CSE 101, Winter 2016

Design and Analysis of Algorithms

Lecture 7: Bellman-Ford, SPs in DAGs, PQs

Class URL: http://vlsicad.ucsd.edu/courses/cse101-w16/
Negative Edges

- Dijkstra’s algorithm assumes that the shortest path from s to v must pass through vertices that are closer to s than v.
- This fails when there are negative edges in G (Figure 4.12)
Bellman-Ford Algorithm

• Idea: Successive Approximation / Relaxation
 – Find SP using ≤ 1 edges
 – Find SP using ≤ 2 edges
 – ...
 – Find SP using $\leq n-1$ edges \rightarrow have true shortest paths
• Let $l_j^{(k)}$ denote shortest $v_0 - v_j$ pathlength using $\leq k$ edges
Bellman-Ford Algorithm

• **Idea: Successive Approximation / Relaxation**
 – Find SP using \(\leq 1 \) edges
 – Find SP using \(\leq 2 \) edges
 – …
 – Find SP using \(\leq n-1 \) edges \(\rightarrow \) have true shortest paths

• Let \(l_{j}^{(k)} \) denote shortest \(v_0 \rightarrow v_j \) path length using \(\leq k \) edges

• Then, \(l_{i}^{(1)} = d_{0j} \forall j = 1, \ldots, n-1 \) \(\// d_{ij} = \infty \) if no \(i-j \) edge

• In general, \(l_{j}^{(k+1)} = \min \{ l_{j}^{(k)} , \min_{i} (l_{i}^{(k)} + d_{ij}) \} \)
 – \(l_{j}^{(k)} \): don’t need \(k+1 \) arcs
 – \(\min_{i} (l_{i}^{(k)} + d_{ij}) \): view as length-k SP plus a single edge
Bellman-Ford vs. Dijkstra

EXAMPLE: \(SP(S, A) = S \rightarrow D \rightarrow C \rightarrow A \)

\(S \rightarrow D \rightarrow C \) is found at Pass 2, allowing \(S \rightarrow D \rightarrow C \rightarrow A \) to be found at Pass 3
Bellman-Ford (avoiding unneeded work)

Example: SP(S,A) = S → D → C → A

S → D → C is found at Pass 2, allowing S → D → C → A to be found at Pass 3
Bellman-Ford vs. Dijkstra

PASS: 1 2 3 4
Label A 8 min([8], 2+∞) = 8 min([8], 3+4) = 7 min([7], 4+1) = 5*
B 3 min([3], 2+∞) = 3*
C ∞ min([∞], 2+2) = 4 min(4, 3+∞) = 4*
D 2*
Special Case: Longest/Shortest Paths in DAGs

- **(Single-Source) Longest-Path Problem**: well-defined only when there are no cycles
- **DAG**: can topologically sort the vertices
 \[\rightarrow \text{labels } v_1, \ldots, v_n \text{ s.t. all edges directed from } v_i \text{ to } v_j, \ i < j \]

- Let \(l_j \) denote **longest** \(v_0 \rightarrow v_j \) path length
 - \(l_0 = 0 \)
 - \(l_1 = d_{01} \quad // \quad d_{ij} = -\infty \) if no i-j edge
 - \(l_2 = \max(d_{01} + d_{12}, d_{02}) \)
 - In general, \(l_k = \max_{j < k} (l_j + d_{jk}) \)

\[
l(z) = \max (l(x) + d_{xz}, l(y) + d_{yz})
\]
Special Case: Longest/Shortest Paths in DAGs

- **(Single-Source) Longest-Path Problem**: well-defined only when there are no cycles
- **DAG**: can topologically sort the vertices
 - labels v_1, \ldots, v_n s.t. all edges directed from v_i to v_j, $i < j$

- Let l_j denote **longest** $v_0 - v_j$ path length
 - $l_0 = 0$
 - $l_1 = d_{01}$ // $d_{ij} = -\infty$ if no i-j edge
 - $l_2 = \max(d_{01} + d_{12}, d_{02})$
 - In general, $l_k = \max_{j < k} (l_j + d_{jk})$

- **Shortest path length** in DAG
 - replace max by min
 - $l(z) = \max (l(x) + d_{xz}, l(y) + d_{yz})$
 - // use $d_{ij} = +\infty$ if no i-j edge
DAG Longest/Shortest Paths Complexity

- Generic Bellman-Ford = $O(VE)$
- In a DAG: Topological sort = $O(V+E)$ (DFS)

- Edges **out of** vertex v aren’t “processed” (traversed) until after all edges **in to** v have been processed
 - Runtime $O(V+E)$
 - **Exercise:** Understand why runtime is $O(V+E)$ for both longest-path and shortest-path in a DAG

- Application: PERT (program evaluation and review technique) — **critical path** is the longest path in the DAG
Dynamic Sets

• Dynamic sets (data structures):
 – change a dictionary, e.g., add/remove words
 – reuse of **structured** information
 – fast updating for on-line algorithms

• Elements:
 – **key** is element ID
 • dynamic set of key values
 – **satellite** information associated with key

• Operations
 – **query**: return information about the set
 – **modify**: change the set
Dynamic Set Operations

- **Search**(S,k)
 - Given set S and key value k, return pointer x to an element of S such that key[x] = k, or NIL if no such element

- **Insert**(S,x)
 - Augment set S with element pointed to by x

- **Delete**(S,x)
 - Given pointer x to an element in set S, remove x from S

- **Minimum**(S) / **Maximum**(S)
 - Given totally ordered set S, return pointer to element of S with smallest / largest key
Dynamic Set Operations

• **Predecessor / Successor**\((S, x)\)
 – Given element \(x\) whose key is from a totally ordered set \(S\), return a pointer to next smaller / larger element in \(S\), or \(NIL\) if \(x\) is minimum / maximum element

• **Union**\((S, S')\)
 – Given two sets \(S, S'\), return a new set \(S = S \cup S'\)
Elementary Data Structures

- Different data structures support/optimize different operations
- **Stack** has *top*, LIFO policy
 - insert = push x: top(S) = top(S)+1; S[top(S)] = x $O(1)$
 - delete = pop $O(1)$

 \[
 \begin{array}{cccccccc}
 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 \hline
 15 & 6 & 2 & 9 & & & & \\
 \end{array}
 \]

 top[S] = 4

 \[
 \begin{array}{cccccccc}
 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 \hline
 15 & 6 & 2 & 9 & 17 & & & \\
 \end{array}
 \]

 After push(S,17) top[S] = 5

- **Queue** has *head*, *tail*, FIFO policy
 - insert = enqueue: add element to the tail $O(1)$
 - delete = dequeue: remove element from the head $O(1)$

 \[
 \begin{array}{cccccccc}
 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 \hline
 & & 15 & 6 & 2 & 9 & & \\
 \end{array}
 \]

 head = 2 tail = 6

 \[
 \begin{array}{cccccccc}
 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 \hline
 & & 15 & 6 & 2 & 9 & 8 & \\
 \end{array}
 \]

 head = 2 After enqueue(Q,8) tail = 7
Priority Queue (PQ) Abstract Data Structure

• Operations:
 – Insert(S,x) : add element x
 – Minimum(S) / Maximum(S): return element with min/max key
 – DeleteMin(S) / DeleteMax(S): return min/max key, remove element

• Applications
 – Simulation systems: key ≡ event time
 – OS scheduler: key ≡ job priority
 – Numerical methods key ≡ inherent error in operation
 – Dijkstra’s shortest-path algorithm
 – Prim’s minimum spanning tree algorithm

• Question: How do we use a PQ to sort?
What Are Naïve PQ Implementations?

• **Answer**: Insert elements one by one; perform DeleteMin n times]

• Unordered list
 – Insert O(1)
 – DeleteMin O(n)

• Ordered list
 – Insert O(n)
 – DeleteMin O(1)

• **Observation**: If Insert, DeleteMin could each be accomplished in O(log n) time, then we would have an O(n log n) sorting algorithm (= heapsort)
Heaps

• A heap is a binary tree of depth d such that
 – (1) all nodes not at depth $d-1$ or d are internal nodes
 \rightarrow each level is filled before the next level is started
 – (2) at depth $d-1$ the internal nodes are to the left of the leaves and have degree 2, except perhaps for the rightmost, which has a left child
 \rightarrow each level is filled left to right

• A max heap (min heap) is a heap with node labels from an ordered set, such that the label at any internal node is $\geq (\leq)$ the label of any of its children
 \rightarrow All root-leaf paths are monotone
Heaps, and Sorting With Heaps

• **Fact:** Every node in a heap is the root of a heap (!)

• **How do we store a heap?**
 – Implicit data structure: // maxheap example
 Array index: 1 2 3 4 5 6 7 8 9 10
 Value: 20 11 5 5 3 2 3 4 1 2

• **How do we sort using a heap?**
 – **Insert:** Put new value at A[n]; fix violation of heap condition ("re-heapify")
 – **DeleteM**: Remove root; replace by A[n]; re-heapify
 • If maxheap, DeleteMax (return largest element first)
 • If minheap, DeleteMin (return smallest element first)
Heaps

• Pointers:
 – Parent
 – Left, Right (children)

• Parent \(\leq \) Child \(\rightarrow \) this is a minheap example
Heap Operations

Insert(S,x): O(height) \rightarrow O(log n)

Extract-min(S): return head, replace head key with the last key, float down \rightarrow O(log n)

“Float down”: If heap condition violated, swap with smaller child

Keep swapping with parent until heap condition satisfied
O(n log n) Heapsort

- Build heap easy time bound: \(n \times O(\log n) \) time
 - for \(i = 1..n \) do insert \((A[1..i], A[i])\)
- Extract elements in sorted order: \(n \times O(\log n) \) time
 - for \(i = n..2 \) do
 - Swap \((A[1] \leftrightarrow A[i])\)
 - Heapsize = Heapsize-1
 - Float down \(A[1] \)
Actual Time To Build Heap: $O(n)$

- Heapify (i,j) makes range $[i,j]$ satisfy heap property:

  ```
  Heapify (i,j)  // minheap
  if i not a leaf and child of i is < i
  let k = smaller child of i
  interchange a[i], a[k]
  Heapify (k,j)
  ```

BuildHeap: for $i = n$ to 1 do Heapify (i,n)
Actual Time To Build Heap: $O(n)$

- Heapify (i,j) makes range $[i,j]$ satisfy heap property:

 Heapify (i,j) // minheap
 if i not a leaf and child of i is $< i$
 let $k =$ smaller child of i
 interchange $a[i], a[k]$
 Heapify (k,j)

BuildHeap: for $i = n$ to 1 do Heapify (i,n)

- We will show that BuildHeap actually takes $O(n)$ time (!)

- Observation: If vertices $i+1, \ldots, n$ are roots of heaps, then after Heapify(i,n) vertices i, \ldots, n will be roots of heaps
Actual Time To Build Heap: $O(n)$

- **BuildHeap**: for $i=n$ to 1 do Heapify (i,n)
- Observation: If vertices $i+1$, ..., n are roots of heaps, then after Heapify(i,n) vertices $i,...,n$ will be roots of heaps
- Let $T(h) \equiv$ time for Heapify on v at height $h \rightarrow T(h) = O(h)$
Actual Time To Build Heap: $O(n)$

- **BuildHeap**: for $i=n$ to 1 do Heapify (i,n)
- Observation: If vertices $i+1, \ldots, n$ are roots of heaps, then after Heapify (i,n) vertices i, \ldots, n will be roots of heaps

- Let $T(h) \equiv$ time for Heapify on v at height $h \Rightarrow T(h) = O(h)$

- Heapify called once for each v
 \[\Rightarrow \text{total BuildHeap time is } O(\Sigma_v h(v)) \]
- Vertex at height i is root of heap with 2^{i+1} nodes
 \[\Rightarrow \left\lceil \frac{n}{2^{i+1}} \right\rceil \text{ vertices at height } i \]
 \[\Rightarrow \Sigma i \cdot \frac{n}{2^i} \text{ is upper bound on BuildHeap time} \]

Fact: $\Sigma i/2^i = 2 \Rightarrow O(n)$ bound

\[
X = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \ldots = [\frac{1}{2} + \frac{1}{4} + \frac{1}{8} \ldots] + [\frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \ldots] = 1 + \frac{X}{2} = 2
\]