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Abstract—As advanced technologies in wafer manufacturing
push patterning processes toward lower k1 subwavelength print-
ing, lithography for mass production potentially suffers from
decreased patterning fidelity. This results in the generation of
many hotspots, which are actual device patterns with relatively
large critical-dimension and image errors with respect to on-wafer
targets. Hotspots can be formed under a variety of conditions
such as the original design being unfriendly to the resolution
enhancement technique that is applied, unanticipated pattern
combinations in rule-based optical proximity correction (OPC),
or inaccuracies in model-based OPC. When these hotspots fall
on locations that are critical to the electrical performance of
a device, device performance and parametric yield can be sig-
nificantly degraded. The golden verification signoff tool using a
simulation-based approach has occupied the mainstream and has
been able to accurately detect hotspots. However, this approach
represents a runtime–quality tradeoff point that is high in quality
but also high in runtime. There is also little point in trying to
replace the golden signoff tool. We are motivated to develop a
low-runtime “prefilter” that reduces the amount of layout area to
be analyzed by the golden tool, without compromising the overall
quality of hotspot finding. In this paper, we first describe a novel
detection algorithm for hotspots induced by lithographic uncer-
tainty. Our goal is to rapidly detect all lithographic hotspots with-
out significant accuracy degradation. In other words, we propose
a filtering method: as long as there are no “false negatives,” i.e., we
reliably obtain a superset of actual hotspots, then our method can
dramatically reduce the layout area processed by golden hotspot
analysis. Our hotspot detection algorithm includes layout graph
construction, graph planarization, three-level bridging hotspot
detection, and necking hotspot detection. We have tested our flow
on several industry test cases. The experimental results show
that our method is promising: for benchmark designs in 90-nm
and 65-nm technologies, 100% of bridging and open hotspots
are detected with few falsely detected hotspots. The average run-
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time of our method is more than 496× faster compared to the
commercial tool.

Index Terms—Bridging and necking, defocus, graph-based
detection, hotspot, lithography.

I. INTRODUCTION AND MOTIVATION

MOORE’S law continues to drive higher performance
with smaller circuit features. Aggressive technology

scaling has introduced new variation sources and made process
variation control more difficult. For optical lithography, man-
ufacturability is roughly defined by the k1 factor from the
Rayleigh equation [1]. Beyond the 45-nm CMOS technology
node, even using a high-end optical exposure system such as
immersion lithography with higher numerical aperture (NA), it
is necessary to have a k1 factor lower than 0.3. The primary
risk posed by a lower k1 is the likelihood of degradation of
patterning fidelity on VLSI circuits. A lower k1 could decrease
patterning fidelity and result in the generation of many hotspots;
a hotspot is an actual device pattern that has relatively large
critical-dimension (CD) and image errors with respect to on-
wafer targets. Hotspots include a variety of pattern deforma-
tions, e.g., line-end pullback (shortening), corner rounding,
necking, and bridging [2]. Pullback is the shrinkage of geome-
tries due to overdose at narrow line ends. Necking is a reduction
in linewidth that is induced by a hammerhead or neighboring
wide line. We separate hotspots into open faults for necking
and shortening and bridging faults for corner rounding and
bridging.

In particular, under ultralow k1 conditions (k1 < 0.3), many
hotspots may arise anywhere. Hotspots can form under a variety
of conditions such as the original design being unfriendly to
the resolution enhancement technique that is applied to the
chip, pattern combinations unanticipated by rule-based optical
proximity correction (OPC), or inaccuracies in model-based
OPC. When these hotspots fall on locations that are critical
to the electrical performance of a device, they can reduce the
yield and performance of the device. It is therefore necessary to
detect hotspots earlier in the layout design flow [4]–[6].

Park et al. [7] proposed a detection method for critical pat-
terns (hotspots), using a design rule check tool. The approach
is a rule-based detection that generates lookup tables with line
and space parameters. However, for more complex patterns,
the number of layout pattern parameters required to enable
detection increases. As a result, the speed advantage of the rule-
based approach is reduced. On the other hand, the simulation-
based approach has occupied the mainstream and has been
able to accurately detect hotspots [8], [9]. Furthermore, soft-
ware solutions running on customized hardware platforms have
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been developed so that aerial image simulation can be quickly
carried out [10]. However, hotspots can change according to
process conditions. Achieving the required accuracy of hotspot
detection strongly depends on qualified optical and process
models. Model generation corresponding to process variation
represents a significant overhead in terms of validation, mea-
surement, and parameter calibration.

For hotspot detection, there is typically only one golden
physical verification signoff tool in the design flow, and even
though analogous tools may be qualified for other junctures
in the flow, there is little point in trying to replace the
golden signoff tool. Rather, the golden signoff tool represents
a runtime–quality tradeoff point that is high in quality but also
high in runtime. The objective of our work is to develop a low-
runtime “prefilter” that reduces the amount of layout area to be
analyzed by the golden tool, without compromising the overall
quality of hotspot finding.

In this paper, we describe a novel detection algorithm for
hotspots induced by lithographic uncertainty. Our approach
utilizes a layout-derived graph that reflects pattern-related CD
variation. Our goal is to detect a set of potential lithographic
hotspots within minutes without degrading accuracy (i.e., with-
out missing any actual hotspots). The key intuition behind our
approach is that generally CD variation is the result of “bad”
patterns or effects. Hotspots are the location with relatively
large CD variation caused by several spatially close “bad”
patterns. We assume that this effect is accumulative and the
total effect of several spatially related “bad” patterns can be
represented by the total weight of one merged face (or merged
dual node in the dual graph).

The main steps for bridging hotspot detection are given as
follows.

• Layout graph construction: Given a layout L, the lay-
out graph G = (V,Ec ∪ Ep) consists of nodes V , corner
edges Ec, and proximity edges Ep. A face in the lay-
out graph includes several close features and the edges
between them. Edge weight can be calculated from a
traditional 2-D model or a lookup table.

• Graph planarization: For any two crossing edges, delete
the edge with the smaller weight.

• Three-level hotspot detection: 1) Edge-level detection
finds the hotspot caused by two close features or “L-
shaped” features; 2) face-level detection finds the pattern-
related hotspots that span several close features; and
3) merged-face-level detection finds hotspots with more
complex patterns. That is, we construct the dual graph GD

and sort the dual nodes according to their weights. We
merge the sorted dual nodes (i.e., the faces in G) that share
the same feature in sequence.

A local-wiring-density-based hotspot filter is used to reduce
the number of falsely detected bridging hotspots. A normalized
image log slope (NILS) has been used to evaluate the quality
of pattern and susceptibility of the hotspot pattern to focus and
exposure errors. The mask enhanced error factor (MEEF) for
the dense pitch in general is higher than for isolated, and the
higher MEEF causes lower NILS [11], [12] i.e., the lower the
NILS in the dense pitch, the higher the probability of a bridging

Fig. 1. Test patterns to evaluate CD variation induced by pattern complexity.
(Red lines) CD measurement location. (Blue contours) Simulation results at
worst case DOF. Two CD values are averaged in the case of (c).

hotspot. As a result, the use of density filters may improve
the detection accuracy of bridging hotspots.1 Necking hotspot
detection is done by comparing the total weight of each node
with a given threshold value.

The remainder of this paper is organized as follows. In
Section II, we describe the problem formulation, dual-graph-
based hotspot detection algorithm, and implementation details.
Section III presents our evaluation flow and experimental re-
sults. We conclude in Section IV with directions for ongoing
research.

II. DUAL-GRAPH-BASED HOTSPOT DETECTION

Recall that hotspots are the locations in the design where the
magnitude of edge displacement is exceptionally large. In other
words, hotspots are printed features whose CD variations are
greater than a given threshold value.

A. Problem Formulation

We formulate the fast hotspot detection problem as follows.
Hotspot Detection Problem
Given: Layout L and threshold of CD variation that defines

a hotspot.
Detect: Hotspots that may result in large CD variation.
To Minimize: The number of undetected hotspots and falsely

detected hotspots.
The basic function for detection depends on process varia-

tions (i.e., defocus and exposure) and pattern parameters (i.e.,
width and space). To reduce the number of process conditions
for hotspot validation, the effects of pattern complexity must
be comprehended. Fig. 1 shows patterns with three different
complexities: 1) one wide metal line [Fig. 1(a)]; 2) two wide
metal lines [Fig. 1(b)]; and 3) four wide metal lines [Fig. 1(c)].
Fig. 2 shows that different complexities lead to different CD
variations. Two CD values are averaged in the case of Fig. 1(c).
The CD variation may also be affected by different process
conditions. However, the patterns with more complex config-
uration, e.g., Fig. 1(c), have larger CD variations than the
patterns with simple complexity, e.g., Fig. 1(a), at all process

1A dense pattern has a higher potential of a hotspot. However, the local
wiring density filter cannot filter out all hotspots since the hotspot is also a
complex function of the distance between two features, overlapped projection
length, the widths of the two lines, etc.
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Fig. 2. Evaluation of CD variation and cost in a graph-based approach
with various test patterns and process conditions. C-1: NA = 0.85 and σ =
0.96/0.76. C-2: NA = 0.75 and σ = 0.75/0.55. C-3: NA = 0.75 and σ =
0.75/0.45. a, b and c, respectively correspond to (a), (b), and (c) shown
in Fig. 1.

Fig. 3. Plot of average cost versus CD.

conditions. Therefore, our key observation is that the higher the
pattern complexity, the higher the probability of a hotspot.

We propose to use a cost derived from our graph-based
approach, described in detail in Section II-B, to represent the
pattern complexity and, hence, the hotspot probability. For
bridging hotspots, the cost, as shown in Fig. 2, can track the
hotspot probability well according to the change of pattern
complexity. Fig. 3 shows the plot of average cost versus CD for
necking hotspots. In this example, the features with a printed
CD smaller than 80 nm are viewed as necking hotspots. We can
see that our proposed cost has good correlation with printed
CD. The cost from the graph is thus closely related to hotspot
probability.

We now propose a new graph-based hotspot detection
method that is very fast and accurate. We group pattern-induced
bridging-type CD variations into three cases.

1) Corner-induced CD variation: As shown in Fig. 4(a),
two orthogonal connected features form a corner, which
may lead to “corner-rounding” CD variations.

2) Proximity induced CD variation: As shown in Fig. 4(b)
and (c), two close features may lead to “bridging” CD
variations.

3) Line-end-induced CD variation: One line-end feature
may lead to “bridging” CD variations. In fact, this ef-
fect can be treated as a special proximity-induced CD
variation.

Pattern-induced open-type CD variations can also be grouped
into three cases.

Fig. 4. Effects leading to bridging hotspots. (a) Corner-induced CD variation.
(b) Proximity-induced CD variation. (c) Line-end-induced CD variation.

Fig. 5. Effects leading to open hotspots. (a) Wide-line-induced variation.
(b) Line-end-induced CD variation. (c) Wide-line-proximity-induced CD
variation.

Fig. 6. Effects leading to hotspots. (a) Edge level. (b) Face level. (c) Merged-
face level.

1) Wide-line-induced variation: As shown in Fig. 5(a), one
wide line on a thin line may lead to “open” CD variations.

2) Line-end-induced CD variation: As shown in Fig. 5(b),
the line end of one of two parallel features may lead to
“open” CD variations.

3) Wide-line-proximity-induced CD variation: As shown
in Fig. 5(c), one wide line close to a thin line may lead to
“open” CD variations.

In lithography, a given hotspot may be the result of a single
effect, as shown in Fig. 6(a), or the combination of several
effects in an accumulative way, as shown in Fig. 6(b) and (c).
The accumulative property of hotspots makes detection and
filtering very difficult. In our approach, we try to formulate this
accumulative effect with an iterative merging process. As noted
above, our proposed hotspot detection for bridging flow is given
as follows.

• Layout graph construction: Construct the layout graph
G = (V,Ec ∪ Ep) for a given layout L, which consists of
nodes V , corner edges Ec, and proximity edges Ep.

• Graph planarization: For any two crossing edges, delete
the edge with the smaller weight.

• Three-level hotspot detection: Perform edge-level
[Fig. 6(a)], face-level [Fig. 6(b)], and merged-face-level
[Fig. 6(c)] detection to find hotspots with complex
patterns.

For the necking hotspot detection, the total weight of each
node is compared to the threshold value.



1638 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 9, SEPTEMBER 2008

Fig. 7. Layout graph construction.

Fig. 8. (a) Example of a layout graph. (b) Its dual graph.

Intuitively, the single effects of “bad” patterns are repre-
sented by the weight of one edge, and the accumulative effect of
several closely related effects is represented by the total weight
of a merged face, which includes several connected edges.

We present each step in detail in the following sections.

B. Layout Graph Construction for Bridging Hotspots

To quickly detect the hotspots, the first step of our algorithm
is to build a layout graph that reflects the pattern-related CD
variation. As shown in Fig. 7, given a layout L, the layout graph
G = (V,Ec ∪ Ep) consists of nodes V , corner edges Ec, and
proximity edges Ep. The procedure is described as follows.

1) Every horizontal or vertical line is divided into line seg-
ments whose length is smaller than a threshold value l0.
For each line segment, create a node v ∈ V located in the
middle of the line segment.

2) For two orthogonal connected lines, connect two corre-
sponding nodes with a corner edge e ∈ Ec whose weight
is a constant wc.

3) Create a proximity edge e ∈ Ep between two closely
proximate lines having the same direction, where the
weight of the edge is a function of the separation dis-
tance, the overlapped projection length, and the widths
of the two lines. Since the line-end effect and all necking
effects are special proximity-induced effects, we use the
proximity edges for these effects with different weighting
functions.

Fig. 8(a) shows an example of a layout graph for the layout.
The layout graph has nine nodes representing nine lines, three
corner edges (dashed edges), and ten proximity edges (solid
edges).

One crucial issue is the edge weighting scheme. We pro-
pose both closed-form-formula-based and lookup-table-based

Fig. 9. Weights of the proximate edges.

Fig. 10. Function of the length of the overlapped projection l.

weighting schemes. In the closed-form formula scheme, we
assume that the weights of corner edges are a constant c. As
shown in Fig. 9, the weights of the proximate edges are given by
[(w1 × w2 × f(l))/(d × d)], where w1 and w2 are the widths
of the two features, and d is the distance between the two
features. f(l) is the function of the length of the overlapped
projection l, where f(l) = 100 if l is between −50 and 300 nm
and f(l) = 0 otherwise, as shown in Fig. 10. This means that
the hotspot can occur within a particular distance between
corners of two features. Empirically, the wire bridging happens
near the line end due to OPC correction. Therefore, we use a
simple model in which the proximity effects only exist when
there is small overlap between two lines. In addition, the proxi-
mate effect is intuitively more obvious for larger width features
with a smaller distance. In a lookup-table-based weighting
scheme, the weights of the proximate edges are determined
by the feature widths, spacing, and length of the overlapped
projection. Although the lookup-table-based weighting scheme
is more accurate, it also brings overhead in parameter tuning. In
this paper, we use only a closed-form-formula-based weighting
scheme.

C. Layout Graph Construction for Necking Hotspots

The layout graph G construction for necking hotspots is
shown as follows.

1) Every horizontal or vertical line is assigned a node v ∈ V
located in the middle of the line.

2) For any wide line crossing a thin line, connect two
corresponding nodes with an edge e ∈ E whose weight
is a constant w0.
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Fig. 11. Dual-graph generation.

3) For any two parallel thin lines next to each other, create
an edge e ∈ E whose weight is a constant w1.

4) For any wide line close to a thin line, connect two
corresponding nodes with an edge e ∈ E whose weight
is a constant w2.

5) For any two nodes v1 and v2 that connect to the same node
v, connect v1 and v2 with a zero-weight edge e ∈ E.

The purpose of the last step is to ensure that there is always
a face between two neighboring edges of one node.

D. Dual-Graph Generation

The next step is to convert the layout graph G = (V,Ec ∪
Ep) into its dual graph GD = (V D, ED

c ∪ ED
p ). One fact is

that the dual graph GD exists if G is a planar graph, i.e., there
is no crossing edge. Therefore, as shown in Fig. 11, we need
to delete the edge with a smaller weight for any two crossing
edges in G. In practice, the impact of deleted edges is negligible
since the deleted edge has a smaller weight, which implies
smaller CD variation effects. In addition, the number of deleted
edges is relatively small since the edges are always added
between neighboring or touching features, and it is unusual to
have crossing edges. For our test cases, the number of deleted
nonzero-weight edges is below 0.1%.

The dual graph GD of the layout graph G is constructed
by representing every face f of G with a dual node n whose
weight is equal to the sum of the edge weights of f . An edge
e that belongs to faces f1 and f2 in G is represented by a dual
edge ed = {n1, n2} in GD having the same weight as e.

We then calculate the total edge weight for each node in lines
2–4. A node is selected as a candidate hotspot if its total weight
is greater than a threshold value ε. Please note that we use the
total edge weight of a face (i.e., a dual node in the dual graph)
for bridging hotspots since bridging hotspots are related to two
or more features. For necking hotspots, we just use the total
edge weight of a node since the necking hotspots are located
in one feature (node). Therefore, we do not need to construct
the dual graph for necking hotspots. The time complexity is
dominated by the graph construction, which is O(n).

E. Three-Level Hotspot Detection

The intuition behind our hotspot detection method is that we
view the hotspot as the result of the combination of several
locally related “bad” patterns. With the assumption that the CD
variation effect is cumulative, the effect can be reflected by
the dual-node weight, i.e., the total edge weight of one face.
However, a hotspot may also relate to the lines of several faces.
Therefore, we need to consider dual nodes merging to capture
all possible hotspots. Our proposed iterative dual-node merging

Fig. 12. Iterative dual-node merging heuristic for bridging hotspots.

heuristic is shown in Fig. 12. The heuristic starts with the
layout graph G construction in line 1. We perform edge-level
detection in lines 2–4. We then delete the edge with the smaller
weight for any pair of crossing edges to make G a planar
graph and construct the dual graph GD from G. In lines 7–9,
we perform face-level hotspot detection. Finally, we perform
merged-face-level detection by sorting dual nodes according
to their weights and sequentially merging spatially adjacent
dual nodes (i.e., the dual nodes connected with dual edges).
Intuitively, nodes with a larger weight represent the location
with a higher CD variation. The weight of the merged node
is equal to the sum of dual-node weights minus the dual-edge
weight.2 The purpose of deleting found hotspots in lines 4, 9,
and 15 is to eliminate redundant hotspot detection. Since the
simulation window, defined as 4 × 4 µm for each hotspot, is
large enough to cover any possible neighboring hotspots, it is
not necessary to include any spatially close hotspots in the final
hotspot set. A local-wiring-density-based hotspot filter is used
to reduce the number of falsely detected hotspots. In this filter,
we first find the center of the hotspots, and then, the local wiring
density is the density within the box of 1 µm × 1 µm around the
center. After the hotspot detection, a bounding box that covers
all features in the edge/faces is drawn as the hotspot marker.

The time complexity for graph construction is O(n), where
n is the number of features. The edge-level hotspot detection
(lines 2–4) is O(n). Dual-graph generation time is O(m log m),
where m is the number of edges. The face-level hotspot gener-
ation (lines 7–9) time is O(k), where k is the number of faces.
The merged-face-level hotspot generation (lines 10–15) time is
O(k log k). The density-based filter time is linear with respect
to the number of detected hotspots.

2In current mode, we use a simple model that assumes that the accumulative
effect can be represented by the sum of weights. Although more complicated
models such as weighted sum may lead to better solution quality, there will be
more parameters to be extracted and tuned.
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Fig. 13. Illustration of a test layout used to calibrate our model.

F. Model Parameter Extraction

One key issue with our proposed method is how to determine
the model parameters. We use the following steps to build the
model.

1) Create a test layout, as illustrated in Fig. 13, that includes
a list of isolated regions. Within each region, there is a
pattern with varying line width, line space, and overlap
length.

2) Construct dual graph on the test layout. Each isolated
region is marked as edge, face, or merged face, and the
total weight for each region is calculated.

3) Run golden simulation tools on the test layout to detect
all hotspots.

4) ε0 is chosen as the smallest weight among all of the edge
regions that have one or more hotspots.

5) The values of ε1 and ε2 can be similarly determined. d0 is
the smallest wiring density of all regions having hotspots.

III. EXPERIMENTAL RESULTS

In this section, we empirically test our approach on several
real designs within a standard industry flow using leading-edge
tools. We measure the number of truly detected hotspots and
falsely detected hotspots, relative to area and runtime.

A. Experimental Setup

For the evaluation according to various process conditions,
as shown in Table I, we use one benchmark design in our
experiments, which is the alu128 core with 8700 instances
from Artisan libraries in a 90-nm technology using Synop-
sys Design Compiler v2003.06-SP1 [13]. The chip size is
335 µm × 285 µm. The synthesized netlist is placed with a row
utilization of 70% using Cadence SOC Encounter v3.3 [14].
The netlist of the design has been obtained from OpenCores
[15]. For the validation according to various metal layers as
shown in Table II, we use five benchmark designs from major
chipmakers in 65-nm technology. We have implemented our
proposed iterative dual-node merging heuristic in C++.

On the lithography side, CalibreOPC and CalibreORC from
Mentor Graphics Calibre v9.3 5.11 [16] are used for model-

based OPC and optical rule check (ORC), respectively. For a
90-nm design, simulation is performed with wavelength λ =
193, NA = 0.75, and annular aperture σ = 0.75/0.50. We used
a 0-µm DOF model and 0.35 aerial image threshold for OPC
and then evaluated the OPCed layer under the various values
of DOF and threshold. For five 65-nm designs, simulations are
performed with wavelength λ = 193, NA = 0.85, and annular
aperture σ = 0.96/0.76. OPC and ORC are performed with a
0-µm DOF model and 0.28 aerial image threshold and a 0.1-µm
DOF model and 0.30 aerial image threshold, respectively.

B. Experimental Results

We use the layout sizing technique to mark the hotspots and
compare simulation-based detection with our dual-graph-based
detection (DG). Simulation-based detection makes fragments
on the pattern and decides whether each fragment is a hotspot
based on the magnitude of the edge displacement. As a result,
there may be several marked layers on a line end and a corner of
a pattern. On the other hand, our graph-based detection marks
all patterns affecting hotspot, and hence, it is difficult to com-
pare hotspots of simulation-based with graph-based methods.
We size all layers marked as a hotspot after ORC by 0.5 µm.3

Then, all sized layers are merged into one layer, which includes
hotspots and is used for comparison. Fig. 14 shows an example
of a hotspot marking layer that is the result of merging of two
layers in the ORC result.

We also notice that bridging hotspots depend on the local pat-
tern density. To reduce the number of falsely detected bridging
hotspots, a filter based on local pattern density has been used.
Fig. 15 shows the results of bridging hotspot detection: 1) no
hotspot pattern [Fig. 15(a)] and 2) a hotspot pattern [Fig. 15(b)].
The pattern in a denser region is a bridging hotspot, while the
same pattern in a sparse region is not a bridging hotspot. The
results of the dual-graph-based method match the simulation-
based method. In addition, we show an example of necking
hotspot detection in Fig. 16. The necking hotspot causes a re-
duction in the linewidth due to combined effect of pullback and
corner rounding at wide lines. The dual-graph-based method
can thus detect hotspots induced by pattern density and wide
lines, which cannot be achieved by a rule-based approach.

For a 90-nm design, we evaluated the hotspot detection under
four different process conditions. The number of hotspots can
increase with a higher threshold (exposure dose) and defocus.
The values of ε0, ε1, ε2, and d0 in Fig. 12 are chosen according
to the different conditions shown in Table I. We can see that
only the values of ε2 need to be changed if only exposure time
is changed, while we need to change all parameters if defocus
is changed. Our proposed hotspot detection method achieves
good accuracy (100% of hotspots are detected) with smaller
false detection overhead. Our approach can also track the
hotspot well according to the change of process condition. The
relative area (Rel. area), as shown in Table I, is formulated as
#hotspot ∗ (simulation window)/(chip area), where the simu-
lation window defines 4 × 4 µm. Table I shows that 100%

3The size amount is reasonable when we consider proximity range 0.6 µm at
90-nm technology.
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TABLE I
RESULT OF BRIDGING HOTSPOT DETECTION FOR 90-nm TEST CASES. THE RUNTIME OF OUR METHOD IS THE SUM OF GRAPH GENERATION, HOTSPOT

DETECTION, AND HOTSPOT REPORT. IT IS ACHIEVED THAT 100% HOTSPOTS ARE DETECTED WITH FEW FALSELY DETECTED HOTSPOTS.
THE AVERAGE RUNTIME FOR FOUR TEST CASES IS MORE THAN 287× FASTER COMPARED TO THE ORC TOOL

TABLE II
COMPARISON OF HOTSPOT DETECTION EFFICIENCY OF ORC AND OUR PROPOSED METHOD AT 65-nm NODE. THE VALUES OF ε0, ε1, ε2, AND d0 ARE

0.55, 0.83, 0.91, AND 0.18, RESPECTIVELY. FILTERED ORC + DG REPRESENTS THE TOTAL RUNTIME, WHICH IS THE SUM OF RUNTIME FOR OUR DG
AND ORC RUNTIME FOR THE HOTSPOT AREA FILTERED BY OUR DG. FOR BOTH BRIDGING AND OPEN HOTSPOTS, 100% DETECTION IS ACHIEVED

WITH FEW FALSELY DETECTED HOTSPOTS. THE AVERAGE RUNTIME FOR FIVE TEST CASES IS MORE THAN 496× FASTER COMPARED TO THE

COMMERCIAL TOOL. REL. AREAS OF BRIDGING AND OPEN FAULTS ACHIEVE 0.04% ∼ 14.6% AND 0.002% ∼ 0.23% AREAS, RESPECTIVELY

Fig. 14. Example of a layer marking hotspot patterns.

Fig. 15. Results of hotspot detection: comparison of (a) no hotspot patterns
versus (b) hotspot patterns.

hotspot detection is achieved with a small number of falsely
detected hotspots. The Rel. areas are from 0.5% to 24.2%. The
average runtime (including graph generation, hotspot detection,
and hotspot report) for four test cases is more than 287× faster
compared to the ORC tool.

For five 65-nm designs, we detect 5 bridging and 71 open
hotspots on the average, which perfectly matches the results
of golden commercial tools. The parameter values of ε0, ε1,
ε2, and d0 are 0.55, 0.83, 0.91, and 0.18, respectively. For
all designs, we can use the same parameters for the hotspot
detection if lithography conditions are not changed. For necking

Fig. 16. Example of open hotspot detection.

hotspots, we set the weight of each feature as 0.3 and ε as
0.9. Filtered ORC + DG represents the total runtime, which
is the sum of runtime for our dual-graph-based detection and
ORC runtime for the filtered hotspot area.4 Average runtime
of our method is more than 496× faster compared to the
commercial tool. The average runtime of Filtered ORC + DG
is also more than 224× faster compared to the commercial tool.
The Rel. areas of bridging and open faults are 0.04% ∼ 14.6%
and 0.002% ∼ 0.23% of areas, respectively. We thus save
between 85.4% and 99.9% of areas for hotspot rechecking. The
results are summarized in Table II.

4The commercial tool needs to confirm whether patterns detected by our
DG are truly detected hotspots or falsely detected hotspots. The total runtime
includes our DG and ORC rechecking over the hotspot area filtered by our
detection approach.
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IV. CONCLUSION

With the continued shrinkage of minimum feature sizes,
hotspots, i.e., printed images with large CD variation, present an
important threat for manufacturing yield. Therefore, it becomes
more and more important to quickly and accurately detect the
hotspots in a layout. In the current design flow, there is only one
golden physical verification signoff tool, and there is little point
in trying to replace the golden signoff tool. However, the golden
signoff tool is high in quality but also high in runtime. The goal
of our work is to develop a low-runtime “prefilter” that reduces
the amount of layout area to be analyzed by the golden tool,
without compromising the overall quality of hotspot finding.

In this paper, we first describe a novel fast dual-graph-based
lithographic hotspot detection algorithm without significant
accuracy degradation. For four test cases in 90-nm technology,
our method can detect all bridging hotspots, while the average
runtime improvement is more than 287× faster compared to
the commercial tool. Areas that may be checked again by
commercial golden tools save between 75% and 99.5%. For
five benchmark designs in 65-nm technology, we achieve that
100% bridging and open hotspots are detected with few falsely
detected hotspots. The average runtime of our method is more
than 496× compared to the commercial tool.

Our ongoing work includes the fast hotspot detection engine
in a detailed router to improve the yield. We also plan to
explore the idea of a “corner-density-based filter,” which may
reduce falsely detected hotspots since more vertices within a
proximity radius provides the higher probability of a hotspot.
This would be a complement to the currently proposed graph-
based detection approach.
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