatim}
 – one-step primality testing – but this sounds fishy…

• What if \texttt{return } \texttt{max}_i x_i \text{ was “unit-cost”?}
 – Is this reasonable, given that there is a speed-of-light limit
 to signal propagation on wires, and finite (non-zero)
 dimensions of transistors and wires?
 – Physical models (what can be embedded in our 3-D world)
 are increasingly relevant!
The RAM (Random-Access Machine) Model

- finite stored program
- finite collection of registers
 - each stores single integer or real
- array of n words of memory
 - each stores single integer or real
 - has unique address in [1, ..., n]
- In one step:
 - Perform arithmetic, logical operation on register content
 - $R_j := M_{R_k}$ or $M_{R_j} := R_k$ (access contents of word whose address is in register)
 - JNZ, HALT, etc.
The RAM Model (cont.)

• **Q:** On a RAM machine, how large a number can be manipulated in constant time?

• Two variants:
 – uniform cost
 – log cost

• **Exercise:** What are costs for each, under the two variants?

 (i) `sum_1_to_N(n)`

  ```
  sum ← 0
  for i ← 1 to n do sum ← sum + i
  return sum
  ```

 (ii) `fib4(n)`

  ```
  i ← 1, j ← 0
  for k ← 1 to n do
    j ← i + j
    i ← j - i
  return j
  ```

• Other: Turing, pointer machines; straight-line program, decision/comparison tree, …
Addendum: Solving the Fibonacci Recurrence

- **Problem**: What is $S(75)$?
 - **Notation**: write $F(n) = S(n-1)$

 $F(1) = F(2) = 1$; $F(n) = F(n-1) + F(n-2)$

 - **Guesses**: try $F(n) = a^n$ for some a

 $a^n = a^{n-1} + a^{n-2} \rightarrow a^2 = a + 1 \rightarrow a^2 - a - 1 = 0$

Roots: $a_1 = (1 + \sqrt{5})/2$; $a_2 = (1 - \sqrt{5})/2$

Inspection: $F(n)$ seems close to $(a_1)^n$

What’s missing?

- **Use all of the information**

 $F(1) = 1$; $F(2) = 1$ (initial conditions)

 - Homogeneous linear recurrence: any linear combination of $(a_1)^n$, $(a_2)^n$ is also a solution.

 • $c_1 (a_1)^1 + c_2 (a_2)^1 = F(1) = 1$; $c_1 (a_1)^2 + c_2 (a_2)^2 = F(2) = 1$

 • Get $c_1 = 1 / \sqrt{5}$, $c_2 = -1 / \sqrt{5}$

 • 1845 result of Lame (see Knuth, volume 2, section 4.5.3): If $m,n \le F(k)$, then $L \le \gcd(m,n) \le k$, with equality when $(m,n) = (F(k-1),F(k))$.

Addendum: Solving the Fibonacci Recurrence

- **Problem**: What is $S(75)$?
 - **Notation**: write $F(n) = S(n-1)$

 $F(1) = F(2) = 1$; $F(n) = F(n-1) + F(n-2)$

 - **Guesses**: try $F(n) = a^n$ for some a

 $a^n = a^{n-1} + a^{n-2} \rightarrow a^2 = a + 1 \rightarrow a^2 - a - 1 = 0$

Roots: $a_1 = (1 + \sqrt{5})/2$; $a_2 = (1 - \sqrt{5})/2$

Inspection: $F(n)$ seems close to $(a_1)^n$

What’s missing?

- **Use all of the information**

 $F(1) = 1$; $F(2) = 1$ (initial conditions)

 - Homogeneous linear recurrence: any linear combination of $(a_1)^n$, $(a_2)^n$ is also a solution.

 • $c_1 (a_1)^1 + c_2 (a_2)^1 = F(1) = 1$; $c_1 (a_1)^2 + c_2 (a_2)^2 = F(2) = 1$

 • Get $c_1 = 1 / \sqrt{5}$, $c_2 = -1 / \sqrt{5}$

 • 1845 result of Lame (see Knuth, volume 2, section 4.5.3): If $m,n \le F(k)$, then $L \le \gcd(m,n) \le k$, with equality when $(m,n) = (F(k-1),F(k))$.