Flow Network: Oil Through Pipelines

- Directed graph $G = (V,E)$
- Identified source S and sink T
- Edge capacities c_e

How much oil can be shipped from S to T?
A Feasible Flow in the Network

- Directed graph $G = (V,E)$
- Identified source S and sink T
- Edge capacities c_e
- The flow along an edge is \leq capacity

How much oil can be shipped from S to T?

5 units of flow – is this the maximum possible?
Many Problems Reduce to Max-Flow (1)

- The UCSD Algorithms Club has \(N \) members.
- There are \(M \) committees of ASUCSD to which the club can send a representative.
- Each club member is suited to some subset of committees.
- Can we assign club members so that each committee has a distinct representative? (No one serves on >1 committee.)
Many Problems Reduce to Max-Flow (2)

• Can model multiple sources, sinks
• But: “multi-commodity flow” is difficult to solve – e.g., autos, grain, coal, refrigerators shipped from multiple S’s to multiple T’s over the same railway network
Formal Definition of Flow

• A flow on a graph G is a function $f : E \rightarrow \mathbb{R}$ such that:
 – $0 \leq f(e) \leq c_e$ for all edges $e \in E$
 – Flow into a node = flow out of that node

For all $u \neq s, t$:
$$\sum_{(u,w) \in E} f(u,w) = \sum_{(z,u) \in E} f(z,u)$$

• Size of flow: $\text{size}(f) = \sum_{(s,u) \in E} f(s,u)$

Flow never exceeds capacity
Conservation of flow at all nodes except source, sink
Amount of flow leaving the source
Flows and Cuts

- The size of a flow can be measured across any cut.
- A cut \((L,R)\) satisfies:
 - \(V = L \cup R\), with \(L \cap R = \emptyset\) disjoint partition of \(V\)
 - \(S \in L, T \in R\) source is in \(L\), sink is in \(R\)
- Flow across an \((L,R)\) cut: \[\sum_{u \in L, w \in R} f(u,w) - \sum_{w \in R, z \in L} f(w,z) \]

![Graph showing flows and cuts](image-url)
Observations

• The flow across an \((L,R)\) cut cannot exceed the \textit{capacity} of the cut

\[
capacity(L,R) = \sum_{u \in L, w \in R} c(u,w)
\]

• \(\rightarrow\) For any flow \(f\) and any cut \(C\), \(size(f) \leq capacity(C)\)

 “maximum flow \(\leq\) minimum cut”

• Previous example had \(size(f) = 5\) and \(capacity(C) = 5\)
 – The cut is a certificate of optimality (maximality) of the flow
 – The flow is a certificate of optimality (minimality) of the cut
Ford-Fulkerson Algorithm – Basic Idea

• Start with zero flow
• REPEAT:
 – Find a path from S to T along which flow can be increased
 – Increase the flow along this path
Motivating Example

- Network with capacities

First choose:

Next choose:
Important: Canceling Flow

• If we first choose:

• Then we must allow:

 Cancel an existing flow !!!
Residual Graph

• We have some flow, and want to improve it
• Two ways to “push” or “advance” flow in G
 – Find some unused capacity on an edge
 – Find some cancelable flow on an edge
• \(\rightarrow \) residual graph G_f = “what’s unused or cancelable”

Flow f

REPEAT: Find an S-T path in G_f; Increase f along this path as much as possible
Recipe for Constructing G_f

- $G_f = (V, E_f)$
- $E_f \subseteq E \cup E^R$
- For any (u,w) in E or E^R
 \[
 \text{capacity } c_f(u,w) = c(u,w) - f(u,w) + f(w,u)
 \]
- Note 1: Can ignore edges with $c_f(u,w) = 0$
- Note 2: If $(u,w) \notin E$, write $c(u,w) = 0, f(u,w) = 0$

REPEAT: Find an S-T path in G_f; Increase f along this path as much as possible
Worked Example

- **Initial G_f**

 ![Graph](image)

 - Augment flow along a path

 ![Augmented Graph](image)

- **New G_f**

 ![New Graph](image)
Worked Example

Final Gf

1st

2nd

3rd

What is the significance of this cut?
Ford-Fulkerson Algorithm – Summary

- Initialize $f = 0$
- **REPEAT:**
 - Construct the residual graph G_f
 - Find a path P from S to T in G_f
 - If there is no such path, HALT
 - $c_p = \text{minimum } c_f\text{-capacity edge on path } P$
 - Increase f by c_p units along path P

- Flow always increases \rightarrow the algorithm terminates
- But, if capacities are B-bit integers, can take up to $|E| \cdot 2^B$ iterations in worst case
The Max-Flow Min-Cut Theorem

- Ford-Fulkerson constructively proves that the maximum flow equals the minimum cut

- Define an \((L,R)\) cut as follows:
 - \(L\) = nodes reachable from \(S\) in final residual graph \(G_f\)
 - \(R\) = rest of nodes = \(V - L\)
 \[\text{Note that } T \text{ cannot be in } L \Rightarrow T \text{ must be in } R\]

- Consider edges between \(L\) and \(R\) in \(G\)
 - Edges \(e\) going from \(L\) \(\rightarrow\) \(R\) : must have flow = capacity (by def. of \(L, R\))
 - Edges \(e'\) going from \(R\) \(\rightarrow\) \(L\) : must have flow = 0 (by def. of \(L, R\))

\[\Rightarrow \text{The flow across this cut } = \sum_{L \rightarrow R \text{ edges }} c(e) = \text{the capacity of the cut}\]

\[\Rightarrow \text{Since any flow is } \leq \text{ any cut, we have max flow } = \text{ min cut}\]
A Taste of Linear Programming
Linear Programming (LP)

- Tool for optimal allocation of scarce resources
 - Optimizations subject to “compatibility constraints”
- Powerful and general problem-solving method
 - Shortest paths, maximum flows, min-cost flows, MST, matching, 2-person games, …
- Significance and Practice
 - Among most important scientific advances of 20th century
 - Dominates industrial practice
 - Delta Airlines: $100M/year benefit from use of LP
 - Commercial solvers (CPLEX, COIN, OSL), modeling languages (AMPL)
 - General tool for attacking intractable (NP-hard) optimization problems
LP Example: Production of Bowls vs. Mugs

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>Labor (hr/unit)</th>
<th>Clay (lb/unit)</th>
<th>Revenue ($/unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowl</td>
<td>1</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Mug</td>
<td>2</td>
<td>3</td>
<td>50</td>
</tr>
</tbody>
</table>

Constraints: There are 40 hours of labor and 120 pounds of clay available each day

Decision variables:
- $x_1 = \text{number of bowls to produce}$
- $x_2 = \text{number of mugs to produce}$

- **Note 1:** x_1, x_2 must be non-negative
- **Note 2:** x_1, x_2 can be fractional (non-integer)
LP Example: Production of Bowls vs. Mugs

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>Labor (hr/unit)</th>
<th>Clay (lb/unit)</th>
<th>Revenue ($/unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowl</td>
<td>1</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Mug</td>
<td>2</td>
<td>3</td>
<td>50</td>
</tr>
</tbody>
</table>

Constraints: There are 40 hours of labor and 120 pounds of clay available each day.

Decision variables:
- $x_1 = \text{number of bowls to produce}$
- $x_2 = \text{number of mugs to produce}$

Maximize
$$Z = 40x_1 + 50x_2$$

Subject to
$$x_1 + 2x_2 \leq 40 \text{ hr (labor constraint)}$$
$$4x_1 + 3x_2 \leq 120 \text{ lb (clay constraint)}$$
$$x_1, x_2 \geq 0$$

Example solution:
- $x_1 = 24$ bowls
- $x_2 = 8$ mugs

Revenue = $1,360$
Geometric Interpretation

The feasible region is the area common to both constraints:

1. $4x_1 + 3x_2 \leq 120 \text{ lb}$
2. $x_1 + 2x_2 \leq 40 \text{ hr}$
Feasible Region Has Extreme Points

• The **feasible region** is an intersection of *half-spaces* that arise from the constraints
 – Vertices of the feasible region = where 2 constraints are tight
 – Vertices are like “corners”
Solution of Simultaneous Equations

\[
\begin{align*}
4x_1 + 3x_2 &\leq 120 \text{ lb} \\
x_1 + 2x_2 &\leq 40 \text{ hr} \\
5x_2 &\leq 40
\end{align*}
\]

\[
\begin{align*}
x_1 + 2x_2 &= 40 \\
4x_1 + 3x_2 &= 120 \\
4x_1 + 8x_2 &= 160 \\
-4x_1 - 3x_2 &= -120
\end{align*}
\]

\[
x_2 = 8
\]

\[
x_1 + 2(8) = 40 \\
x_1 = 24
\]

\[
Z = $50(24) + $50(8) = $1,360
\]
Geometry: Concave, Convex, and Linear

- Inequalities induce halfspaces with respect to hyperplanes.
- Bounded feasible region: convex polygon or polytope.
- Feasible region = convex set: If a, b feasible, so is (a+b)/2.
- Extreme point: Feasible solution x that cannot be written as (a+b)/2 for two distinct feasible solutions a and b.
Geometry: Convex Sets, Convex Functions

• Inequalities induce *halfspaces* with respect to *hyperplanes*

• **Bounded** feasible region: *convex polygon* or *polytope*

• Feasible region = **convex set**: If a, b feasible, so is \((a+b)/2\)

• **Extreme point**: Feasible solution \(x\) that cannot be written as \((a+b)/2\) for two distinct feasible solutions a and b

\[
\text{Function } f \text{ is convex if } f[\lambda x_1 + (1-\lambda)x_2] \leq \lambda f(x_1) + (1-\lambda)f(x_2)
\]

 – f defined over a convex domain

 – If f is convex, then a local minimum is a global minimum
Geometry: Concave, Convex, and Linear

• Function f is **convex** if $f[\lambda x_1 + (1-\lambda)x_2] \leq \lambda f(x_1) + (1-\lambda)f(x_2)$
 – f defined over a convex domain
 – If f is convex, then a local minimum is a global minimum

• Function f is **concave** if $-f$ is convex
 – If f is concave, then a local minimum can occur only at an extreme point of the domain of f

• **KEY OBSERVATION:** A linear function is both convex and concave (!!!)
 – Local minima occur only at extreme points (from concavity)
 – Any local minimum is a global minimum (from convexity)
 – \rightarrow To find a global minimum, only need to look at extreme points