VLSI CAD Laboratory
CSE & ECE Departments, UC San Diego

Faculty
Prof. Andrew B. Kahng

Students
Tuck-Boon Chan (5th Yr)
Vaishnav Srinivas (4th Yr)
Siddhartha Nath (4th Yr)
Wei-Ting Jonas Chan (3rd Yr)

Jiajia Li (3rd Yr)
Hyein Lee (2nd Yr)
Ilgweon Kang (2nd Yr)
Kwangsoo Han (1st Yr)

Visitors
Dr. Jae-Gon Lee (Samsung)
Prof. Seung-Soo Han (Myongji University)

Research Areas

http://vlsicad.ucsd.edu/

Design for Manufacturability (DFM)
Technology Roadmap (ITRS)
Adaptive and Resilient Circuits
3D Integrated Circuit Design

IC Physical Design
Modeling and Estimation
Design Margin Reduction and Signoff
Infrastructure (standards, open-source)

Funding Sources

SRC
NSF
IMPACT+
Qualcomm
Samsung
NXP
Sandia
Design for Manufacturability

- DFM = new bridges and synergies between design and process technologies
- Enables “design-based equivalent scaling” to keep Moore’s Law going
- Leakage power reduction
- Modify gate-length of transistors to reduce power without performance loss
- Design flows for multiple-patterning
- In sub-28nm processes, multiple exposures are needed to print critical chip layers: layout and mask design have new coloring rules, new variability models

Technology Roadmap

- International Technology Roadmap for Semiconductors (ITRS)
 - Chair of Design and System Drivers chapters since 2000
 - UCSD develops core models for the roadmap: layout density, low-power design technology, MPU and SOC product scaling
- Projection of key IC product classes that drive need for semiconductor design, process technology
- Quantify value to IC products of interconnect, device, CAD technology improvements

Adaptive and Resilient Circuits

- Adaptive voltage scaling for power reduction
 - Design and tape out of design-dependent performance monitors; optimization of DVFS strategies
- Approximate computation
 - Error-correctable approximate adder enables runtime power-accuracy tradeoff; composition and synthesis of approximate modules
- Error-tolerant design
 - Minimize power by timing slack redistribution for given workload, target error rate

3D Integrated Circuit Design

- Variability-aware 3D IC stacking
 - Maximize both yield and reliability
- 3D IC physical implementation flow
 - Developed for Sandia Labs project; investigation of yield and cost across technology nodes
IC Physical Design

- Leakage power reduction
 Our optimizer won first and second prizes in the ACM ISPD-2013 Gate Sizing Contest
- Clock power reduction
 Smart “non-default routing” reduces capacitance and power while preserving skew, timing and reliability metrics
- Incremental scan chain ordering
 We automate late design changes for scan testing in advanced SOCs

Modeling and Estimation

- Network-on-Chip area, power models
 ORION 2.0, 3.0: design space exploration for NoC power-performance tradeoffs
- On-chip clock tree area, power, skew
 High-dimensional metamodelling techniques to predict tool outcomes, best tool options
- Signoff timing miscorrelations
 Learning-based modeling of gate and wire delays and slews; match path timing slacks across tools

Design Margin Reduction and Signoff

- Design Margin Reduction
 Best (voltage, frequency) combinations for turbo/nominal modes of high-performance cores, subject to power and area limits
- Aging-aware signoff
 Reduce power and area of designs that use adaptive voltage scaling to combat aging over lifetime
- Reliability margins
 Avoid electromigration and other reliability overdesigns: smaller chips, better performance

Infrastructure (standards, open-source)

- VLSI CAD Bookshelf: http://vlsicad.ucsd.edu/GSRC/
- Placement (Capo) / Partitioning (MLPart)
- Gate Sizing Tools: http://vlsicad.ucsd.edu/SIZING/
- ORION 2.0/3.0: network on chip power and area model
- CACTI-IO: power, area and timing models for the IO and PHY of off-chip memory interfaces
 http://www.hpl.hp.com/research/cacti/