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Abstract

Global interconnects are a bottleneck in today’s high-performance deep sub-micron designs. In this paper, we propose a modification

to the top-down min-cut placement algorithm to reduce the number of global interconnects. Our method is generic and does not involve

any timing analysis during or prior to placement. In essence, we skew the netlength distribution produced by a min-cut placer so as to

reduce the number of long nets, with minimal impact on the overall wirelength. Empirically this approach has a negligible impact on

placement runtime, but leads to a significant reduction in the number of global interconnects. The fewer interconnects translate to about

25% savings in the number of buffers required for signal integrity and electrical sanity, and also improve timing as measured by the worst

negative slack and total negative slack of industrial benchmarks by up to 70% compared to traditional min-cut placement flow (e.g., Capo

8.7 [9])1.

I. INTRODUCTION

Global interconnects are harmful [22], [30] since they (i) severely increase RC propagation delay which is quadratic

in wirelength, (ii) likely contribute to critical paths that form performance bottlenecks, (iii) require buffering for signal

integrity and electrical sanity, e.g., slew rate control, even if they do not participate in critical paths, with state-of-the-

art designs routinely requiring thousands of buffers for signal integrity [4], (iv) increase power dissipation, and (iv) can

have time-of-flight that is equivalent to several clock cycles which necessitates flipflop insertion. These detrimental

effects get more pronounced as scaling in deep sub-micron continues.

Techniques proposed in the past attempt to alleviate those effects of global interconnects by providing solutions

that deal with existing interconnect structures, e.g., by using fat wires and buffering [27], [22], [30]. Buffering, for

example, will almost linearize the delay of a long interconnect, but at the expense of an additional number of buffers.

These buffers represent an additional source of power consumption to the design. In contrast, our work seeks to

decrease the number of long interconnects. We propose a placement methodology that directly leads to fewer global

interconnects. Min-cut placement is widely used by today’s state-of-the-art placement tools since (i) its performance

is scalable, and (ii) it leads to high quality placements as measured by the wirelength objective. The main objective of

a min-cut algorithm is to minimize the total wirelength via sequential minimization of cut values. While minimizing
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Fig. 1. Min-cut placements can unnecessarily lead to large number of global interconnects.

the total wirelength is helpful in meeting the routing supply and reducing the total power consumption, it may lead

to placements with large number of global interconnects. This is illustrated in Figure 1, where a min-cut partitioner

would favor moving node c to the left shaded block to reduce the cut value, but leading to a long interconnect between

nodes c and d.

On the other hand, many analytical placers [11], [35] minimize the quadratic length objective which has been

historically viewed as a compromise between mathematical and computational convenience and the end goal of total

wirelength minimization. One advantage of analytical placers is that they may lead to fewer long wires as observed

by [28]. The debate regarding the use of linear versus quadratic wirelength goes back to at least the mid-1980s [32],

[28], [14], [18].

In this paper, we propose a new methodology to reduce the number of global interconnects produced by top-down

min-cut placers and examine the impact of such reduction on the performance as measured by the number of buffers

required for signal integrity and the design timing. In our approach, we modify net weights during min-cut partitioning

by giving previously cut nets a higher priority. Such nets are less likely to be cut in the future, and this tends to reduce

their final wirelength. We call our adjustments to net weights boosting factors and compute them dynamically based

on lower bounds on net length during min-cut placement (using upper bounds is equivalent, as we show below). This

results in significantly fewer global interconnects with little impact on total wirelength. Empirical validation involves

calculating the number of buffers [4] required for signal integrity, e.g., slew rate control, in boosted and non-boosted

designs. We also route the placements using a commercial router and execute static timing analysis using Cadence’s

Pearl (version 5.1) to measure the impact of boosting on timing. The conclusion is that our technique leads to fewer

global interconnects, improving both the number of buffers and the timing.

The organization of this paper is as follows. Section 2 provides a brief overview of related work in the literature.

Section 3 gives basic definitions and motivates our work. Section 4 introduces the concept of boosting, determines

which nets should be boosted and discusses the effect of boosting on cut size. Empirical validation is covered in

Section 5, and Section 6 summarizes our contributions.

II. PREVIOUS WORK

Several related techniques give important context to this work. Most timing-driven placement methods start by

identifying nets that belong to critical paths. Various methods are then used to control the net lengths [20], [29], [31],

[26], [11], [24], [15], [16]. Main differences are associated with whether the placement methodology is analytical

[29], [31], [11] or top-down [20], [24], [15], [16]. Top-down methodologies use quadratic partitioners [24] or min-cut

partitioners [20], [16]. Net length constraints are typically translated into net weights [20], [24] or handled as upper

bounds [29], [15].
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Ou and Pedram [24] control the number of cuts in a critical path, since the more cuts a path experiences, the longer

the path tends to be. Hence, the method of [24] gives large weights to critical nets and imposes an upper bound on the

maximum number of times a path can be cut. In [15], linear programming is used to constrain the bounding boxes of

critical nets.

Marek-Sadowska and Lin [20] perform static timing analysis at each level of recursive bisection and then translate

slacks to net weights. These weights affect the min-cut partitioner and eventually reduce signal delay. Another recent

approach that uses a min-cut partitioner is due to Kahng et al. [16]. Consider a block under partition. Some of the

block’s cells are pre-assigned and fixed to the child partitions so as to reduce the negative slack of critical paths. After

cell pre-assignment, the hypergraph partitioner is invoked on the remaining cells.

Buffering algorithms can be classified according to the objective of buffering. Alpert et al. [4] addresses the

problem of finding a minimum-cost buffered routing tree such that the capacitive load of each buffer does not exceed

the buffer specification. This is critical for meeting slew rates constraints, a major bottleneck in 130nm designs and

below. Buffering for critical nets, e.g., clock net, has the additional constraint that skew constraints must be met [25].

Another important buffering objective is minimizing the signal delay, where critical nets are buffered in order to meet

the timing constraints [33], [21], [2].

III. DEFINITIONS AND MOTIVATING EXAMPLE

A circuit netlist is represented by a hypergraph H(V,E), where V is the set of nodes corresponding to the circuit

cells such that each node v ∈V has weight w(v) reflecting its physical area. We refer to the horizontal location of v by

vx and the vertical location by vy. Hyperedges E ⊆ 2V model circuit nets, where each hyperedge ei ∈ E is a set of nodes

that are connected by a net. Associated with each placed hyperedge ei is a bounding box BB(ei) whose corners are

the four points (el
i ,e

u
i ), (el

i ,e
b
i ), (er

i ,e
u
i ) and (er

i ,e
b
i ), where the superscripts u,b, l and r refer to upper, bottom, left and

right respectively. The length of a given net/hyperedge is the half-perimeter of the bounding box, sometimes denoted

with HPWL (half-perimeter wirelength).

We think of a placement region as a collection of blocks as shown in Figure 2. Each block corresponds to a fixed

rectangle into which some (sub)hypergraphvertices should be placed. Initially, the chip area is comprised of one block.

The min-cut placement methodology proceeds by recursively partitioning each block and its associated hypergraph,

and assigning the partitioned subhypergraphs to sub-blocks. Cut direction usually alternates between vertical and

horizontal, or is determined the block aspect ratio [9]. Hence, the product of the partitioning process is a slicing

floorplan as illustrated in Figure 2. In this figure, we illustrate two horizontal and vertical cut levels numbered from 1

to 2. The partitioning process continues until a certain block threshold size, beyond which end-case placers are used

to assign actual locations for the hypergraph nodes in their corresponding blocks [7], [9], [36]. For each block B j, we

let BB(B j) represent the bounding box of block B j, where the bounding box of a block BB(B j) is the rectangle whose

corners are the corners of the block.

As we pointed out earlier, it is desirable to limit the increase of lower bounds of long nets since this limitation

reduces their final wirelength, leading to an overall reduction in number of inserted buffers as well as the total delay.

The following example further illustrates our point.
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Sample blocks

Fig. 2. A slicing floorplan produced by a top-down min-cut placer. Two rounds of vertical and horizontal cuts are illustrated. 1H CUT indicates the

first horizontal cut level, while 2H CUT indicates the second horizontal cut level. 1V CUT and 2V CUTS are for vertical cuts.

Example 1: Assume as in Figure 3 that we have three hyperedges e1, e2 and e3 and that we are currently partitioning

the shaded blocks. We have two solutions: solution A and solution B. In both solutions, the total wirelength and cuts

are both equal to 8. However, we prefer solution B since its total delay is smaller. Solution A has 38 units of delay

(in terms of squared length), while solution B has 24 units of delay. Also, if the critical length [22], i.e., the maxi-

mum wirelength that a driver can support, is 5, then a buffer is needed for solution A, while solution B needs no buffers.

The length of each net can be upper-bounded and lower-bounded at any point during top-down placement, based

on which blocks contain incident cells (“incident blocks”). For convenience, we treat fixed cells, pins and pads as

individual blocks. The half-perimeter (HPWL) of a net cannot exceed the common half-perimeter of all incident

blocks. Related lower bounds can be defined separately in the horizontal and vertical dimensions as we now describe

for the horizontal case. Indeed, the left-most cell on the net must be placed to the left from the right edge of every

incident block; similarly, the right-most cell on the net must be placed to the right from the left edge of every incident

block (note that we do not need to know which particular cells will eventually be left-most and right-most when

the final placement is produced). To lower-bound the horizontal component of the net’s half-perimeter, we need to

consider right edges of all incident blocks and find the left-most. Similarly, we find the right-most left edge over all

incident blocks, and compute the distance between the two horizontal locations. The net’s span cannot be smaller than

that. A lower bound for net’s length is produced by adding the horizontal and vertical components.

1 unit 1 unit 1 unit 1 unit1 unit 1 unit
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Fig. 3. Two placements with equal linear wirelength but different squared wirelength, which is greater in the (A) example.
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Fig. 4. An illustration of boosting. The hyperedge e2 was cut at the first vertical cut. The dashed vertical line represents the new second vertical

cut. With respect to the new cut, each hyperedge can be cut or uncut as illustrated by the various positions of each hyperedge; we label each

possibility by its contribution (0/1) to the cut value as well. We notice that without boosting the partitioner does not differentiate between the

two hyperedges. However, if e2 is cut then its length is lower-bounded by quarter of the chip width. To encourage the partitioner to cut e1 over

e2, we multiply the weight of e2 by a factor of 2 as shown in picture (b).

Let us study the progression of lower and upper bounds for nets that are not incident to fixed cells, pins or pads. At

the beginning of top-down placement the upper bound for every such net is the half-perimeter of the core area, and

the lower bound is zero. At every cut, the upper bound decreases for every uncut net and does not change for every

cut net. Similarly, the lower bound increases for every cut net, and does not change for every uncut net. Thus, in

general, lower bounds gradually increase and upper bounds gradually decrease until they meet at the end of top-down

placement, at which point their values are both equal to the net’s actual length.

IV. ACHIEVING FEWER GLOBAL INTERCONNECTS WITH MIN-CUT PLACERS

In this section we outline a potential methodology to reduce the number of global interconnects. In the process we

highlight one of min-cut placement drawbacks that leads to the formation of such interconnects.

A. Boosting Min-Cut Placement

Most netlists allow multiple placements with equal total wirelength, however in performance-driven placement it

is important to prevent very long nets as we discussed earlier. Traditional min-cut placers may end up producing

several long nets so as to shorten medium-sized nets, and often leave such trade-offs up to chance. This suggests the

possibility of useful tie-breaking that would not affect runtime or solution quality, but may address additional design

objectives. Motivated by this, we propose a way to discourage very long nets by dynamically increasing the weight of

each net after it has been cut, so as to prevent further cuts.

Below we assume a placer that partitions each block in approximately equal sub-blocks (this is typically true for

sufficiently large blocks in the absence of significant design constraints).

Example 2: Let us examine the first two vertical cuts (and skip horizontal cuts if any), which may be at 50% and

75% of the chip width, as shown in Figure 4. If a hyperedge is cut twice, its length can be as high as the chip width.

However, if it is cut only once, its length can be upper bounded by either 50% of the chip width (cut by the second
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cut) as hyperedge e1 or by 75% of the chip’s width (cut by the first cut) as hyperedge e2. In this case, our proposed

modification to the standard min-cut framework applies after the first cut. Namely, the weights of cut hyperedges are

increased so as to discourage them from being cut again. This way we may achieve a 75% upper bound for the net

length of many such hyperedges, while the length of each previously uncut hyperedge is already subject to a 50%

upper bound.

In our example, we can also track lower bounds for net lengths. Indeed, two cuts imply a 25% lower bound, while

any one cut implies only a 0% lower bound. Given how upper bounds change, it appears that increasing the weights

of cut hyperedges may prevent very long nets. Furthermore, given how lower bounds change, it appears that if we do

not prevent multiple cuts early in top-down placement, it may be difficult to prevent long nets.

In practical terms, we multiply the weight of the hyperedge e2 by the factor β = 2 as shown in Figure 4 (b). This

strengthens the connection between the nodes of hyperedge e2 encouraging the partitioner to move node v to the left

shaded sub-block and consequently improving the upper bound on the hyperedge’s length by a quarter of the chip

width. To formalize the idea of increasing the weight of longer nets, we define boosting as follows.

Definition 1: A hyperedge ei ∈ E is boosted by multiplying ei’s weight by a certain factor, i.e., the boosting factor β,

and a hyperedge is boosted only if partitioning the current block can increase the lower bound on the hyperedge span

(HPWL) if the hyperedge is cut, or equivalently only if partitioning the current block can reduce the upper bound on

the net hyperedge span if it is not cut.

We now propose eligibility conditions for boosting a hyperedge. Given a block B j and a corresponding hypergraph

H(V,E) to be partitioned, a hyperedge ei ∈ E is eligible for boosting only if it meets all of the following conditions:

1. BB(ei) 6⊆ BB(B j), i.e., ei has been cut before.

2. There exists some node v of ei in BB(B j) such that

If B j is cut vertically:

• either vx = el
i and no point of the line segment

[(er
i ,e

b
i ),(e

r
i ,e

u
i )] is in BB(B j).

• or vx = er
i and no point of the line segment

[(el
i ,e

b
i ),(e

l
i ,e

u
i )] is in BB(B j).

If B j is cut horizontally:

• either vy = eu
i and no point of the line segment

[(er
i ,e

b
i ),(e

l
i ,e

b
i )] is in BB(B j).

• or vy = eb
i and and no point of the line segment

[(er
i ,e

u
i ),(e

l
i ,e

u
i )] is in BB(B j).

We illustrate these conditions by the following example.

Example 3: Figure 5 illustrates the eligibility for boosting in four sample cases:

• Case (i): A hyperedge of degree three. The hyperedge is eligible for boosting since partitioning the current (shaded)
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(iii) Not Eligible for Boosting (iv) Eligible for Boosting

(ii) Not Eligible for Boosting(i) Eligible for Boosting

Fig. 5. Illustrative cases for the eligibility of hyperedge boosting. The shaded block represents a block under partitioning by the vertical dashed

line. A hyperedge is eligible for boosting if partitioning the block can increase the lower bound on its length. Case (i) is a hyperedge of degree

three, with one node inside the block under partition, while the two other nodes are outside. Case (ii) is two hyperedges each of degree two.

One hyperedge has both of its nodes inside the block under partition, while the other hyperedge has both of its nodes outside the block. Case

(iii) is a hyperedge of degree three, with one node inside the block, while the other two nodes are outside. Case (iv) is a hyperedge of degree

two, with one node inside the block under partition and one outside.

block can extend the lower bound on the hyperedge length.

• Case (ii): Two hyperedge each of degree two. The two hyperedges are not eligible for boosting since partitioning

the current block will not affect on the lower bound of their length. Condition 2 is violated.

• Case (iii): A hyperedge of degree three. The hyperedge is not eligible for boosting since the position of the node

contained within the current block does not affect the hyperedge span. Condition 2 is violated. For partitioning

purposes this hyperedge can be ignored, since partitioning does not affect its half-perimeter wirelength. Such

hyperedges are called “inessential” [7].

• Case (iv): A hyperedge of degree two. The hyperedge is eligible since partitioning the current block can increase

the lower bound.

While we give the general conditions - unrelated of a particular min-cut placer - necessary for boosting a hyperedge,

we note that handling of external hyperedges is strongly related to the terminal propagation process [10]. For example,

in Capo [9] hyperedges of Case (iii) of the previous example are automatically handled by the underlying terminal

propagation mechanism [8], where such hyperedges are omitted during the partitioning of the shaded block.

While Definition 1 gives eligibility conditions for boosting a hyperedge, this does not mean that we should neces-

sarily boost the hyperedge. We introduce a further condition that helps to boost only edges that may become global.

If we assume an alternating horizontal-vertical cut sequence and we examine the vertical cut sequences2 then the first

vertical cut bisects the chip width. If the chip width is W then the first vertical cut is at W
2 , creating 2 blocks. The

2Horizontal cuts are treated similarly.
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Partition 1 Partition 2

Fig. 6. The effects of boosting on cut size. Node v is connected to the sets of hyperedges I1, I2,E1, and E2 (these are not individual hyperedges).

Node u is connected to the two sets of hyperedge N1 and N2.

second-level vertical cuts are at W
4 and 3W

4 , creating four blocks, and the ith level cuts create 2i blocks each of width
W
2i . This process continues until all blocks reach a certain threshold.

If a hyperedge is cut at a certain cut level then nodes of this hyperedge exist on both sides of the cut. Hence, if a

hyperedge is first cut at cut level l and and later at cut level l +1 then this increases the lower bound on its horizontal

length by W/2l+1. Suppose that a hyperedge was cut at levels l through l + τ, where τ ≥ 1, then the lower bound on

the hyperedge’s length is ∑l+τ
i=l+1 W/2i = W ·(2τ−1)

2l+τ , where the contribution of level l +τ to the lower bound is W
2l+τ . This

means that the contribution of new cuts is exponentially decreasing as we descent in the top-down hierarchy. In the

circuits we experiment with, we have found that there is little point in boosting after τ ≥ 4 since the total contributions

of new cut levels (if the hyperedge ever gets cut again) will not exceed 7% of the hyperedge’s horizontal length at

τ = 4. We note however that in reality, cut-sequences may deviate from alternating due to (i) layout aspect ratios that

are different from the unity, (ii) min-cut partition sizes might not be balanced. In our experiments, we have found that

it is of no benefit to boost a hyperedge for more than eight levels (four horizontal placement levels and four vertical

placement levels), since block sizes after eight placement levels are typically less than few percentage of the overall

chip’s core size, and boosting after this will effectively hurt the cutsize without any prospect of reducing the number

of global interconnects. We also note that after each placement level, we reset or deboost any boosted hyperedges so

that the boosting weights do not increasingly accumulate in any hyperedge.

Another possibility is to only boost hyperedges that are timing critical in a manner similar to Ou and Pedram’s [24]

scheme. However, limiting boosting to such cases will likely lead to miss some non-timing critical global interconnects

and consequently a larger number of buffers for the sake of signal integrity [4].

B. Effect of Boosting on Cut Values

In the previous subsection, we determined the eligibility conditions for boosting a hyperedge. However, a crucial

parameter is the value of the boosting factor β. A high value for β is expected to encourage a min-cut partitioner to

move nodes so as to reduce the hyperedge’s span. In the following, we analyze the relation between β and the cut size,

which directly affects the final HPWL [6].

Suppose that we have two nodes v and u as shown in Figure 6, where the rectangle represents the current block

under partition. We say that a hyperedge is external if some of its nodes lie outside the current block under partition,

and a hyperedge is internal if all of its nodes lie within the block under partition. Node v is connected to a set E of

external hyperedges eligible for boosting, and to the sets of internal hyperedges sets I1 and I2. Node u is connected
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to only the internal hyperedges sets N1 and N2. Thus, the gain of moving node v from partition 1 to partition 2 is

δv = |I2|− |I1|+ |E|, while the gain of moving node u is δu = |N2|− |N1|. With boosting, the gain of node v becomes

δβ
v = |I2|− |I1|+β|E|, while the gain of node u remains the same since it is not connected to any hyperedges eligible

for boosting. We now distinguish three important cases for a min-cut partitioner operating with boosting:

• Case 1: δu = δv and δβ
v > δu. In this case the partitioner ends up moving node v rather than u. Hence, boosting

does not worsen the cut size but at the same time the span of the long external hyperedges is reduced.

• Case 2: δu > δv and δβ
v < δu. Here the partitioner ends up moving node u rather than v as if it is not operating

under boosting. Hence, boosting does not worsen the cut size but there is no benefit from boosting either.

• Case 3: δu > δv but δu > δβ
v . In this case the partitioner moves node v rather than u, effectively reducing the spans

of the external hyperedges but worsening the cut size by |N2| − |N1| − |I2|+ |I1| − |E| in comparison to moving

node u.

Under any scheme that boosts net weights only for small values of τ (the maximum amount of levels a hyperedge

can be boosted), the likelihood of Case 3 is small. To see this, we notice that δu−δv = |N2|−|N1|−|I2|+ |I1|−|E|> 0,

however with boosting, δu −δβ
v = |N2|− |N1|− |I2|+ |I1|−β|E|< 0. Thus the partitioner thinks that moving node v is

more beneficial. We notice that the difference between δu −δv and δu −δβ
v is (β−1)|E|. Thus, the likelihood of case

3 increases as the value (β−1)|E| increases in magnitude. If β = 2, this implies that the likelihood of case 3 increases

as the number of boosted edges a node is connected to increases. However, during the first few levels - where boosting

is applicable - in min-cut placement, there are typically few edges that are boosted, and the likelihood that a node is

is connected to more than one or two boosted hyperedges is typically low. For example, in a typical benchmark, the

IBM01, the number of nodes connected to boosted edges for some placement levels are as follows:

• Placement level 1: 2.59% of the nodes are connected to a single boosted edge. 0.56% of the nodes are connected

to two boosted edges. 0.08% of the nodes are connected to 3 or more boosted edges.

• Placement level 2: 10.81% of the nodes are connected to a single boosted edge. 2.45% of the nodes are connected

to two boosted edges. 0.96% of the nodes are connected to 3 or more boosted edges.

• Placement level 3: 16.80% of the nodes are connected to a single boosted edge. 5.41% of the nodes are connected

to two boosted edges. 2.67% of the nodes are connected to 3 or more boosted edges.

Thus, the common case is that each node is connected to very few boosted hyperedges, leading to a graceful

reduction in the cut size. We tabulate the total cut value per placement level for a number of benchmarks in Table V.

V. EXPERIMENTAL VALIDATION

In this section we empirically assess the effect of boosting on the interconnect wirelength distribution, and conse-

quently the number of buffers and the circuit timing as measured by the worst negative slack and the total negative

slack (TNS). Our implementation is based on Capo [9] (version 8.7) and is compared to (i) the unmodified Capo 8.7,

(ii) Cadence’s QPlace place (version 5.2). We use the buffering algorithm of Alpert et al. [4] to calculate the number

of buffers that would be inserted fr multi-pin nets. Cadence’s WarpRoute (version 5.4) is used for global and detailed

routing, and Cadence’s Pearl (version 5.1) is used for static timing analysis.

The four industrial benchmarks used for our experiments are described in Table I. The number of cells in these
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benchmark cells nets core region whitespace metal layers clock period (ns)

A 40347 42487 2622.00 x 2456.00 42.5% 4 16.60

B 21103 21230 2142.20 x 1969.40 13.5% 4 4.545

C 33917 39153 2315.70 x 2315.70 49.8% 4 29.6

D 9585 10398 8705.40 x 8696.80 29.7% 5 36.67

TABLE I

BENCHMARK CHARACTERISTICS.

designs are in the range of 9− 40k. While these benchmarks do not represent the state-of-the-art, these are the only

industrial benchmarks with timing information that are accessible to the authors. Other publicly available benchmarks,

e.g., IBM benchmarks, lack timing information necessary for some of our experiments.

The experimental results section is organized as follows. We first examine the effect of boosting on the wirelength

distribution; we show that boosting leads to fewer global interconnects. Then we calculate the number of buffers

that would be inserted in non-boosted and boosted placements. Our calculations indicate that boosting significantly

reduces the number of buffers. Finally, we examine the impact of boosting on the timing characteristics of the circuit.

A. Effect of boosting on the wirelength distribution

In a first set of experiments, we verify our premise that boosting alters the interconnect distribution leading to

fewer global interconnects. We compare the wirelength distribution produced from regular Capo and boosted Capo

for different boosting factors. To report the wirelength distribution:

1. We calculate the half perimeter of the chip’s surface available for standard cells and blocks.

2. A net histogram is constructed in units of tenth of the chip’s half perimeter, i.e., we have a histogram of ten bins,

where a net belongs to the ith bin if its HPWL is i
10 that of the chip’s half perimeter.

3. The number of nets within each bin of the histogram is reported.

The wirelength distribution results are given in Table II for five different boosting factors: 1, 2, 3, 4, and 5. The use

of integer boosting factors is necessitated by the fact that multi-level partitioners [3], [17] - the core engines of min-cut

placers - use FM partitioning [13]. FM partitioning relies on an underlying integral discretized bucketing scheme. If

fractional boosting values were to be used, it would require rounding, which produces inaccurate results. The results

in Table II are averaged for four random seeds. Notice that a boosting factor of 1 corresponds to the regular min-cut

placement. The table shows a clear trend in all benchmarks: boosting alters the wirelength distribution leading to

fewer longer nets, furthermore, the larger the boosting factor, the fewer global nets that are produced. We also report

the total HPWL to estimate the increase in wirelength. In general, boosting leads to a slight increase in wirelength.

The results of Table II are summarized in Figures 7.a and 7.b where the number of nets that span more than 20% and

30% of the chip’s half perimeter are plotted for the different boosting factors. In the bar plot of each benchmark, the

boosting factor increases as we move from the left to the right. We notice that a boost factor of 2 produces the sharpest

reduction in the number of global interconnects. A boosting factor of 2 reduces the number of global interconnects as
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(b) Number of interconnects that span more 30% of the chip’s

half perimeter.

Fig. 7. The number of global interconnects as a function of the boosting factor for various designs. For each benchmark, we plot the number of

interconnects that span more than 20% (subfigure a), and 30% (subfigure b) of the chip’s half perimeter. We plot these values for five different

boosting factors (β = 1,2,3,4,5), where the value of β increases as we move from left to right in the bar plots of each benchmark.

measured by the 20% rule by 17%, 24%, 18%, and 3% for the four benchmarks, and reduces the number of global

interconnects as measured by the 30% rule by 25%, 33%, 33%, and 5%.

B. Effect of boosting on number of buffers

In a second set of experiments, we calculate the number of the buffers that would be inserted in a boosted placement

versus a non-boosted placement. A critical quantity in estimating the number of buffers is lcritical which represents

the maximum amount of wirelength (or capacitance) that a buffer can drive [22]. If P represents a net’s HPWL then

b P
lcritical

c represents a lower bound on the number of required buffers. This lower bound is exact for 2-pin nets. For

multi-pin net, we use the buffering algorithm by Alpert et al. [4] to calculate the exact number of buffers. Given the

pin locations of a net, the algorithm constructs a buffered Steiner tree using a clustering heuristic [4] which is shown

to produce near-optimal number of buffers. To avoid tuning our results to a particular technology, we calculate the

number of buffers for wide-range values of critical lengths, i.e., we start with lcritical equal to 10% of the chip’s half

perimeter and gradually increase lcritical in steps of 5% until 100% of the chip’s half perimeter. Our results are reported

in Table III.

From the table, it is evident that boosting consistently reduces the number of buffers for all values of critical lengths,

with average improvements of 21.7%, 21.75%, 22.77%, and 14.5% for the 4 designs respectively. The percentage

improvement slightly increases as the critical length increases. These reductions in number of buffers lead to overall

savings in die area, power consumption, and congestion. The results in Table III are summarized in Figure 8.

We also repeat the same experiments for the IBM (version 2) benchmarks [36] and report the results in Table IV.

We also report the number of buffers required for two other academic placers Dragon [36] (version 3.1) and FengShui

[19] (version 2.6). It is evident that boosting consistently reduces the number of buffers at a small cost to total HPWL.



12

C. Effect of boosting on timing

In a third set of experiments, we examine the effect of boosting on circuit timing. These experiments are performed

with industrial tools in a realistic design flow. Table VI reports our results which are average of four random runs.

The alternate design flows in this table are as follows. In the flow indust NTD, the industrial placer is used to place

the benchmark in a non-timing driven mode and then WarpRoute (version 5.4) is used to route the benchmark in a

timing-driven mode. In the flow indust TD, the industrial placer is used to place the benchmark in a timing-driven

mode and then WarpRoute is used to route the benchmark in a timing-driven mode. In the flow CAPO regular, Capo

8.7 is used to place the benchmark and then WarpRoute performs timing-driven routing on Capo’s output placement.

In the flow CAPO BOOST, we use a modified version of Capo and route the resulting placements using WarpRoute

in timing-driven mode. In Table VI, we report the the Half-Perimeter Wirelength (HPWL), VIOLATIONS is the

number of detailed routing violations, i.e., number of nets that are not completely routed successfully. time is the

placement runtime in seconds, Wirelength is the actual wirelength as reported by WarpRoute, SLACK is the worst

negative slack as reported by the analysis using Pearl (version 5.2), TNS is the Total Negative Slack of all nets that

have negative slack.

Taking into account that Boosting is a timing oblivious technique (so as Capo), we find that boosting improves

Capo’s circuit timing as indicated by the data in Table VI. For example, the negative slack of Design B improves by

about 43% in comparison to Capo, and furthermore boosting reduces the TNS by about 78% in comparison to Capo.

Also, boosting improves the worst negative slack of Design C by 60% in comparison to Capo, and furthermore the

TNS is improved by about 61%. For designs A and D, none of the placers is able to exploit any advantage in their

timing-driven mode. As indicate in the table, there are a small number of routing violations with some test cases.

These can be handled by logic transformations or manually. We also notice that boosting increases the placement

runtime by a negligible amount. This is understandable given that before each placement level, nets that meet the

boosting eligibility conditions must have their weights increased.

VI. CONCLUSIONS

Our work improves min-cut placers by reducing their outcome of global interconnects. These interconnects degrade

performance in several ways and are a bottle in 130nm and below designs. The novel technique we propose (boosting)

is based on dynamically changing net weights during top-down placement. We first observe that the length of each net

is subject to a series of increasing lower bounds that depend on when the net is cut. Therefore we increase the weights

of nets with the highest lower bounds, so as to discourage cutting them in the future. This limits the further increase

of their lower bounds.

While the changes in weights do not significantly affect the resulting half-perimeter wirelength, they tend to reduce

the number of global interconnects, therefore reduce the number of buffers required for signal integrity and generically

improve circuit delay as well. To validate this empirically, we implement boosting within the well-established min-cut

placer Capo, calculate the new wirelength distributions, calculate the number of the buffers that would be inserted,

perform detailed routing, and evaluate timing with Cadence’s Pearl (version 5.1). Our experimental results clearly
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indicate a consistent and significant reduction in the the number of global interconnects. As a result, we improve

circuit timing in several industrial benchmarks compared to both Capo and a leading industrial placer, and also reduce

the number of buffers that would be inserted. It is surprising that such an improvement in timing and buffering can

be achieved, across several real-world circuits, without giving timing constraints to the placer and with only a slight

runtime penalty.
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benchmark boosting factor β

1 2 3 4 5

Design A 1 97.989 98.319 98.407 98.362 98.464

2 1.132 0.920 0.829 0.998 0.887

3 0.392 0.348 0.370 0.247 0.291

4 0.151 0.145 0.145 0.142 0.115

5 0.123 0.067 0.051 0.052 0.041

6 0.015 0.004 0.002 0.003 0.007

7 0.004 0.002 0.002 0.002 0.002

8 0.001 0.001 0.001 0.001 0.001

9 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000

HPWL 1.000 1.046 1.118 1.183 1.205

Design B 1 92.627 93.046 93.397 93.229 93.145

2 4.184 4.509 4.415 4.656 4.576

3 1.633 1.365 1.331 1.301 1.351

4 0.740 0.538 0.433 0.420 0.510

5 0.338 0.227 0.177 0.145 0.198

6 0.219 0.126 0.064 0.074 0.052

7 0.097 0.035 0.034 0.025 0.015

8 0.020 0.009 0.006 0.007 0.008

9 0.001 0.002 0.002 0.001 0.004

10 0.000 0.000 0.000 0.000 0.000

HPWL 1.000 1.017 1.052 1.101 1.149

Design C 1 89.862 90.369 90.478 90.347 89.947

2 6.781 6.884 7.252 7.356 7.980

3 2.052 1.872 1.502 1.544 1.382

4 0.650 0.547 0.448 0.448 0.413

5 0.414 0.211 0.242 0.253 0.215

6 0.175 0.082 0.059 0.038 0.042

7 0.048 0.022 0.006 0.002 0.008

8 0.008 0.004 0.003 0.002 0.003

9 0.008 0.007 0.008 0.008 0.008

10 0.000 0.000 0.000 0.000 0.000

HPWL 1.000 1.046 1.085 1.127 1.179

Design D 1 93.225 93.506 93.215 93.169 93.150

2 2.967 2.779 3.070 3.171 3.164

3 1.337 1.306 1.380 1.330 1.462

4 0.611 0.671 0.582 0.611 0.553

5 0.334 0.279 0.375 0.276 0.293

6 0.298 0.274 0.207 0.252 0.202

7 0.123 0.077 0.084 0.101 0.087

8 0.063 0.067 0.048 0.050 0.048

9 0.014 0.012 0.010 0.010 0.012

10 0.000 0.000 0.000 0.000 0.000

HPWL 1.000 1.067 1.085 1.147 1.165

TABLE II

EFFECT OF BOOSTING ON THE WIRELENGTH DISTRIBUTION AND FINAL HPWL FOR VARIOUS BOOSTING FACTORS. RESULTS ARE

AVERAGE OF FOUR SEEDS.
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(d) Design D

Fig. 8. Number of buffers that would be inserted in nets of the four benchmarks. We vary the critical length from 10% of the chip’s half perimeter

to 100% in steps of 5% and calculate the average number of buffers that would be inserted for both boosted and non-boosted placement. We

also calculate the percentage improvement in number of buffers due to boosting. Boosting is consistently reducing the number of buffers.
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benchmark mode Critical length percentage lcritical

10 20 30 40 50 60 70 80 90 100

Desgin A regular 8292 3069 1617 818 556 373 305 226 180 148

boost 7068 2562 1270 643 431 314 254 197 143 107

improv 14.8% 16.5% 21.5% 21.4% 22.5% 15.8% 16.7% 12.8% 20.6% 27.7%

Design B regular 10908 4522 2557 1608 1163 841 633 477 368 275

boost 9550 3745 2047 1288 874 650 500 368 259 199

improv 12.4% 17.2% 19.9% 19.9% 24.9% 22.7% 21.0% 22.9% 29.6% 27.6%

Design C regular 20804 8222 4440 2682 1683 1135 803 613 454 318

boost 18888 6951 3514 2036 1280 840 590 418 329 262

improv 9.2% 15.5% 20.9% 24.1% 23.9% 26.0% 26.5% 31.8% 27.5% 17.6%

Design D regular 7631 3437 2085 1466 1054 820 693 571 457 346

boost 7036 3067 1857 1279 977 765 577 444 333 278

improv 7.8% 10.7% 10.9% 12.7% 7.3% 6.7% 16.7% 22.2% 27.1% 19.6%

TABLE III

PERCENTAGE REDUCTION IN NUMBER OF BUFFERS FOR THE DIFFERENT CRITICAL LENGTHS FOR INDUSTRIAL BENCHMARKS.

benchmark mode Critical length percentage lcritical HPWL

10 20 30 40 50 60 70 80 90 100

ibm01 Capo 5475 1970 1002 555 334 182 116 61 30 18 5.63

Capo + Boost 5330 1875 868 500 277 161 96 50 30 18 5.83

FengShui 5074 1853 912 531 293 184 100 53 29 17 5.17

Dragon 4948 1752 868 474 271 161 92 45 23 11 5.15

ibm02 Capo 16880 6753 3507 2006 1181 738 489 342 249 190 16.0

Capo + Boost 16188 6295 3169 1724 1025 635 431 287 200 156 16.4

FengShui 16134 6468 3381 1851 1036 643 416 299 231 183 14.7

Dragon 15258 5957 3016 1625 942 590 408 311 237 191 14.1

ibm07 Capo 20898 7799 3896 2148 1375 862 540 342 208 136 37.4

Capo + Boost 19254 6821 3178 1658 958 611 381 229 111 63 38.1

FengShui 17844 6375 2921 1552 855 536 367 231 115 54 32.8

Dragon 17960 6382 3013 1403 755 463 293 139 77 40 33.1

ibm08 Capo 24343 9766 5316 3270 2174 1512 1074 768 552 374 39.3

Capo + Boost 21660 8170 4259 2414 1562 1049 705 445 311 221 39.0

FengShui 21734 8586 4511 2719 1716 1118 780 531 360 259 34.7

Dragon 21824 8667 4609 2800 1793 1220 869 614 432 301 33.2

ibm09 Capo 16585 5817 2749 1467 766 387 235 124 48 24 33.4

Capo + Boost 15341 5114 2221 1115 598 325 162 66 27 15 33.8

FengShui 15351 5287 2337 1141 585 253 119 60 28 14 30.2

Dragon 14561 4872 2069 987 468 205 87 41 21 11 29.8

ibm10 Capo 23585 7882 3546 1781 896 497 292 195 85 40 63.7

Capo + Boost 22315 7009 3029 1405 690 351 188 96 50 32 63.8

FengShui 21287 6988 3028 1533 795 422 248 157 114 73 56.9

Dragon 20814 6634 2830 1412 716 394 230 128 65 43 56.6

TABLE IV

PERCENTAGE REDUCTION IN NUMBER OF BUFFERS FOR THE DIFFERENT CRITICAL LENGTHS FOR IBM (VERSION 2) EASY BENCHMARKS.
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benchmark mode Total cut value per placement level

1 2 3 4 5 6 7 8 9 10

ibm01 Capo 91 339 672 1115 1587 2254 2984 3857 4798 5874

Capo + Boost 91 334 685 1232 1834 2591 3443 4505 5545 6722

ibm02 Capo 229 626 1995 3574 4879 6094 7258 8264 9295 10272

Capo + Boost 230 559 1783 3521 5520 7016 8577 10053 11235 12416

ibm07 Capo 832 2038 3325 5096 6999 9066 11175 13340 15641 18204

Capo + Boost 849 2095 3553 5543 7872 10863 13703 16440 19051 21855

ibm08 Capo 826 1990 3184 4834 6502 8750 10924 13403 15821 18426

Capo + Boost 828 2227 3745 5822 7816 10656 13645 16647 19407 22252

ibm09 Capo 444 1455 2427 3374 4888 6767 9208 11730 14607 17378

Capo + Boost 437 1450 2467 3690 5548 8037 11027 14058 17085 20152

ibm10 Capo 785 1822 3335 5718 8107 11392 14720 18438 22232 25872

Capo + Boost 730 1996 3493 6113 8962 13164 17552 22201 26068 29985

TABLE V

TOTAL NET CUT PER PLACEMENT LEVEL FOR IBM (VERSION 2) EASY BENCHMARKS.

benchmark flow HPWL VIOL- time Wire SLACK TNS

tool mode ATIONS (s) length (ns) (ns)

A indust NTD 3511326 0 771 4242633 -5.411 2969.5

TD 3442277 0 1249 4206754 -5.208 3243.8

CAPO regular 3165932 0 189 4076119 -5.315 3178.3

boost 3282640 0 191 4182982 -5.363 3083.6

B indust NTD 2826832 38 325 3491503 -0.660 28.107

TD 2892279 52 602 3570024 -0.368 12.022

CAPO regular 2702130 82 183 3335483 -0.607 23.36

boost 2758502 172 197 3260184 -0.342 5.107

C indust NTD 6874100 0 803 8374484 +0.263 0

TD 7199963 0 1243 915298 +0.290 0

CAPO regular 6654505 107 227 8375939 -10.940 292.406

boost 6978647 168 244 8711281 -4.389 113.042

D indust NTD 594392 5 278 846783 -1.882 1859.9

TD 577484 5 511 836501 -1.880 1788.7

CAPO regular 590833 9 47 835962 -1.875 1810.6

boost 629473 8 49 872089 -1.878 1799.5

TABLE VI

BENCHMARK RESULTS (AVERAGE OF FOUR SEEDS). NTD IS THE INDUSTRIAL PLACER IN A NON-TIMING DRIVEN MODE. TD IS THE

INDUSTRIAL PLACER IN TIMING-DRIVEN MODE. IN CAPO FLOWS, regular IS FOR UNMODIFIED CAPO AND boost IS FOR CAPO IN BOOSTED

MODE. HPWL IS HALF-PERIMETER WIRELENGTH. VIOLATIONS IS THE NUMBER OF DETAILED ROUTING VIOLATIONS (NUMBER OF

NETS THAT ARE NOT COMPLETELY ROUTED SUCCESSFULLY). SLACK PRE IS THE NEGATIVE SLACK CALCULATED BEFORE ACTUAL

ROUTING. SLACK IS THE NEGATIVE SLACK CALCULATED AFTER ROUTING. TNS IS THE TOTAL NEGATIVE SLACK.


