

 Schedule 1:30 – 2:30 III: Partitioning and Floorplanning cont. 2:30 – 3:45 IV: Timing Closure Techniques Integrated timing/synthesis/placement/wiring for ASIC design, placement algorithms, congestion management, use of timing, driven features, timing and routability convergence 3:45 – 4:00 Coffee Break 4:00 – 5:00 V: Analysis and Verification Manufacturability, inductance modeling, IR drop and ground bounce, power analysis and decoupling, signoff timing verification, provided VS/DPC incurse
 5:00 – 5:30 VI: Other Topics Test, formal verification, vendor / tool gossip, your call (based on questionnaire feedback during lunch)
Jan. 2003 ASPDAC03 - Physical Chip Implementation 4

Bus Router	S	
Jan. 2003	ASPDAC03 - Physical Chip Implementation	15

And More...

- Other rules
 - Process antenna, phase shift mask, OPC rules

Frameworks

- Channel routing
- Switch box routing
- Maze routing
- Line probe routing
- Shape-based routing
- Fixed die vs. variable die
- Gridded vs. gridless
- This tutorial: Issues, choices (which define methodologies)

Jan. 2003

ASPDAC03 - Physical Chip Implementation

21

Roadmap Changes Since 2000

Table 1. 2001 Status of Red Brick Wall									
Year of production	2001	2003	2005	Sec.	2007	2010	2016		
DRAM half-pitch (nm)	130	100	80	5	65	45	22		
Overlay accuracy (nm)	46	35	28	885	23	18	9		
MPU gate length (nm)	90	65	45	88 0	35	25	13		
CD control (nm)	8	5.5	3.9		3.1	2.2	1.1		
T _{ex} (equivalent) (nm)	1.3-1.6	1.1-1.6	0.8-1.3	2017	0.6-1.1	0.5-0.8	0.4-0.5		
Junction depth (nm)	48-95	33-66	24-47	264	18-37	13-26	7-13		
Metal cladding thickness (nm)	16	12	9		7	5	2.5		
Intermetal dielectric constant, k	3.0-3.6	3.0-3.6	2.6-3.1		2.3-2.7	2.1	1.8		
Intermetal dielectric constant, k Table 2. 19	3.0-3.6 99 St	3.0-3.6 atus	2.6-3.1	d Brick	23-2.7 Wall	2.1	1.8		
Intermetal dielectric constant, k Table 2. 19 Year of production	3.0-3.6 35 St 1999	3.0-3.6 atus 2002	2.6-3.1	d Brick	2.3-2.7 Wall 2008	2.1	2014		
Intermetal dielectric constant, k Table 2, 19 Year of production DRAM half-pitch (nm)	3.0-3.6 99 St 1999 180	3.0-3.6 atus 2002 130	2.6-3.1 of Re 2005 100	d Brick	2.3-2.7 VVall 2008 70	2.1 2011 50	1.8 2014 35		
Intermetal dielectric constant, k Table 2. 19 Year of production DRAM half-pitch (nm) Overlay accuracy (nm)	3.0-3.6 99 St 1999 180 65	3.0-3.6 atus 2002 130 45	2.6-3.1 of Re 2005 100 35	ed Brick	2.3-2.7 C Wall 2008 70 25	2.1 2011 50 20	1.8 2014 35 15		
Intermetal dielectric constant, k Table 2. 19 Year of production DRAM half-pitch (nm) Overlay accuracy (nm) MPU gate length (nm)	3.0-3.6 3.9 St 1999 180 65 140	3.0-3.6 atus 2002 130 45 85-90	2.6-3.1 of Re 2005 100 35 65		23-2.7 VVall 2008 70 25 45	2.1 2011 50 20 30-32	1.8 2014 35 15 20-22		
Intermetal dielectric constant, k Table 2. 19 Year of production DRAM half-pitch (nm) Overlay accuracy (nm) MPU gate length (nm) CD control (nm)	3.0-3.6 99 St 1999 180 65 140 14	3.0-3.6 atus 2002 130 45 85-90 9	2.6-3.1 of FRe 2005 100 35 65 65		2.3-2.7 VVall 2008 70 25 45 4	2.1 2011 50 20 30-32 3	1.8 2014 35 15 20-22 2		
Intermetal dielectric constant, k Table 2. 199 Year of production DRAM half-pitch (nm) Overlay accuracy (nm) MPU gate length (nm) CD control (nm) T _{ex} (equivalent) (nm)	3.0-3.6 1999 180 65 140 14 1.9-2.5	3.0-3.6 atus 2002 130 45 85-90 9 1.5-1.9	2.6-3.1 of Re 2005 100 35 65 6 1.0-1.5		2.3-2.7 VVall 2008 70 25 45 4 0.8-1.2	2.1 2011 50 20 30-32 3 0.6-0.8	1.8 2014 35 15 20-22 2 0.5-0.6		
Intermetal dielectric constant, k Table 2, 199 Year of production DRAM half-pitch (nm) Overlay accuracy (nm) MPU gate length (nm) CD control (nm) T _{ox} (equivalent) (nm) Junction depth (nm)	3.0-3.6 1999 180 65 140 14 1.9-2.5 42-70	3.0-3.6 atus 2002 130 45 85-90 9 1.5-1.9 25-43	2.6-3.1 of Re 2005 100 35 65 6 1.0-1.5 20-33		2.3-2.7 VVall 2008 70 25 45 4 0.8-1.2 16-26	2.1 2011 50 20 30-32 3 0.6-0.8 11-19	1.8 2014 35 15 20-22 2 0.5-0.6 8-13		
Intermetal dielectric constant, k Table 2, 199 Year of production DRAM half-pitch (nm) Overlay accuracy (nm) MPU gate length (nm) CD control (nm) T _{ex} (equivalent) (nm) Junction depth (nm) Metal cladding thickness (nm)	3.0-3.6 99 St 1999 180 65 140 14 1.9-2.5 42-70 17	3.0-3.6 atus 2002 130 45 85-90 9 1.5-1.9 25-43 13	2.6-3.1 of Re 2005 100 35 65 6 1.0-1.5 20-33 10		2.3-2.7 VVall 2008 70 25 45 4 0.8-1.2 16-26 0	2.1 2011 50 20 30-32 3 0.6-0.8 11-19 0	1.8 2014 35 15 20-22 2 0.5-0.6 8-13 0		

HP / LOP / LSTP Device Roadmaps									
Parameter	Туре	99	01	03	05	07	10	13	16
Vdd	MPU	1.5	1.2	1.0	0.9	0.7	0.6	0.5	0.4
	LOP	1.3	1.2	1.1	1.0	0.9	0.8	0.7	0.6
	LSTP	1.3	1.2	1.2	1.2	1.1	1.0	0.9	0.9
Vth (V)	MPU	0.21	0.19	0.13	0.09	0.05	0.021	0.003	0.003
	LOP	0.34	0.34	0.36	0.33	0.29	0.29	0.25	0.22
	LSTP	0.51	0.51	0.53	0.54	0.52	0.49	0.45	0.45
lon (uA/um)	MPU	1041	926	967	924	1091	1250	1492	1507
	LOP	636	600	600	600	700	700	800	900
	LSTP	300	300	400	400	500	500	600	800
CV/I (ps)	MPU	2.00	1.63	1.16	0.86	0.66	0.39	0.23	0.16
	LOP	3.50	2.55	2.02	1.58	1.14	0.85	0.56	0.35
	LSTP	4.21	4.61	2.96	2.51	1.81	1.43	0.91	0.57
loff (uA/um)	MPU	0.00	0.01	0.07	0.30	1.00	3	7	10
	LOP	1e-4	1e-4	1e-4	3e-4	7e-4	1e-3	3e-3	1e-2
	LSTP	1e-6	1e-6	1e-6	1e-6	1e-6	3e-6	7e-6	1e-5
Jan	. 2003		ASPDA	AC03 - Phy	sical Chip I	Implementa	ation		26

System Complexity Challenges

- System Complexity = exponentially increasing transistor counts, with increased diversity (mixed-signal SOC, ...)
- Reuse (hierarchical design support, heterogeneous SOC integration, reuse of verification/test/IP)
- Verification and test (specification capture, design for verifiability, verification reuse, system-level and software verification, AMS self-test, noise-delay fault tests, test reuse)
- Cost-driven design optimization (manufacturing cost modeling and analysis, quality metrics, die-package co-optimization, ...)
- Embedded software design (platform-based system design methodologies, software verification/analysis, codesign w/HW)
- Reliable implementation platforms (predictable chip implementation onto multiple fabrics, higher-level handoff)
- Design process management (team size / geog distribution, data mgmt, collaborative design, process improvement)

Jan. 2003

ASPDAC03 - Physical Chip Implementation

29

Noise

Analog design concerns are due to physical noise sources

 because of discreteness of electronic charge and stochastic nature of electronic transport processes

- example: thermal noise, flicker noise, shot noise
- Digital circuits due to large, abrupt voltage swings, create deterministic noise which is several orders of magnitude higher than stochastic physical noise
 - still digital circuits are prevalent because they are inherently immune to noise
- Technology scaling and performance demands make noisiness of digital circuits a big problem

Planning Technology Elements

- RTL partitioning
 - understand interaction b/w block definition and placement quality
 - recognize and cure a physically challenged logic hierarchy
- Global interconnect planning and optimization
 - symbolic route representations to support block plan ECOs
- Controllable SP&R back end (including power/clock/scan)
- Incremental / ECO optimizations, and optimizations that are "robust" under partial or imperfect design knowledge
- Better estimators ("initial WLMs")
 - to account for resource, topological heterogeneity
 - to account for optimizations (placement, ripup/reroute, timing)
- → "earliest RTL signoff with detailed P&R knowledge"

ASPDAC03 - Physical Chip Implementation

Taxonomy of Traditional Planning / Implementation Methodologies

- Centered on logic design
 - wire-planning methodology with block/cell global placement
 - global routing directives passed forward to chip finishing
 - constant-delay methodology may be used to guide sizing
- Centered on physical design
 - placement-driven or placement-knowledgeable logic synthesis
- Buffer between logic and layout synthesis
 - placement, timing, sizing optimization tools
- Centered on SOC, chip-level planning
 - interface synthesis between blocks
 - communications protocol, protocol implementation decisions guide logic and physical implementation

Jan. 2003

ASPDAC03 - Physical Chip Implementation

39

Issue: Performance Optimizations Design optimizations global restructuring optimization -- logic optimization on layout using actual RC, noise peak values etc. localized optimization -- with no structural changes and least layout impact repeater/buffer insertion for global wires Physical optimizations high fanout net synthesis (eg. for clock nets); buffer trees to meet delay/skew and fanout requirements automatically determine network topology (# levels, #buffers, and type of buffers) wire sizing, spacing, shielding etc. Fixing timing violations automatically fix setup/hold time violations fix maximum slew and fanout violations ASPDAC03 - Physical Chip Implementation 40 Jan. 2003 Courtesy Hormoz/Muddu, ASIC99

Placement Directions

- Global placement
 - Engines (analytic, top-down partitioning based, (iterative annealing based) remain the same; all support "anytime" convergent solution
 - Several hybrid ideas (multilevel, force-directed, quadratic + partition)
 - Becomes more hierarchical

 block placement, latch placement before "cell placement"
 - Supports placement of partially/probabilistically specified design
- Detailed placement
 - LEQ/EEQ substitution
 - Shifting, spacing and alignment for routability
 - ECOs for timing, signal integrity, reliability
 - Closely tied to performance analysis backplane (STA/PV)
 - Supports incremental "construct by correction" use model

- Router ultimately responsible for meeting specs/assumptions
 - Slew, noise, delay, critical-area, antenna ratio, PSM-amenable ...
- Checks performability throughout top-down physical impl.
 - Actively understands, invokes analysis engines and macromodels
- Many functions
 - Circuit-level IP generation: clock, power, test, package substrate routing
 - Pin assignment and track ordering engines
 - "Monolithic" (entire net at a time) topology optimization engines
 - <u>Owns</u> key DOFs: small re-mapping, incremental placement, devicelevel layout resynthesis
 - Is hierarchical, scalable, incremental, controllable, well-characterized (well-modeled), detunable (e.g., coarse/quick routing), ...

Jan. 2003

ASPDAC03 - Physical Chip Implementation

45

