Notes January 21 (1)

- HW #2 review session tomorrow 3-5pm in Center 216. Prakhar will conduct.
- HW #1 is returned on Gradescope. 54 points possible,
 - Minimum: 9.0 ; Maximum: 54.0 ; Mean: 45.03 ; Median: 47.5
 - Two students turned in a “different” HW (initials Z.L. and N.J.N.)
- Reminder:
 - Quizzes + solutions from 2014, 2015 are posted
 - Midterms + solutions from 2014, 2015 are posted
- On HW logistics
 - Please make sure to select the correct page(s) on Gradescope for each question. The system gives you a chance to specifically review this before submitting. With the way grading is distributed across the 101 team, we cannot grade unselected pages for a given problem.
 - Please make sure that your scans are legible. If we cannot read your answer, we cannot give you points for it.
 - When following the template, please follow examples (model solutions, previous HW solutions, etc.) in class resources
Notes January 21 (1’)

• IMPORTANT: Added after class
• HW #2 extension
 – HW #2 may be turned in until Friday January 29 11:59PM Pacific Time. Please understand that your ability to do well on the midterm is very likely to be strongly correlated with your having worked HW #2 before taking the midterm.

• Gradescope regrade window
 – The original policy for the class gives a two-week window. But, with Gradescope, it is trivial to communicate regrade requests, and you also see the grading rubric in Gradescope.
 – For HW #1, regrade request window is 5+ days from time of HW #1 return: until noon Pacific time on Wednesday, January 27.
 – For HW #2 and beyond, regrade request window will be 3 days from time of HW return.
• How many of you are now ACM student members?

• Do you practice “lateral thinking”
 – Joe is on the floor of a closed, locked room, dead by drowning. He is lying in a quarter-inch deep puddle of water. What happened?
 – Etc.

• glassdoor etc. problems are good (= common interview fodder)
 – You are given an n x n matrix of 0’s and 1’s. Efficiently determine the largest {square, rectangle} whose four {corners, sides} are all 0’s or 1’s.
 – You are given the location of the head of a linked list of unknown length. State how you would determine whether the list has a loop in it, using O(1) – that is, not a function of the length of the list – scratch memory.
 – Etc.