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Abstract—DNA probe arrays, or DNA chips, have emerged
as a core genomic technology that enables cost-effective gene
expression monitoring, mutation detection, single nucleotide poly-
morphism analysis, and other genomic analyses. DNA chips are
manufactured through a highly scalable process called very large-
scale immobilized polymer synthesis (VLSIPS) that combines
photolithographic technologies adapted from the semiconductor
industry with combinatorial chemistry. Commercially available
DNA chips contain more than half a million probes and are
expected to exceed 100 million probes in the next generation.
This paper is one of the first attempts to apply very large scale
integration (VLSI) computer-aided design methods to the physical
design of DNA chips, where the main objective is to minimize total
border cost (i.e., the number of nucleotide mismatches between
adjacent sites).

By exploiting analogies between manufacturing processes for
DNA arrays and for VLSI chips, the authors demonstrate the
potential for transfer of methodologies from the 40-year-old field
of electronic design automation to the newer DNA array design
field. The main contributions of this paper are the following. First,
it proposes several partitioning-based algorithms for DNA probe
placement that improve solution quality by over 4% compared to
best previously known methods. Second, it gives a new design flow
for DNA arrays, which enhances current methodologies by adding
flow awareness to each optimization step and introducing feedback
loops. Third, it proposes solution methods for new formulations
integrating multiple design steps, including probe selection, place-
ment, and embedding. Finally, it introduces new techniques to
experimentally evaluate the scalability and suboptimality of ex-
isting and newly proposed probe placement algorithms. Interest-
ingly, the authors find that DNA placement algorithms appear to
have better suboptimality properties than those recently reported
for VLSI placement algorithms (Chang et al., 2003 and Cong
et al., 2003).
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I. INTRODUCTION

DNA PROBE arrays—DNA arrays or DNA chips for
short—have recently emerged as one of the core genome

technologies. They provide a cost-effective method for ob-
taining fast and accurate results in a wide range of genomic
analyses, including gene expression monitoring, mutation de-
tection, and single nucleotide polymorphism analysis (see [41]
for a survey). The number of applications is growing at an
exponential rate [25], [52], already covering a diversity of
fields ranging from health care to environmental sciences and
law enforcement. The reasons for this rapid acceptance of
DNA arrays are a unique combination of robust manufacturing,
massive parallel measurement capabilities, and highly accurate
and reproducible results.

Today, most DNA arrays are manufactured through a highly
scalable process, referred to as very large-scale immobilized
polymer synthesis (VLSIPS), that combines photolithographic
technologies adapted from the semiconductor industry with
combinatorial chemistry [1], [2], [22]. Similar to very large
scale integration (VLSI) circuit manufacturing, multiple copies
of a DNA array are simultaneously synthesized on a wafer,
typically made out of quartz. To initiate synthesis, linker mole-
cules including a photo-labile protective group are attached to
the wafer, forming a regular two-dimensional (2-D) pattern of
synthesis sites. Probe synthesis then proceeds in successive
steps, with one nucleotide (A,C, T, or G) being synthesized
at a selected set of sites in each step. To select which sites will
receive nucleotides, photolithographic masks are placed over
the wafer. Exposure to light de-protects linker molecules at the
nonmasked sites. Once the desired sites have been activated
in this way, a solution containing a single type of nucleotide
(which bears its own photo-labile protection group to prevent
the probe from growing by more than one nucleotide) is flushed
over the wafer’s surface. Protected nucleotides attach to the
unprotected linkers, initiating the probe synthesis process. In
each subsequent step, a new mask is used to enable selective
de-protection and single-nucleotide synthesis. This cycle is
repeated until all probes have been fully synthesized.

As the number of DNA array designs is expected to ramp
up in the coming years with the ever-growing number of
applications [25], [52], there is an urgent need for high-quality
software tools to assist in the design and manufacturing process.
The biggest challenges to the rapid growth of DNA array
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technology are the drastic increase in design sizes with simulta-
neous decrease of array cell sizes—next-generation designs are
envisioned to have hundreds of millions of cells of submicron
size [2], [41]—and the increased complexity of the design
process, which leads to unpredictability of design quality and
design turnaround time. Surprisingly enough, despite huge
research efforts invested in DNA array applications, very few
works are devoted to computer-aided optimization of DNA
array design and manufacturing. Current design practices are
dominated by ad hoc heuristics incorporated in proprietary
tools with unknown suboptimality. This will soon become a
bottleneck for the next generation of high-density arrays, such
as the ones currently being designed at Perlegen [2].

In this paper, we exploit the similarities between manufac-
turing processes for DNA arrays and VLSI chips and demon-
strate the significant potential for transfer of electronic design
automation methodologies [19], [48] to the newer DNA array
design field. Our main contributions in this paper are the
following.

• A new DNA probe array placement algorithm that recur-
sively places the probes on the chip in a manner similar
to top-down VLSI placers, via a centroid-based strategy,
and a new technique for asynchronous re-embedding of
placed probes within the mask sequence. Experimental
results show that combining the new algorithms results in
an average improvement of 4.0% over best previous flows
(Section III).

• A new design flow for DNA arrays, which enhances
current methodologies by adding flow awareness to
each optimization step and introducing feedback loops
(Section IV). In particular, we propose new solution meth-
ods that integrate probe placement and embedding with
probe selection (Section IV-A).

• A comprehensive experimental study demonstrating sig-
nificant solution quality improvements for the enhanced
methodologies. In particular, we show that 5%–7%
improvement in border length can be achieved over the
highest quality scalable flow previously reported in the
literature [34], [37] by a tighter integration of probe place-
ment and embedding (Section IV-B). Furthermore, we
show that an additional improvement in border length of
up to 15% can be achieved by integrating probe selection
with probe placement and embedding (Section IV-C).

• New techniques for studying and quantifying the perfor-
mance of probe placement and embedding algorithms,
including the development of benchmarks with known
optimal cost and scaling suboptimality experiments sim-
ilar to recent studies in the VLSI computer-aided design
(CAD) field (Section V).

This paper is organized as follows. Section II introduces
the various steps in the DNA array design flow and the prob-
lems addressed in this work. Section III briefly summarizes
previous work on DNA array physical design. Section IV
gives the new partitioning-based probe placement algorithm.
We also analyze the proposed algorithm runtime complexity
and compare its performance against other border minimization
algorithms. Section V presents new enhancements for the DNA

array design flow. These enhancements, inspired by similar
techniques developed in VLSI CAD design, lead to further
reductions in border length. Finally, Section VI quantifies the
suboptimality and optimality of various probe placement and
embedding heuristics.

II. DNA ARRAY DESIGN FLOW

In this section, we introduce the main steps of the design flow
for DNA arrays, noting the similarity to the VLSI design flow
and briefly reviewing previous work. The application of this
flow to the design of a DNA chip for studying gene expression
in the Herpes B virus is described in [8]. We later discuss
(in Section IV) how the current DNA array design flow may
be enhanced by adding flow awareness to each optimization
step and introducing feedback loops between steps—techniques
that have proved very effective in the VLSI design context
[19], [48].

A. Probe Selection

Analogous to logic synthesis in VLSI design, the probe
selection step is responsible for implementing the desired
functionality of the DNA array. Although probe selection is
application dependent, several underlying selection criteria are
common to all designs, regardless of the intended application
[1], [2], [7], [32], [40], [43].

First, in order to meet array functionality, the selected probes
must have low hybridization energy for their intended targets
and high hybridization energy for all other target sequences.
Hence, a standard way of selecting probes is to select a probe
of minimum hybridization energy from the set of probes that
maximizes the minimum number of mismatches with all other
sequences [40]. Second, since selected probes must hybridize
under similar operating conditions, they must have similar
melting temperatures.1 Finally, to simplify array design, probes
are often constrained to be substrings of a predetermined
nucleotide deposition sequence. Typically, there are multiple
probe candidates satisfying these constraints.

B. Deposition Sequence Design

The number of synthesis steps directly affects manufacturing
time and the number of masks in the mask set, and also directly
affects the quantity of defective probes synthesized on the chip.
Therefore, a basic optimization in DNA array design is to
minimize the number of synthesis steps. In the simplest model,
this optimization has been reformulated as the classical shortest
common supersequence (SCS) problem [38], [50]: given a finite
alphabet Σ (for DNA arrays Σ = {A,C, T,G}) and a set P =
{p1, . . . , pt} ⊆ Σn of probes, find a minimum-length string
sopt ∈ Σ∗ such that every string of P is a subsequence of sopt.

1At the melting temperature, two complementary strands of DNA are as
likely to be bound to each other as they are to be separated. A practical method
for estimating the melting temperature is suggested in [32].
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(A string pi is a subsequence of sopt if sopt can be obtained
from pi by inserting zero or more symbols from Σ.) The SCS
problem has been studied for over two decades from the point
of view of computational complexity, probabilistic and worst-
case analysis, approximation algorithms and heuristics, exper-
imental studies, etc. (see, e.g., [9]–[11], [17], [23], [24], [31],
and [44]).

The general SCS problem is NP-hard and cannot be ap-
proximated within a constant factor in polynomial time un-
less P = NP [31]. On the other hand, a |Σ| approximation
is produced by using the trivial periodic supersequence s =
(x1, x2, . . . , x|Σ|)n, where Σ = {x1, x2, . . . , x|Σ|}. Better re-
sults are produced in practice by a simple greedy algorithm
usually referred to as the “majority merge” algorithm [23], or
variations of it that add randomization, lookahead, bidirection-
ality, etc. (see, e.g., [38]).

Current DNA array design methodologies bypass the de-
position design step and use a predefined typically periodic
deposition sequence such as ACTGACTG . . . (see, e.g.,
[38], [50]).

C. Design of Control and Test Structures

DNA array manufacturing defects can be classified as non-
catastrophic, i.e., defects that affect the reliability of hybridiza-
tion results but do not compromise chip functionality when
maintained within reasonable limits, and catastrophic, i.e., de-
fects that render the chip unusable. Noncatastrophic defects are
caused by systematic error sources in the VLSIPS manufactur-
ing process, such as unintended illumination due to diffraction,
internal reflection, and scattering. Their impact on the hy-
bridization reliability of the chip is reduced by using the Perfect
Match/Mismatch strategy [1], [41]. Under this strategy, a so-
called “mismatch probe” is synthesized next to each functional
probe (“perfect match probe”). The sequence of the mismatch
probe is identical to that of the perfect match probe, except for
the middle nucleotide, which is replaced with its Watson–Crick
complement. To reduce the effect of noncatastrophic manufac-
turing defects and of nonspecific hybridization, under the stan-
dard data analysis protocol the hybridization signal is obtained
by subtracting the fluorescence intensity of the mismatch probe
from that of the perfect match probe.

Catastrophic manufacturing defects affect a large fraction of
the probes on the chip and are typically caused by missing, out-
of-order, or incomplete synthesis steps, wrong or misaligned
masks, etc. These defects can be detected using test structures
similar to built-in self-test (BIST) structures in VLSI design.
A common approach is to synthesize a small set of test probes
(sometimes referred to as fidelity probes [29]) on the chip and
add their fluorescently labeled complements to the genomic
sample that is hybridized to the chip. Multiple copies of each fi-
delity probe are deliberately manufactured at different locations
on the chip using different sequences of synthesis steps. Lack
of hybridization at some of the locations where fidelity probes
are synthesized can be used not only to detect catastrophic
manufacturing defects but also to identify the erroneous manu-
facturing steps. Further results on test structure design for DNA
chips include those in [6], [14], and [46].

D. Physical Design

The physical design for DNA arrays is equivalent to the
physical design phase in VLSI design. It consists of two steps:
probe placement, which is responsible for mapping selected
probes onto locations on the chip, and probe embedding,
which embeds each probe into the deposition sequence (i.e.,
determines synthesis steps for all nucleotides in the probe).
The result of probe placement and embedding is the complete
description of the reticles used to manufacture the array.

Under ideal manufacturing conditions, the functionality of a
DNA array is not affected by the placement of the probes on the
chip or by the probe synthesis schedules. In practice, since the
manufacturing process is prone to errors, probe locations and
synthesis schedules affect to a great degree the hybridization
sensitivity and ultimately the functionality of the DNA array.
There are several types of synthesis errors that take place during
array manufacturing. First, a probe may not loose its protective
group when exposed to light, or the protective group may be
lost but the nucleotide to be synthesized may not attach to
the probe. Second, due to diffraction, internal reflection, and
scattering, unintended illumination may occur at sites that are
geometrically close to intentionally exposed regions. The first
type of manufacturing errors can be effectively controlled by
careful choice of manufacturing process parameters, e.g., by
proper control of exposure times and by insertion of correction
steps that irrevocably end synthesis of all probes that are unpro-
tected at the end of a synthesis step [1]. Errors of the second
type result in synthesis of unforeseen sequences in masked
sites and can compromise interpretation of hybridization inten-
sities. To reduce such uncertainty, one can exploit the freedom
available in assigning probes to array sites during placement
and in choosing among multiple probe embeddings, when
available. The objective of probe placement and embedding
algorithms is therefore to minimize the sum of border lengths
in all masks, which directly corresponds to the magnitude of
the unintended illumination effects.2 Reducing these effects
improves the signal to noise ratio in image analysis after hy-
bridization and thus permits smaller array sites or more probes
per array [30].3

Let M1,M2, . . . ,MK denote the sequence of masks used
in the synthesis of an array, and let ei ∈ {A,C, T,G} be the
nucleotide synthesized after exposing maskMi. Every probe in
the array must be a subsequence of the nucleotide deposition
sequence S = e1, e2, . . . , eK . In case a probe corresponds to
multiple subsequences of S, one such subsequence, or “em-
bedding” of the probe into S, must be chosen as the syn-
thesis schedule for the probe. Clearly, the geometry of the
masks is uniquely determined by the placement of the probes
on the array and the particular synthesis schedule used for
each probe.

2Compared to VLSI physical design, where multiple design metrics (in-
cluding area, wire length, timing, power consumption, etc.) must be optimized
simultaneously, DNA array physical design is simpler in that it must optimize
a single objective, namely, total border length.

3Unfortunately, the lack of publicly available information about DNA array
manufacturing yield makes it impossible to assign a concrete economic value
to decreases in total border length.
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Fig. 1. Three-dimensional probe placement with four masks and S =
ACTG. Total border length is 24 (seven on the A mask, four on the C mask,
six on the T mask, and seven on the G mask).

Formally, the border minimization problem (BMP) is equiv-
alent to finding a three-dimensional (3-D) placement of the
probes [33]: two dimensions represent the site array, and the
third dimension represents the nucleotide deposition sequence
S (see Fig. 1). Each layer in the third dimension corresponds
to a mask that induces deposition of a particular nucleotide
(A, C,G, or T ); a probe is embedded within a “column” of this
3-D placement representation. Border length of a given mask
is computed as the number of conflicts, i.e., pairs of adjacent
exposed and masked sites in the mask. Given two adjacent
embedded probes p and p′, the conflict distance d(p, p′) is
the number of conflicts between the corresponding columns.
The total border length of a 3-D placement is the sum of
conflict distances between adjacent probes, and the BMP seeks
to minimize this quantity.

A special case is that of a synchronous synthesis regime, in
which the nucleotide deposition sequence S is periodic, and
the kth period (ACGT ) of S is used to synthesize a single
(the kth) additional nucleotide in each probe. Since in this case
the embedding of a probe is predefined, the problem reduces
to finding a 2-D placement of the probes. The border length
contribution from two probes p and p′ placed next to each
other (in the synchronous synthesis regime) is simply twice
the Hamming distance between them, i.e., twice the number of
positions in which they differ.

Previous Work on Border Length Minimization: The BMP
was first considered for uniform arrays (i.e., arrays contain-
ing all possible probes of a given length) by Feldman and

Pevzner [20], who proposed an optimal solution based on
2-D Gray codes. Hannenhalli et al. [26] gave heuristics for
the special case of synchronous synthesis. Their method is
to order the probes in a traveling salesman problem (TSP)
tour that heuristically minimizes the total Hamming distance
between neighboring probes. The tour is then threaded into the
2-D array of sites using a technique similar to the one pre-
viously used in VLSI design [39]. For the same synchronous
context, Kahng et al. [33] suggested an epitaxial, or “seeded
crystal growth,” placement heuristic similar to heuristics ex-
plored in the VLSI circuit placement literature in [42] and [47].
Very recently, Kahng et al. [34], [37] proposed methods with
near-linear runtime combining simple ordering-based heuristics
for initial placement, such as lexicographic sorting followed
by threading, with heuristics for placement improvement, such
optimal reassignment of an “independent” set of probes [49]
chosen from a sliding window [18], or a row-based implemen-
tation of the epitaxial algorithm that speeds-up the computation
by considering only a limited number of candidates when
filling each array site.4 Previous approaches can be summarized
as follows.

1) TSP + Threading [26]: This algorithm computes a TSP
tour in the complete graph with the probes as vertices and
edge costs given by pair-wise Hamming distances. The
tour is then threaded into the 2-D array of sites using the
1-threading method described in [26].

2) Row-Epitaxial [34], [37]: An implementation of the epi-
taxial algorithm in [33], where the computation is sped up
by a) filling array sites in a predefined order (row by row),
and b) considering only a limited number of candidate
probes when filling each array site. Unless otherwise
specified, the number of candidates is bounded by 20 000
in our experiments.

3) Sliding-Window Matching (SWM) [34], [37]: After an
initial placement is obtained by 1-threading of the probes
in lexicographic order, this algorithm iteratively improves
the placement by selecting an “independent” set of probes
from a sliding window and then optimally replacing them
using a minimum-weight perfect matching algorithm
(cf. “row ironing” [12]).

The general BMP, which allows arbitrary or asynchro-
nous probe embeddings [see Fig. 2(c)], was introduced by
Kahng et al. [33]. They proposed a dynamic programming
algorithm that embeds a given probe optimally with respect
to fixed embeddings of the probe’s neighbors. This algorithm
is used as a building block for designing several algorithms
that improve a placement by re-embedding probes but without
replacing them. An important aspect of probe re-embedding is
the probe processing order of re-embedding, i.e., the order that
specifies when a probe gets re-embedded. Each of the following
two algorithms uses the dynamic programming algorithm in
[33] for optimal re-embedding of a probe with respect to the

4The work in [34] and [37] also extends probe placement algorithms to
handle practical concerns such as preplaced control probes, presence of poly-
morphic probes, unintended illumination between nonadjacent array sites, and
position-dependent border conflict weights.
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Fig. 2. (a) Periodic deposition sequence. (b) Synchronous embedding of the
probes AGTA and GTGA gives six border conflicts (indicated by arrows).
(c) “As soon as possible” asynchronous embedding of the probes AGTA and
GTGA gives only two border conflicts.

embeddings of its neighbors. They only differ in the processing
order of probe re-embedding.

1) Batched greedy [33]: This algorithm optimally re-
embeds a probe that gives the largest decrease in conflict
cost until no further decreases are possible. To improve
the runtime, the greedy choices are made in phases, in a
batched manner: in each phase, the gains for all probes are
computed and then a maximal set of nonadjacent probes
is selected for re-embedding by traversing the probes in
nonincreasing order of gain.

2) Chessboard [33]: In this method, the 2-D placement grid
is divided into “black” and “white” locations as in the
chessboard (or checkerboard) grid of Akers [3]. The sites
within each set represent a maximum independent set
of locations. The Chessboard algorithm alternates be-
tween optimal re-embedding of probes placed in “black”
(respectively “white”) sites with respect to their neigh-
bors (all of which are at opposite-color locations).

III. PARTITION BASED PROBE PLACEMENT

In this section, we propose a probe placement heuristic
inspired from min-cut partitioning-based placement algorithms
for VLSI circuits. Recursive partitioning has been the basis of
numerous successful VLSI placement algorithms [5], [12], [51]
since it produces placements with acceptable wire length within
practical runtimes. The main goal of partitioning in VLSI is
to divide a set of cells into two or four sets with minimum
edge or hyperedge cut between these sets. The min-cut goal is
typically achieved through the use of the Fiduccia–Mattheyses
procedure [21], often in a multilevel framework [12]. Unfor-
tunately, direct transfer of the recursive min-cut placement
paradigm from VLSI to VLSIPS is blocked by the fact that
the possible interactions between probes must be modeled by a
complete graph and, furthermore, the border cost between two

neighboring placed partitions can only be determined after the
detailed placement step that finalizes probe placements at the
border between the two partitions. In this section, we describe
a new centroid-based quadrisection method that applies the
recursive partitioning paradigm to DNA probe placement.

Assume that at a certain depth of the recursive partitioning
procedure a probe set R is to be quadrisectioned into four
partitions R1, R2, R3, and R4. We would like to iteratively
assign each probe p ∈ R to some partition Ri such that a
minimum number of conflicts will result.5 To approximately
achieve this goal within practical runtimes, we propose to base
the assignment on the number of conflicts between p and some
representative, or centroid, probe Ci ∈ Ri. In our approach, for
every partition R we select four centroids, one for each of the
four new (sub)partitions. To achieve balanced partitions, we
heuristically find four probes in R that have a maximum total
distance among themselves, then use these as the centroids.
This procedure, described in Fig. 3, is reminiscent of the k
center approach to clustering studied by Alpert and Kahng [4]
and of methods used in large-scale document classification [16].

After a given maximum partitioning depth L is reached, a
final detailed placement step is needed to place each partition’s
probes within the partition’s corresponding region on the chip.
For this step, we use the Row-Epitaxial algorithm in [34]
and [37], which for completeness of exposition is replicated
in Fig. 4.

The complete partitioning-based placement algorithm for
DNA arrays is given in Fig. 5. At a high level, our method
resembles global-detailed approaches in the VLSI CAD liter-
ature [28], [45]. The algorithm recursively quadrisects every
partition at a given level, assigning the probes so as to minimize
distance to the centroids of subpartitions.6 In the innermost
of the three nested for loops of Fig. 5, we apply a multistart
heuristic, trying r different random probes as seedC0 and using
the result that minimizes the total distance to the centroids.
Once the maximum level L of recursive partitioning is attained,
detailed placement is executed via the Row-Epitaxial algorithm.
Additional details and commentary are as follows.

• Within the innermost of the three nested for loops, our
implementation actually performs, and benefits from, a
dynamic update of the partition centroid whenever a probe
is added into a given partition. Intuitively, this can lead to
“elongated” rather than spheric clusters, but can also cor-
rect for unfortunate choices of the initial four centroids.7

• The straightforward implementation of Reptx()-based
detailed placement within a given partition will treat the

5Observe that VLSI partitioning seeks to maximize the number of nets
contained within partitions (equivalently, minimize cut nets) as it assigns cells
to partitions. In contrast, DNA partitioning seeks to minimize the expected
number of conflicts within partitions as it assigns cells to partitions, since this
leads to overall conflict reduction.

6The variables i and j index the row and column of a given partition within
the current level’s array of partitions.

7Details of the dynamic centroid update, reflecting an efficient implemen-
tation, are as follows. The “pseudo-nucleotide” at each position t (e.g., t =
1, . . . , 25 for probes of length 25) of the centroid Ci can be represented as
Ci[t] =

⋃
s
(Ns,t/Ni)s, where Ni is the current number of probes in the

partition Ri, and Ns,t is the number of probes in the partition having the
nucleotide s ∈ {A, T, C, G} in tth position. The Hamming distance between
a probe p and Ci is d(p, Ci) = (1/Ni)

∑
t

∑
s �=p[t]

Ns,t.
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Fig. 3. SelectCentroid() procedure for selecting the centroid probes of subpartitions.

Fig. 4. Reptx() procedure for placing a partition’s probe set within the rectangular array of sites corresponding to the partition. As explained in the accompanying
text, our implementation maintains the size of Q constant at |Q| = 20 000 through a borrowing heuristic.

Fig. 5. Partitioning-based DNA probe placement heuristic.

last locations within a region “unfairly,” e.g., only one
candidate probe will remain available for placing in a
region’s last location. To ensure a uniform number of
candidate probes for every position, our implementation
permits “borrowing” probes from the next region in the

Reptx() procedure. For every position of a region other
than the last, we select the best probe from among at
most m probes, where m is a predetermined constant,
in the current region and the next. (Except as noted, we
set m to 20 000 for all of our experiments.) Our Reptx()
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TABLE I
TOTAL BORDER COST, NORMALIZED BORDER COST, GAP FROM THE SYNCHRONOUS PLACEMENT LOWER-BOUND IN [33], AND CPU SECONDS

(AVERAGES OVER TEN RANDOM INSTANCES) FOR THE TSP HEURISTIC OF [26] (TSP + 1Thr), THE ROW-EPITAXIAL (ROW-EPITAXIAL),
AND SWM HEURISTICS IN [34], AND THE SIMULATED ANNEALING ALGORITHM (SA)

TABLE II
TOTAL/NORMALIZED BORDER COST AND CPU SECONDS (AVERAGES OVER TEN RANDOM INSTANCES) FOR THE RECURSIVE

PARTITIONING ALGORITHM WITH RECURSION DEPTH L = 2 AND NUMBER OF RESTARTS r VARYING FROM 1 TO 1000

implementation is also “border aware,” that is, it takes
into account Hamming distances to the placed probes in
adjacent regions.

A. Empirical Evaluation of Partitioning-Based
Probe Placement

In this section, we compare our partitioning-based probe
placement heuristic with the TSP 1-threading heuristic in [26]
(TSP + 1Thr), the Row-Epitaxial and SWM heuristics in [34],
and a simulated annealing algorithm (SA).8 We used an upper
bound of 20 000 on the number of candidate probes in Row-
Epitaxial and 6 × 6 windows with overlap 3 for SWM. The SA
algorithm starts by sorting the probes and threading them onto
the chip. It then slides a square window over the chip in the
same way as the SWM algorithm. For every window position,
SA picks two random probes in the window and swaps them
with probability 1 if the swap improves the total border cost. If
the swap increases border cost by δ, the swap is performed only
with probability e−δ/T , where T is the current temperature.
After experimenting with various SA parameters, we chose to
run SA with 6 × 6 windows with overlap of 3, with 63 iterations
performed for every window position.

Table I gives the results produced by TSP + 1Thr, Row-
Epitaxial, SWM, and SA heuristics on random instances with
chip sizes between 100 and 500 and probe length equal to
25. Among the four heuristics, Row-Epitaxial is the algorithm
with the highest solution quality (i.e., lowest border cost) while

8All experiments reported in this paper were performed on test cases ob-
tained by generating each probe candidate uniformly at random. The probe
length was set to 25, which is the typical value for commercial arrays [1].
Unless otherwise noted, we used the canonical periodic deposition sequence
(ACTG)25. All reported runtimes are for a 2.4-GHz Intel Xeon server with
2 GB of RAM running under Linux.

SWM is the fastest, offering competitive solution quality with
much less runtime. SA takes the largest amount of time and
also gives the worse solution quality. Although it may be
possible to improve SA convergence speed by extensive fine
tuning of its various parameters, we expect that SA results
will always remain dominated by those of the other heuristics.
Additional insight into the relative quality of various heuristics
can be gained by considering the border cost normalized by
the number of pairs of adjacent array sites, i.e., the average
number of conflicts per pair of adjacent sites. Interestingly, for
all algorithms except SA, this number decreases with increasing
chip size. This can be attributed to the greater freedom of choice
available when placing a higher number of probes, which all
algorithms except SA seem able to exploit.

Tables II and III give results obtained by our new recursive
partitioning method (RPART) with recursion depth L = 2 and
number of restarts r varying between 1 and 1000. The results
in Table II show that increasing the number of restarts gives a
small improvement in border cost at the expense of increased
runtime. Table III presents results obtained by RPART when
run with r = 10 for recursion depth L varying between 1 and 3.
Comparing to the results produced by Row-Epitaxial, the best
heuristic from Table I, we find that recursive partitioning-based
placement achieves on the average similar or better results with
improved runtime.

We next discuss in more detail the runtime of RPART, which
is somehow unusual for a recursive partitioning algorithm in
that it may get smaller with an increase in recursion depth.
Let the number of probes in a chip be n. The two main
contributors to RPART runtime are the recursive partitioning
phase, whereby the probes are divided into smaller and smaller
partition regions, and the detailed placement step, which is
achieved by running Row-Epitaxial within each partition
region (with borrowing from next region when needed). Since
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TABLE III
TOTAL BORDER COST, NORMALIZED BORDER COST, GAP FROM THE SYNCHRONOUS PLACEMENT LOWER-BOUND IN [33], AND CPU SECONDS

(AVERAGES OVER TEN RANDOM INSTANCES) FOR THE RECURSIVE PARTITIONING ALGORITHM WITH RECURSION DEPTH VARYING

BETWEEN ONE AND THREE

TABLE IV
TOTAL BORDER COST, NORMALIZED BORDER COST, GAP FROM THE ASYNCHRONOUS POSTPLACEMENT LOWER BOUND IN [33], AND CPU SECONDS

(AVERAGES OVER TEN RANDOM INSTANCES) FOR THE BATCHED GREEDY, CHESSBOARD, AND SEQUENTIAL IN-PLACE

RE-EMBEDDING ALGORITHMS

executing the procedure SelectCentroid() and distributing all
the probes in a partition region to its four subregions take the
time proportional to the number of probes in a region, the
total runtime for each recursion depth is O(n) and the overall
runtime for the recursive partitioning phase is O(Ln). Clearly,
this component of the runtime increases linearly with recursion
depth. On the other hand, in our implementation of RPART, the
Row-Epitaxial algorithm used in detailed placement considers
at most min{m, 2n/4L} candidate probes for placement at any
given position (m = 20 000 is a predetermined upper bound
that we impose based on the empirical results in [34] and
2n/4L is a bound that follows from the fact that we never
consider candidates from more than two consecutive lowest-
level partition regions). Thus, the total time needed by the
detailed placement step is O(nmin{m, 2n/4L}), which will
decrease with increasing L once L exceeds log4(2n/m). This
explains why the overall RPART runtime in Table III decreases
with increasing L, and also explains why solution quality may
slightly degrade with increasing L due to the reduced number
of probe candidates considered by Row-Epitaxial for each
chip location.

B. Comparison of Complete Probe Placement and
Embedding Flows

In addition to the partitioning-based placement algorithm, we
propose a new algorithm that performs optimal re-embedding
of probes in a sequential row-by-row fashion. We believe
that a main shortcoming of Batched Greedy and Chessboard
(described in Section II-D) is that these methods always re-
embed an independent set of sites on the DNA chip. Dropping
this requirement permits faster propagation of the effects of any
re-embedding decision.

Table IV compares the new probe embedding algorithm with
Batched Greedy and Chessboard on random instances with chip
sizes between 100 and 500 and probe length 25 for which the
2-D placements were obtained using TSP + 1-threading. All
algorithms are stopped when the improvement cost achieved
in one iteration over the whole chip drops below 0.1% of the
total cost. The results show that re-embedding of the probes in
a sequential row-by-row order leads to reduced border cost with
similar runtime compared to previous methods.

In another series of experiments, we ran complete placement
and embedding flows obtained by combining each of the five
2-D placement algorithms evaluated in Section III-A with the
sequential in-place re-embedding algorithm. Results are given
in Tables V and VI. Again, SA and TSP + 1Thr are dominated
by both REPTX and SWM in both conflict cost and running
time. REPTX produces less conflicts than SWM, but SWM is
considerably faster. Recursive partitioning consistently outper-
forms the best previous flow (Row-Epitaxial + sequential re-
embedding)—by an average of 4.0%—with similar or lower
runtime.

IV. FLOW ENHANCEMENTS

The current DNA array design flow can be significantly
improved by introducing flow-aware problem formulations,
adding feedback loops between optimization steps, and/or in-
tegrating multiple optimizations. These enhancements, which
are represented schematically in Fig. 6 by the dashed arcs, are
similar to flow enhancements that have proved very effective in
the VLSI design context [19], [48].

In this paper, we concentrate on two such enhancements,
both aiming at further reductions in total border length. The first
enhancement is a tighter integration between probe placement
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TABLE V
TOTAL BORDER COST, NORMALIZED BORDER COST, GAP FROM THE ASYNCHRONOUS PREPLACEMENT LOWER BOUND IN [33], AND CPU SECONDS

(AVERAGES OVER TEN RANDOM INSTANCES) FOR THE TSP HEURISTIC OF [26] (TSP + 1Thr), THE ROW-EPITAXIAL (ROW-EPITAXIAL),
AND SWM HEURISTICS OF [34], AND THE SIMULATED ANNEALING ALGORITHM (SA)

TABLE VI
TOTAL BORDER COST, NORMALIZED BORDER COST, GAP FROM THE ASYNCHRONOUS PREPLACEMENT LOWER-BOUND IN [33], AND CPU SECONDS

(AVERAGES OVER TEN RANDOM INSTANCES) FOR THE RECURSIVE PARTITIONING ALGORITHM FOLLOWED BY SEQUENTIAL IN-PLACE RE-EMBEDDING

Fig. 6. Typical DNA array design flow with solid arcs and proposed enhancements represented by dashed arcs.

and embedding; this enhancement is discussed in Section IV-B.
The second enhancement is the integration between physical
design and probe selection, which is achieved by passing the
entire pools of candidates available for each probe to the phys-
ical design step. As shown in Section IV-C, this enhancement
enables significant improvements (up to 15%) in border length
compared to the best previous flows [34], [37].

Other feedback loops and integrated optimizations are possi-
ble but are not explored in this paper. Faster and more targeted
probe selection may be achievable by adding a feedback loop
to provide updated selection rules and parameters to the probe
selection step. Integrating deposition sequence design with
probe selection may lead to further reductions in the number
of masks by exploiting the freedom available in choosing the
candidates for each probe.

A. Problem Formulation for Integrated Probe Selection
and Physical Design

To integrate probe selection and physical design, we pass
the entire pools of candidates for each probe to the physical
design step (Fig. 6). As discussed in Section II-A, all probe
candidates are selected so that they have similar hybridization
properties (e.g., melting temperatures) and can thus be used
interchangeably. The availability of multiple probe candidates
gives additional freedom during placement and embedding, and

may potentially reduce final border cost. DNA array physical
design with probe pools is captured by the following problem
formulation.9

Integrated DNA Array Design Problem

Given:

• pools of candidates Pi = {pij |j = 1, . . . , li} for each
probe i = 1, . . . , N2, where N ×N is the size of array;

• number of masksK.

Find:

1) probes pij ∈ Pi for every i = 1, . . . , N2;
2) a deposition sequence S = s1, . . . , sK that is a superse-

quence of all selected probes pij ;
3) a placement of the selected probes pij into an N ×N

array;
4) an embedding of the selected probes pij into the deposi-

tion sequence S.

Such that:

• total number of conflicts between adjacent embedded
probes is minimized.

9This formulation also integrates deposition sequence design. For simplicity,
we leave out design of control and test sequences.
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Although the flow in Fig. 6 suggests a particular order
for making the choices 1–4, the integrated formulation above
allows interleaving these decisions. The following two algo-
rithms capture key optimizations in the integrated formulations
and are used as core building blocks in the solution methods
evaluated in Sections IV-B and IV-C. They are “probe pool”
versions of the Row-Epitaxial and re-embedding algorithms
proposed in [34] and [37], and degenerate to the latter ones in
the case when each probe pool contains a single candidate.

• The Pool Row-Epitaxial algorithm (Pool-REPTX) is the
extension to probe pools of the REPTX probe placement
algorithm in [34] and [37]. Pool-REPTX performs choices
1 and 3 for given choices 2 and 4, i.e., it simultaneously
chooses already embedded candidates from the respective
pools and places them in the N ×N array. The input of
Pool-REPTX consists of probe candidates pij embedded
in the deposition sequence S. Each such embedding is
written as a sequence of lengthK = |S| over the alphabet
{A,C, T,G,Blank}, where A, C, T , and G denote em-
bedded nucleotides and Blanks denote positions of S left
unused by the embedded candidate probe. Pool-REPTX
consists of the following steps: 1) lexicographic sorting
of the pools (based on the first candidate, when more
than one candidate is available in the pool); 2) threading
the sorted pools in row-by-row order into the N ×N
array; 3) finding, in row-by-row order, the best probe
candidate—i.e., the candidate having the minimum num-
ber of conflicts with already placed neighbors—among
the not yet placed pools within a prescribed lookahead
region.

• The sequential in-place pool re-embedding algorithm is
the extension to probe pools of the sequential probe re-
embedding algorithm given in Section III-B. It comple-
ments Pool-REPTX by iteratively modifying candidate
selections within each pool and their embedding (choices
2 and 4) as follows. In row-by-row order, for each position
in the N ×N array, and for each candidate pij from the
pool of the respective probe, an embedding having a min-
imum number of conflicts with the existing embeddings
of the neighbors is computed, and then the best embedded
candidate replaces the current one.

B. Improved Integration of Probe Placement and Embedding

As noted in [33], allowing arbitrary, or asynchronous, em-
beddings leads to further reductions in border length compared
to synchronous embedding [e.g., contrast Fig. 2(b) and (c)].
An interesting question is finding the best order in which
the placement and embedding degrees of freedom should be
exploited. Previous methods [33], [34], [37] can be divided into
two classes: 1) methods that perform placement and embedding
decisions simultaneously, and 2) methods that exploit the two
degrees of freedom one at a time. Currently, best methods in
the second class (e.g., synchronous Row-Epitaxial followed by
chessboard/sequential in-place probe re-embedding [34], [37])
outperform the methods in the first class (e.g., the asynchronous
epitaxial algorithm in [33]) in terms of both runtime and
solution quality.

All known methods in the second class perform synchronous
probe placement followed by iterated in-place re-embedding
of the probes (with locked probe locations). More specifically,
these methods perform the following three steps:

1) synchronous embedding of the probes;
2) probe placement with costs given by the Hamming dis-

tance between synchronous probe embeddings;
3) iterated sequential probe re-embedding.

We note that significant reductions in border cost are possible
by performing the placement based on asynchronous, rather
than synchronous, embeddings of the probes, and therefore
modify the above scheme as follows:

1) asynchronous embedding of the probes;
2) placement with costs given by the Hamming distance

between fixed asynchronous probe embeddings;
3) iterated sequential probe re-embedding.

Since solution spaces for placement and embedding are still
searched independently of one another and the computation
of an initial asynchronous embedding does not add signifi-
cant overhead, the proposed change is unlikely to adversely
affect the runtime. However, because placement optimization
is now applied to embeddings more similar to those sought in
the final optimization stage, there is significant potential for
improvement.

In the current embodiment of the modified scheme, we
implement the first step by using for each probe the “as soon
as possible,” or ASAP, embedding [see Fig. 2(c)]. Under ASAP
embedding, the nucleotides in a probe are embedded sequen-
tially by always using the earliest available synthesis step. The
intuition behind using ASAP embeddings is that, since ASAP
embeddings are more densely packed, the likelihood that two
neighboring probes will both use a synthesis step increases
compared to synchronous embeddings. This translates directly
into reductions in the number of border conflicts.

Indeed, consider two random probes p and p′ picked
from uniform distribution. When we perform synchronous
embedding, the length of the deposition sequence is 4 × 25 =
100. The probability that any one of the 100 synthesis steps
is used by one of the random probes and not the other is 2 ×
(1/4) × (3/4), and therefore the expected number of conflicts
is 100 × 2 × (1/4) × (3/4) = 37.5. Assume now that the two
probes are embedded using the ASAP algorithm. Notice that for
every 0 ≤ i ≤ 3 the ASAP algorithm will leave a gap of length
i with probability 1/4 between any two consecutive letters of a
random probe. This results in an average gap length of 1.5 and
an expected number of synthesis steps of 25 + 24 ∗ 1.5 = 61.
Assuming that p and p′ are both embedded within 61 steps, the
number of conflicts between their ASAP embeddings is then
approximately 61 × 2 × (25/61) × ((61 − 25)/61) ≈ 29.5.
Although in practice many probes require more than 61 syn-
thesis steps when embedded using the ASAP algorithm, they
still require much less than 100 steps and result in significantly
fewer conflicts compared to synchronous embedding.

To empirically evaluate the advantages of ASAP embed-
ding, we compared test cases ranging in size from 100 ×
100 to 500 × 500 the “champion” method in [33], [34],
and [37], which uses synchronous initial embeddings for the
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TABLE VII
TOTAL BORDER COST (AVERAGES OVER TEN RANDOM INSTANCES) FOR SYNCHRONOUS AND ASAP INITIAL PROBE EMBEDDING

FOLLOWED BY ROW-EPITAXIAL AND ITERATED SEQUENTIAL IN-PLACE PROBE RE-EMBEDDING

TABLE VIII
CPU SECONDS (AVERAGES OVER TEN RANDOM INSTANCES) FOR SYNCHRONOUS AND ASAP INITIAL PROBE EMBEDDING

FOLLOWED BY ROW-EPITAXIAL AND ITERATED SEQUENTIAL IN-PLACE PROBE RE-EMBEDDING

probes, with the corresponding method based on ASAP initial
probe embeddings. For both methods, the second and third
steps are implemented using REPTX and sequential in-place
probe re-embedding algorithms in [34] and [37] (see, also,
Section IV-A).

Tables VII and VIII give the border length and CPU time
(in seconds) for the two methods. Each number in these tables
represents the average of over ten test cases of the given size.
Surprisingly, the simple switch from synchronous to ASAP
initial embedding results in 5%–7% reduction in total border
length. Furthermore, the runtimes for the two methods are
comparable. In fact, sequential re-embedding becomes faster in
the ASAP-based method compared to the synchronous-based
one since fewer iterations are needed to converge to a locally
optimal solution (the number of iterations drops from nine to
three on the average).

C. Integrated Probe Selection and Physical Design

We explored two methods for exploiting the availability of
multiple probe candidates during placement and embedding.
The first method uses the Row-Epitaxial and sequential in-place
probe re-embedding algorithms described in Section IV-A.
This method is an instance of integration between multiple
flow steps since probe selection decisions are made during
probe placement and can be further changed during probe re-
embedding. The detailed steps are as follows:

• perform ASAP embedding of all probe candidates;
• run the Pool-REPTX or a pool version of the recursive-

partitioning placement algorithm in Section III using bor-
der costs given by the Hamming distance between the
ASAP embeddings;

• run the sequential in-place pool re-embedding algorithm.

The second method preserves the separation between candi-
date selection and placement + embedding. However, we mod-
ify probe selection to make it flow aware, i.e., to make its results
more suitable for the subsequent placement and embedding op-
timizations. Building on the observation that shorter probe em-
beddings lead to improved border length, we choose from the
available candidates the one that embeds in the least number of
steps of the standard periodic deposition sequence using ASAP:

• perform ASAP embedding of all probe candidates;
• select from each pool of candidates the one that embeds

the least number of steps using ASAP;
• run the REPTX or recursive-partitioning placement al-

gorithm using only the selected candidates and border
costs given by the Hamming distance between ASAP
embeddings;

• run the iterated sequential in-place probe re-embedding
algorithm, again using only selected candidates.

Table IX gives the border length and the runtime (in CPU
seconds) for the two methods of combining probe placement
and embedding with probe selection (each number represents
the average of over ten test cases of the given size). We report
results for both the Pool-REPTX placement algorithm and
the pool version of the recursive partitioning using L = 3.
We varied the number of candidates available for each probe
between 1 and 16; probe candidates were generated uniformly
at random.

As expected, for each method and chip size, the improvement
in solution quality grows monotonically with the number of
available candidates. The improvement is significant (up to
15% when running the first method on a 100 × 100 chip with 16
candidates per probe) but varies nonuniformly with the method
and chip size. For small chips, the first method gives better
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TABLE IX
TOTAL BORDER COST AND RUNTIME (AVERAGES OVER TEN RANDOM INSTANCES) FOR THE TWO METHODS OF COMBINING PROBE PLACEMENT

AND EMBEDDING WITH PROBE SELECTION. IMPROVEMENT (IN PERCENT) IS RELATIVE TO THE SINGLE-CANDIDATE VERSION OF THE SAME

CODE. WE REPORT RESULTS FOR BOTH THE REPTX ALGORITHM AND THE RECURSIVE-PARTITIONING ALGORITHM WITH L = 3

Fig. 7. Two-dimensional Gray code placement.

solution quality than the second. For chips of size 200 × 200,
the two methods give comparable solution quality, while for
chips with size 300 × 300 or larger the second method is better
(by over 5% for 500 × 500 chips with eight probe candidates).
The second method is faster than the first for all chip sizes. The
speedup factor varies between 5× and 40× when the number
of candidates varies between 2 and 16. Interestingly, the
runtime of the second method is slightly improving with the
number of candidates, the reason being that the number of it-
erations of sequential re-embedding decreases when the length
of the ASAP embedding of the selected candidates decreases.

V. QUANTIFIED SUBOPTIMALITY OF PLACEMENT

AND EMBEDDING ALGORITHMS

As noted in the Introduction, next-generation DNA probe ar-
rays will contain up to 100 million probes and therefore present
instance complexities for placement that will far outstrip those
of VLSI designs. Thus, it is of interest to study not only
runtime scaling but also scaling of suboptimality for available
heuristics. To this end, we apply the experimental framework
for quantifying suboptimality of placement heuristics that was
originated by Boese and by Hagen et al. [27], and recently
extended by Chang et al. [13] and Cong et al. [15]. In this
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Fig. 8. Scaling construction used in the suboptimality experiment.

framework, there are two basic types of instance scaling that
we can apply.

• Instances with known optimum solution. For hypergraph
placement, instances with known minimum wire length
solutions may be constructed by “overlaying” signal nets
within an already placed cell layout such that each signal
net has probably minimum length. This technique, pro-
posed by Boese and further explored by Chang et al. [13],
induces a netlist topology with prescribed degree sequence
over the (placed) cells; this corresponds to a “placement
example with known optimal wire length” (PEKO). In our
DNA probe placement context, there is no need to generate
a netlist hypergraph. Rather, we realize the concept of
minimum (border) cost edges (adjacencies) by construct-
ing a set of probes, and their placement, using 2-D Gray
codes [20]. Our construction generates 4k probes that are
placeable such that every probe has a border cost of 2
to each of its neighboring probes. This construction is
illustrated in Fig. 7.

• Instances with known suboptimal solutions. Because con-
structed instances with known optimum solutions may
not be representative of “real” instances, we also apply
a technique [27] that allows real instances to be scaled
such that they offer insights into the scaling of heuristic
suboptimality. The technique is applied as follows. Be-
ginning with a problem instance I , we construct three
isomorphic versions of I by three distinct mappings of
the nucleotide set {A,C,G, T} onto itself. Each mapping
yields a new probe set that can be placed with optimum
border cost exactly equal to the optimum border cost of
I . Our scaled instance I ′ consists of the union of the

original probe set and its three isomorphic copies. Observe
that one placement solution for I ′ is to optimally place I
and its isomorphic copies as individual chips, and then to
adjoin these placements as the four quadrants of a larger
chip. Thus, an upper bound on the optimum border cost
for I ′ is four times the optimum border cost for I plus
the border cost between the copies of I (see Fig. 8). If
a heuristic H places I ′ with cost cH(I ′) ≥ 4cH(I), then
we may infer that the heuristic’s suboptimality is growing
by at least a factor (cH(I ′)/4cH(I)). On the other hand,
if cH(I ′) < 4cH(I), then the heuristic’s solution quality
would be said to scale well on this class of instances.

Table X shows results from executing the various placement
heuristics on PEKO-style test cases, with instance sizes ranging
from 16 × 16 to 512 × 512 (recall that our Gray code construc-
tion yields instances with 4k probes). We see from these results
that SWM is closest to the optimum, with a suboptimality gap
of 4%–30%. Overall, DNA array placement algorithms appear
to be performing better than their VLSI counterparts [13] when
it comes to results on special case instances with known optimal
cost. Of course, results from placement algorithms (whether for
VLSI or DNA chips) on special benchmark instances should not
be generalized to arbitrary benchmarks. In particular, our results
show that algorithms that perform best for arbitrary benchmarks
are not necessarily the best performers for specially constructed
benchmarks.

Table XI shows results from executing the various place-
ment heuristics on scaled versions of random DNA probe sets,
with the original instances ranging in size from 100 × 100 to
500 × 500, and the scaled instances thus ranging in size from
200 × 200 to 1000 × 1000. This table shows that, in general,
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TABLE X
COMPARING THE PLACEMENT ALGORITHM PERFORMANCE FOR CASES WITH KNOWN OPTIMAL CONFLICTS. SW MATCHING IS USING A

WINDOW SIZE OF 20 × 20 AND A STEP OF 10. ROW-EPITAXIAL USES 10 000/CHIP SIZE LOOKAHEAD ROWS

TABLE XI
COMPARING THE SUBOPTIMALITY OF THE PLACEMENT ALGORITHMS’ PERFORMANCE FOR VARIOUS BENCHMARKS. EACH ENTRY REPRESENTS BOTH

THE UPPER BOUND AND THE ACTUAL PLACEMENT RESULT AFTER SCALING. SW MATCHING IS USING A WINDOW SIZE OF 20 × 20 AND

A STEP OF 10. ROW-EPITAXIAL USES 10 000/CHIP SIZE LOOKAHEAD ROWS

placement algorithms for DNA arrays offer excellent scaling
suboptimality. We believe that this is primarily due to the
already noted fact that algorithm quality (as reflected by nor-
malized border costs) improves with instance size. The larger
number of probes in the scaled instances gives more freedom to
the placement algorithms, leading to heuristic placements that
have scaling suboptimality factor well below 1.

VI. CONCLUSION

In this paper, we have studied several problems arising in
the design of DNA chips, focusing on minimizing the total
border length between adjacent sites during probe placement
and embedding. We have shown that significant reductions in
border length can be obtained by drawing algorithmic tech-
niques developed in the field of VLSI design automation.

We conclude with some remarks on the similarities and
differences between VLSI physical design and physical design
for DNA arrays. First, while VLSI placement performance
in general degrades as the problem size increases, it appears
that this is not the case for DNA array placement. Current
algorithms are able to find DNA array placements with smaller
normalized border cost when the number of probes in the design
grows. Second, the lower bounds for DNA probe placement and
embedding appear to be tighter than those available in the VLSI
placement literature. Developing even tighter lower bounds is,
of course, an important open problem.

Another direction of future research is to find formulations
and methods for integrated optimization of test structure de-
sign and physical design. Since test structures are typically

preplaced at sites uniformly distributed across the array, inte-
grated optimization can have a significant impact on the total
border length.
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