IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006 1301

Wirelength Minimization for Min-Cut Placements
via Placement Feedback

Andrew B. Kahng, Member, IEEE, and Sherief Reda, Student Member, IEEE

Abstract—The advent of strong multilevel partitioners has made
top—down min-cut placers a favored choice for modern placer
implementations. Terminal propagation is an important step in
min-cut placers because it translates partitioning results into
global-placement wirelength assumptions. In this work, the repar-
titioning problem is carefully reexamined (Proc. ACM/IEEE Int.
Symp. Physical Design, p. 18, 1997) in the context of terminal
propagation and studied in an in-depth manner. Abstractly, it was
observed that in repartitioning, future cell locations are used for
present terminal propagations and that this can be conceptually
regarded as a form of placement feedback. This concept was
utilized to achieve accurate terminal propagation via feedback it-
eration and controller insertion to fine-tune the feedback response.
This yields substantial reductions in placement wirelength. Im-
plementing our approach in Capo [version 8.7 (Proc. ACM/IEEE
Design Automation Conf., p. 477, 2000 and GSRC Bookshelf)] and
applying it to standard benchmark circuits yields up to 14%
wirelength reductions for the IBM benchmarks with an average
improvement of 5.5% and up to 10% reductions for the Peko
benchmarks with an average improvement of 5.37 % . Experiments
also show consistent improvements for routed wirelength, yielding
up to 9% wirelength reductions and 5.8% average reduction with
acceptable increase in placement runtime. In practice, the method
proposed significantly improves routability without building con-
gestion maps and also reduces the number of vias.

Index Terms—Min-cut partitioning, routing, terminal propaga-
tion, VLSI placement.

1. INTRODUCTION

ECENT studies on placement optimality [7]-[9], indicate

that current placer-solution quality might not be close to
optimal. This apparent performance gap needs to be addressed.
Recently, top—down min-cut placers have become a favored
choice for modern placer implementations [5], [19], [22].
This choice is mainly motivated by the availability of strong
multilevel partitioners, as well as the excellent scalability and
runtime promise of the top—down paradigm. However, the
aforementioned studies demonstrate that a performance and
scaling gap exists for top—down min-cut placers—but not
for multilevel partitioners, which are the main engines for
top—down min-cut placers. This raises the question of how

Manuscript received June 11, 2004; revised December 15, 2004 and
April 17, 2005. Earlier results of this work were presented at the Design Auto-
mation Conference 2004. This paper was recommended by Associate Editor
M. D. F. Wong.

A. B. Kahng is with the Departments of Computer Science and Engineering,
and of Electrical and Computer Engineering, University of California (UC) San
Diego, La Jolla, CA 92093-0114 USA (e-mail: abk @ucsd.edu).

S. Reda is with the Department of Computer Science and Engineering,
University of California (UC) San Diego, La Jolla, CA 92093-0114 USA
(e-mail: sreda@cs.ucsd.edu).

Digital Object Identifier 10.1109/TCAD.2005.855917

excellent partitioner performance may be “mistranslated” into
far-from-excellent placement performance.

To understand this question, one must examine the main
components—apart from multilevel partitioners—that deter-
mine a min-cut placement result. These components include:
1) top—down paradigm; 2) cut-sequence; and 3) terminal prop-
agation. If we examine the first component, i.e., the top—down
paradigm, then an obvious question is whether a 2¥-way parti-
tioner gives far better results than executing a 2-way partitioner
for k levels. This has been answered in the negative by Karypis
and Kumar [14]. The second component, cut-sequences, have
enjoyed much recent attention [2], [5], [21]. Caldwell ef al. [5]
suggest using block aspect ratio as the decisive factor in de-
termining cut direction; this leads to flexible slicing-floorplan
structures rather the traditional horizontal-vertical alternation.
Block aspect ratio has also been explored via a dynamic-
programming-based approach [21] and fractional cut sequences
[2], which lead to further reductions in wirelength. The third
item, terminal propagation, has not enjoyed much investigation
yet is decisive, since it is responsible for translating the par-
titioner results into global-placement wirelength assumptions.
Few works address terminal propagation [5], [6], [11], [13],
[17], [19], and mostly follow the initial approach of Dunlop
and Kernighan [11]. Other approaches try to omit terminal
propagation altogether and opt for global or exact wirelength
objectives [13], [22], [23]. Accurate terminal propagation is the
subject of this work.

We define ambiguous terminal propagations as propagations
arising from terminals that lie equally proximate from two
subblocks of a block being partitioned, so that their destination
propagation is ambiguous. To reduce this ambiguity, we care-
fully reexamine the repartitioning problem [13] and show that
it is abstractly a form of placement feedback, where future cell
locations are used to determine present terminal-propagation
results. Since these terminal propagations produce new results
that change the output results, the feedback can be iterated
a number of times in order to attain stable and consistent
improvements. We propose and investigate variant “feedback
controllers” to fine-tune the placement response and optimize
wirelength. We summarize our contributions as follows.

1) We reexamine the repartitioning problem [13] (with-
out overlapping) in the context of top—down recursive-
bisection placement and quantify its effect on the number
of ambiguous propagations.

2) We show that the problem is similar to feedback systems.

3) We propose to iterate the number of repartitions accord-
ing to a number of different objectives, i.e., controllers.

4) We develop efficient implementations.

0278-0070/$20.00 © 2006 IEEE



1302

Sample blocks

| e e

Fig. 1. Snapshot of a min-cut placement. Solid horizontal lines represent
first-level cuts, and solid vertical lines represent second-level cuts. Dashed
horizontal lines represent third-level cuts, and dashed vertical lines represent
fourth-level cuts.

The organization of this paper is as follows. In Section II,
we examine the top—down min-cut placement methodology and
its essential component of terminal propagation. In Section III,
we present our feedback methodology for accurate terminal-
propagation control. Section IV gives experimental results on
various standard benchmarks. Finally, Section V summarizes
our work and presents directions for future work.

II. BACKGROUND

In this section, we give a brief overview of top—down min-
cut placement as well as the necessary background for terminal
propagation.

A. Top—Down Min-Cut Placement

In min-cut placement, a placement region is a collection of
blocks. Each block corresponds to a fixed rectangle into which
nodes of a hypergraph should be placed. Initially, the chip’s
core region is comprised of one block. The min-cut placement
methodology proceeds by recursively partitioning each block
and its associated hypergraph, and assigning the partitioned
subhypergraphs to subblocks. All nodes (or cells) that are as-
signed to a subblock are considered, for wirelength-estimation
and terminal-propagation purposes, to be placed at the geomet-
ric center of the block. Partitioning usually alternates between
vertical and horizontal cuts, or as determined by the block as-
pectratio [5], [18], [21]. The product of the partitioning process
is a slicing floorplan as shown in Fig. 1. The partitioning
process continues until a certain block threshold size, beyond
which end-case placers [4] are used to assign actual locations of
hypergraph nodes in their corresponding blocks. Given a set of
disjoint blocks whose union is the entire placement region, we
use the term placement-level partitioning to indicate the process
of partitioning each block exactly once. Hence, the whole min-
cut top—down placement methodology can be considered as the
progression of placement levels from a coarse top level down to
a fine bottom level.

B. Terminal Propagation

Terminal propagation [11] is the process through which
nodes external to a given block under partition are propagated

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

as fixed terminals (nodes) to that block. These terminals bias the
partitioner toward placing movable nodes close to their termi-
nals, thus reducing placement wirelength. Given a block under
partition to two subblocks and a node externally connected to
this block, the subblock to which this node is propagated as a
terminal is typically determined by: 1) calculating the distances
between the node’s position and the centers of the two new sub-
blocks; and 2) with some tolerance, propagating the node to the
closer center as a fixed terminal.

Consider some block B being partitioned into two subblocks
B, and B,, with the geometrical center of each block denoted
by ¢(Bi) and ¢(Bs). Given a net L with some set of cells L; in
B and some set of cells L. in other blocks, we can partition L,
into three sets.

1) L! C L. is the set of cells that are geometrically closer
to ¢(By) than ¢(Bg). We measure the distance in
Manhattan norm.

2) L? C L. is the set of cells that are geometrically closer to
C(BQ) than C(Bl).

3) L3 C L, is the set of cells that are equally proximate to
¢(Bz) and ¢(By). This is computed with some tolerance,
i.e., we consider two distances equal as long as the differ-
ence between the two distances does not exceed a certain
threshold d¢uyzy .

Given the previous definitions, terminal-propagation deci-
sions can be summarized as follows.

1) Case (1): If L! # () and L? = {), then a fixed cell of zero
weight is added to the center of B; and connected to L;
via a hyperedge.

2) Case (2): If L = () and L} # 0, then a fixed cell of zero
weight is added to the center of By and connected to L;
via a hyperedge.

3) Case (3): If L! # () and L? # (), then no terminals are
propagated.

4) Case (4): If LL =0, L? = (), and L2 # (), then no termi-
nals are propagated in this case [1], [11], or one fixed cell
is added to By, another fixed cell is added to By, and both
are connected to L; [5], [6]. We call this case ambiguous
terminal propagation.

The following example illustrates terminal-propagation
decisions.

Example 1: If a block B is under partition into subblocks
B, and B; as shown in Fig. 2, then any nodes in block C' that
are connected to nodes in B will be propagated as fixed nodes to
By as shown. There is no ambiguity about this propagation, and
terminal propagations from any future bisections within block
C will continue to be propagated to block B;. However, for
some nodes this cannot be decided accurately. For example,
all nodes in block A are equally proximate to both subblock
centers of block B. These nodes lead to ambiguous terminal
propagation. As indicated earlier, the traditional solution is to
propagate such nodes to both subblock centers [5], [6], or not to
propagate at all [1], [11]. The intuition behind these propagation
approaches is that it is better to make no decision rather than a
bad decision.

Ambiguous terminal propagations can lead to partitioning
results that do not capture the global objective of wirelength



KAHNG AND REDA: WIRELENGTH MINIMIZATION FOR MIN-CUT PLACEMENTS VIA PLACEMENT FEEDBACK

Fig. 2. Example of terminal propagation.

minimization. If L3 # (), then the terminal-propagation de-
cision becomes inaccurate: case (1) can likely be case (3),
case (2) can likely be case (3), and case (4) can be any of
cases (1), (2), or (3). In general, the proximity of a node
to a subblock center is calculated with some tolerance dyy,y
(recently referred to as partition fuzziness in [1]). In Capo
[5], this partition fuzziness was originally set to 10%, then
later revised to 33% [1]. This latter tolerance matches the
value suggested by [11]. The increased fuzziness essentially
increases the number of ambiguous terminal propagations to
avoid making bad decisions.

To eliminate the dependence of the placement problem on
terminal propagation, Huang and Kahng [13] introduced ex-
act objectives (e.g., minimum-spanning-tree models for net
routing) to drive the partitioning process. In particular, net
vectors are used as means to quantify the global contribution
of each cut and to eliminate the need for propagation. Huang
and Kahng [13] also introduced the cycling of the partitioning
process, by forming a sliding window that goes over the blocks
and repartitioning them, since the results of partitioning intro-
duce new terminal locations, and hence, different minimum-
spanning-tree costs. The sliding window also overlaps in its
movement, allowing cells to migrate from their assigned blocks.
Also, Zhong and Dutt [23] and Yildiz and Madden [22] used
global half-perimeter wirelength objectives to drive the par-
titioner. Zhong and Dutt gave experimental results showing
improvements versus terminal-propagation-based approaches,
at the expense of increased runtime; Yildiz and Madden con-
cluded that wirelength improvements using their approach are
modest.

A top—down placement flow using terminal propagation can
be conceptually represented as in Fig. 3(a). The input to the
placement is the set of nodes initially placed at the center of
the core-placement region. Each placement level is divided into
two steps: terminal propagation and block partitioning.

III. ACCURATE TERMINAL PROPAGATION
A. The Ambiguous Terminal-Propagation Problem

The purpose of this work is to mitigate the effects of am-
biguous terminal propagations, i.e., we would like to eliminate

1303

or minimize propagations of case (4) when making terminal-
propagation decisions. While it may seem that the contribution
of these propagations is small in the overall top—down min-
cut placement approach, our analyses and results indicate that
these propagations can have a tremendous impact on the final
wirelength and quality of the min-cut placement. Also, though
it might seem possible that reordering block processing can
reduce the total amount of ambiguous terminal propagations,
our experimental results indicated otherwise. We will later
examine the issue of block ordering in Section III-E. We
now propose how to mitigate the effects of the ambiguous-
terminal-propagation problem using the concept of placement
feedback.

B. Placement Feedback

We define placement undoing as merging two subblocks
that were originally partitioned, so that they are one block
again. Placement undoing enables us to realize accurate ter-
minal propagation. At each level of placement, all blocks are
partitioned. After such partitioning, we undo all the partitioned
blocks, but we keep the node locations as assigned by the
partitioning. That is, we decouple: 1) the placement of a node
for use in terminal propagation from 2) its block location.
We then use the new accurate node locations to redo block
partitioning and update the node locations as necessary, i.e., the
output of the placement level is taken back as its input. This
can be conceptually regarded as a feedback loop within each
placement level, as shown in Fig. 3(b). This feedback takes the
current result of a placement level and feeds it back to
the input while undoing the placement. Such flow resembles
the flow in [2, Fig. 1]. The following example provides an
illustration.

Example 2: If block B is under partition into two subblocks
B; and B, as shown in Fig. 2, then we partition block B,
propagating nodes in block A to both B; and Bs (ambiguous
propagation). We then partition block A (into two subblocks
A7 and A,), as well as blocks C' and D. Now that the whole
placement level is partitioned, we undo all block partitionings,
restoring the original structure. Despite our having undone the
partitioning, we keep the node locations as given by the parti-
tioning results. We use these new locations as input to redo the
partitioning, where in this case, no ambiguous terminal propa-
gation occurs. The final node locations are adjusted according
to the redone partitioning results.

We stress that feedback only alters the terminal-propagation
results of ambiguous propagations. For example, the prop-
agation locations of nodes propagated from block C' to B
will not change when we apply feedback. It is only ambigu-
ous propagations from block A to B that benefit from such
feedback.

We empirically examine the relation between reductions
in ambiguous terminal propagations and wirelength reduction
as measured by half-perimeter wirelength (HPWL). We im-
plement placement feedback in a well-established top—down
min-cut placer, Capo (Version 8.7 [5], [12]). Our changes
take 130 lines of code. We report two metrics: 1) the per-
centage reduction in ambiguous terms per placement level,



1304 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Terminal Level 0 Terminal Level 1 Terminal Level m
— - . : > K - . R ' . - .
© | Propagation Partitioning | ! | Propagation Partitioning | : * | Propagation Partitioning
(@)
Terminal Level 0 Terminal Level 1 Terminal Levelm
Propagation ™ Partitioning Propagation Partitioning Propagation Partitioning

(b)

Fig. 3. View of the placement process. (a) Traditional placement flow. (b) Proposed placement flow with feedback loops for accurate control of terminal
propagation.

18000 100
(2]
3
16000 £
b
14000 - 80
@ 3
T 12000 E
£ £ 60
10000 b5
c
3 E
S 8000 5
_g) ‘g’ 40
£ 6000 3
< [ass
© . . . : : : : !
4000 8 20f----- O S A B
2000 8 : : : : : : : !
o 5 5 5 ' ' : : 5
0 0 2 2 2 2 2 2 2 2
0 2 4 6 8 10 12 14 16
Placement Level Placement Level
(a) (b)
16 ' . . . . . '
1.4

—_
- o

Percentage Reduction in HPWL
(=]
(o0}

0.6
0.4
0.2 ! ! ! ‘ : . : ‘ !
0 05 ; ; ; ; ; ; ; ; )
0 2 4 6 8 10 12 14 16 18
Placement Level Placement level
© (d)

Fig. 4. Relation between wirelength and ambiguous terminal reduction and placement level. (a) Actual values of ambiguous terms before and after feedback
for each placement level. (b) Percentage reduction in ambiguous terminals for each placement. (c) Percentage reduction in wirelength for each placement level.
(d) Cumulative percentage reduction in wirelength after each placement level.

i.e., we calculate the number of ambiguous terminals before duction in the HPWL estimate of each level (assuming, as is
and after feedback; and 2) the percentage reduction of HPWL  standard, pin locations at block centers). For the ibmO1 bench-
per placement level, i.e., we calculate the percentage re- mark [12], we report the actual number of ambiguous terminal



KAHNG AND REDA: WIRELENGTH MINIMIZATION FOR MIN-CUT PLACEMENTS VIA PLACEMENT FEEDBACK

1305

Level 0
Partitioning

Terminal
Propagation

Terminal

Propagation

Level 1
v . =
Partitioning

Level m
Partitioning

Terminal
Propagation

Fig. 5. Feedback system with controllers.

propagations before and after feedback in Fig. 4(a), the per-
centage reduction in ambiguous terminals in Fig. 4(b), and the
percentage reduction in HPWL in Fig. 4(c). The two percentage
reductions in Fig. 4(b) and (c) are well correlated with each
other, lending support to our intuition. The total number of
ambiguous propagations across all placement levels drops from
82947 terminals to 22435 terminals, a reduction of around
73%. In another experiment, we quantify the contribution of
each level feedback loop to the final HPWL. To do this, given
a level ¢, we enable the feedback loops for all levels up to level
¢ and disable all the remaining m — ¢ loops, where m is the
total number of placement levels, and calculate the final HPWL.
Our results are given in Fig. 4(d) for all levels of the ibm01
benchmark. These results are averages of six runs with different
random seeds. From this figure, we observe that except for the
very few last placement levels, reductions in HPWL increase al-
most linearly with each placement level. We next examine how
to fine-tune the placement feedback via the concept of feedback
controllers.

C. Iterative Controlled-Placement Feedback

Since the feedback loop produces new outputs, it is natural
to iterate over the feedback loop a number of times until
one attains the most accurate terminal propagation, and hence,
the best overall reduction in HPWL. The problem of feed-
back systems is that the output might not be predictable, i.e.,
the system can loop infinitely or, in the best case, converge
rapidly to the final stable output [10]. Typically, if the feedback
response is not desirable, then some feedback controller is
inserted to enhance the response, as shown in Fig. 5. We
propose a number of controllers that are suited to the placement
problem.

For our purposes, a feedback-controller function controls the
response of a placement level by measuring some quality () at
the output of the placement level, and feeding back corrective
information to the input of the placement level so as to opti-
mize the quality (). The controller might also decide to stop
sending feedback information, i.e., terminate the looping, if it
no longer perceives improvement in the measured quality ().
We propose and motivate two quality measures that can be
chosen as objectives during feedback.

1) HPWL quality Qy: Qy is the value of the HPWL es-
timate at a particular placement level. Since the general
placement objective is to minimize wirelength or HPWL,
a feedback controller might seek to optimize a placement
level based on the HPWL estimate.

Fig. 6. Discrepancy between the partitioning quality and the HPWL estimate.
Partitioning quality is equal to c1 + c2, while HPWL estimate is equal to
cidi + cads.

2) Partitioning quality Qp: Qp is the sum of all partition
cuts at a particular placement level. The motivation of
this objective is that during the early placement levels,
the HPWL estimate (based on block center locations) can
be very inaccurate; partitioning results might be more rel-
evant since initial good partitions likely to end up in good
final HPWL results.

While it may intuitively seem that optimizing Qp or Qu
entails optimizing the other, this might not be the case. The fol-
lowing example illustrates the subtle difference between these
two qualities.

Example 3: In Fig. 6, we have two blocks under partition
as indicated by the dashed lines. These two blocks are the
outcome of an initial partitioning indicated by the horizontal
solid line. Assume that after the first partitioning, we obtain
cut values c; and ¢y, as shown in the figure. If the distance
between the centers of the child blocks of the top and bottom
blocks are d; and ds, respectively, then, Qp = ¢1 + co and
Qu = c1dy + cads, assuming no connection between the upper
and lower blocks. After feedback, these cut values change to
¢} and ¢, and hence Qp = ¢} + ¢, while Qu = ¢ di + chdo.
If ¢§ > ¢1, but ¢ < cg, then the change in Qn depends on
the values of d; and ds. For example, if ¢; = 100, ¢ = 100,
dy = 6, and dy = 8, then Qp = 200 and Qg = 1400, and after
feedback ¢ = 85, ¢, = 112, then Qp = 197 and Q}; = 1406.
Thus, the partitioning quality improves but the HPWL estimate
does not improve. A feedback controller that optimizes Qy will
definitely choose the first partitioning as the best feedback loop,
while a controller that optimizes Qp will choose the second
partitioning as the feedback best loop.

In addition to the placement objective to be optimized, a
controller must decide when to stop iterating and feed results
from its placement level forward to the next placement level.



1306

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

TABLE 1
ITERATIVE-FEEDBACK EXAMPLE. Q11 INDICATES THE PLACEMENT-LEVEL QUALITY AS MEASURED BY THE HPWL ESTIMATE.
Qp INDICATES THE PLACEMENT-LEVEL QUALITY AS MEASURED BY THE SUM OF PARTITIONING RESULTS

Level | Objec- Iteration

tive 0 1 2 3 4 5

2 On 5274440 | 5227340 | 5276490 | 5317450 | 5278540 | 5319550
Op 3596 3071 3117 2567 2304 3128

3 On 6382410 | 8558280 | 8390840 | 8341400 | 8365310 | 8370650
Op 3991 2277 2188 2160 2189 2166

8 On 13557900 | 13763900 | 13727100 | 13717800 | 13719900 | 13727600
Op 6836 6054 5655 5614 5570 5485

We propose and empirically evaluate three kinds of controllers.
We assume that each feedback loop is executed for at most
k times.

1) Monotonic-improvement controller: In this scheme, the
controller fixes some quality to improve, either Qp or
Qu, and keeps on iterating over the feedback loop until
there is no further improvement in the quality measure,
i.e., the controller loops as long as Qi or Qp continues
to decrease. The controller stops iterating if an increase
in Qp or QQy is observed, and then passes the previous
partitioning results to the next placement level.

Best improvement controller: In this scheme, the con-
troller fixes some quality to improve, either Qp or Qy,
and allows £ iterations over the feedback loop. After fin-
ishing % loops, the controller passes to the next placement
level the results of the best iteration seen (in terms of the
chosen quality measure). Notice that the controller does
not feed back its best results; it always feeds the current
output back to the input. The controller passes the best
results seen in k feedback iterations to the next placement
level.

Unconstrained controller: In this scheme, the controller
allows feedback to follow its natural course over the k
iterations and then passes the result of the last iteration to
the next placement level.

We illustrate the behavior of iterative feedback and the
operation of various controllers by the next example.

2)

3)

Example 4: We fix the number of allowable iterations to
k =5, and observe a number of placement levels’ outputs
(as measured by Qp and Qy) for the ibm02 benchmark. We
tabulate the results in Table I. The operation of the controllers
is illustrated by using the Qp objective. Iteration O indicates
no feedback loop traversal, i.e., just the regular top—down
partitioning. At placement level 2, the monotonic-improvement
controller stops at iteration 2, passing the placement result of
Qp = 3071; the best improvement controller stops after itera-
tion 5 but passes the best placement result seen (Qp = 2304);
and the unconstrained controller passes the last placement of
Qp = 3128. At placement level 3, the monotonic-improvement
controller stops at iteration 4, passing the placement result
of Qp = 2160; the best improvement controller stops after
iteration 5 and passes the best placement of Qp = 2160; the
unconstrained controller stops after six feedback loops and
passes the placement with Qp = 2166.

The last example shows the effect of iterative feedback and
controller behavior on individual levels. Further studies exam-
ine the final HPWL after all placement levels, i.e., we measure
the aggregate effect of all feedback loops and controllers on
the final HPWL of the placement. We study the impact of
both the allowable feedback iterations and the controller type
on the quality of the final placement as measured by HPWL.
Results for the same benchmark, ibm02, are plotted in Fig. 7.
We plot results of controllers based on the HPWL objective Qy
in Fig. 7(a), and results of controllers based on the partitioning
objective @p in Fig. 7(b). Notice that results of the uncon-
strained controller are identical in Fig. 7(a) and (b). In Fig. 7,
the horizontal axis represents the number of feedback iterations;
iteration zero represents Capo’s results with no feedback. All
results represent an average of four seeds. From our experi-
ments, we notice the following.

1) Controllers based on the partitioning objective Qp per-
form considerably better than controllers based on the
HPWL objective Q. This supports the argument that
initial good partitioning results likely lead to final good
placements. The HPWL-based controllers are relatively
inaccurate at early placement levels and sensitive to the
relative distances between blocks. However, they yield
better results in the late placement levels. Consequently,
we have also tried hybrid approaches by using the Qp
objective during the early placement levels and Qg dur-
ing the late placement levels, but the improvement in
quality of results was insignificant.

The unconstrained controller performs as well as the
Qp best improvement controller since partitioning results
tend to improve as the number of feedback iterations
increase.

The monotonic improvement controller usually takes less
runtime since it can iterate for fewer than the &k allowed
feedback iterations.

Overall, after a mere three iterations, the best im-
provement controller (or unconstrained controller) re-
duces Capo’s final HPWL by about 8%. We have found
that the controllers exhibit similar behavior on other
benchmarks.

2)

3)

4)

To expand the study of the relationship between final HPWL
and number of iterations, we calculate the final HPWL for iter-
ations up to 12, as an approximation to asymptotic analysis. We
plot for the ibm02 benchmark the average results of four seeds



KAHNG AND REDA: WIRELENGTH MINIMIZATION FOR MIN-CUT PLACEMENTS VIA PLACEMENT FEEDBACK

1.58e+07

1.56e+07
1.54e+07 \
1.52e+07

1.5e+07 \

Monotonic improvement Controller

Best improvement Controller

|
=
o
: \
T 1.48e+07
=

1.46e+07

1.44e+07 Unconstrained Controller

1.42e+07

1.4e+07
0 1 2 3 4 5
Iterations
(a)
Fig. 7.

1307

1.56e+07
1.54e+07

1.52e+07 \
1.5e+07 \\
1.48e+07 \\

1.46e+07

Final HPWL

1.44e+07 \

Monotenic improvement-controfler.
1.426+07 Unconstrained %

Best improvement controller

1.4e+07
0 1 2 3 4 5 6

lterations

(b)

Effect of controller choice on the final HPWL. (a) Effect of iterative feedback with various controllers using the Q31 objective on the final HPWL of

the ibm02 benchmark. The horizontal axis represents the number of allowable feedback iterations, while the vertical axis represents the final-placement HPWL.
(b) Effect of iterative feedback with various controllers using the Qp objective on the final HPWL of the ibm02 benchmark. The horizontal axis represents the
number of allowable feedback iterations, while the vertical axis represents the final-placement HPWL.

1.56e+07

1.54e+07

1.52e+07 \

1.5e+07 \

1.48e+07 \

HPWL

1.46e+07 \

1.44e+07 \

1.42e+07

1.4e+07
0 2 4 6 8 10 12

lterations

Fig. 8. Effect of iterative feedback using the unconstrained controller on
the final HPWL of the ibm02 benchmark. The horizontal axis represents the
number of allowable feedback iterations, while the vertical axis represents the
final-placement HPWL. The plot shows the average of results of four seeds. Up
to 12 iterations are reported as an approximation to asymptotic analysis.

in Fig. 8, smoothing the plot using cubic splines. From the plot,
the aggregate final response of the unconstrained controller,
as measured by the HPWL estimate, oscillates slightly around
a fixed value. We conclude that iterated controlled feedback
succeeds in eliminating the indeterminism associated with am-
biguous terminal propagations, and transforms the individual
placement-level response into an overall stable mechanism that
affords 8%—-9% HPWL improvement.

D. Accelerated Feedback

A drawback of placement feedback is the increased runtime.
We propose a simple idea to reduce the runtime. Typically for
each block partitioning, placers execute calls to the multilevel

Fig. 9. Block-ordering strategies. Circles represent blocks. Dashed lines
represent the cut orientation.

partitioner a number of times and use the best reported results.
For instance, Capo calls MLPart [3] twice to construct two
cluster trees but only utilizes the best cluster-tree-partitioning
results. We notice that in iterated feedback, it is only the last
feedback loop that actually determines the partitioning results;
other loops determine accurate locations for ambiguous termi-
nals. Hence, in order to speed up our feedback implementation,
we call MLPart once for each feedback loop while restoring
the default Capo settings for the last feedback iteration. As the
experimental results in Section IV demonstrate, this improves
runtime considerably.

E. Effect of Block Ordering

We also consider the effect of block ordering on the per-
formance of placement feedback. Our results are inconclusive
since they show no improvement in response to a number of
various block-ordering strategies. We have tried the following
block-ordering strategies.

1) Normal traversal. Process the blocks in the natural order,
i.e., as they appear in the top—down tree hierarchy. For
example, in Fig. 9, the block ordering would be 1, 2, 3, 4.



1308 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

TABLE 1I
RESULTS FOR THE IBM INSTANCES (2% WHITESPACE) FOR SIX RANDOM SEEDS. MODE INDICATES WHETHER RESULTS ARE FOR ORIGINAL CAPO
(VERSION 8.7), CAPO WITH ACCELERATED (AFB) FEEDBACK, OR NORMAL (FB) FEEDBACK. FOR ALL INSTANCES, WE USE THE
UNCONSTRAINED FEEDBACK CONTROLLER WITH THREE FEEDBACK ITERATIONS. WE REPORT THE BEST AND
AVERAGE HPWL RESULTS OF S1X SEEDS. CPU(S) REPRESENTS THE TOTAL CPU TIME IN SECONDS

Cir- Mode CrPU Best Impr Average Impr Cir- Mode CPU Best Impr Average Impr
cuit (s) HPWL (%) HPWL (%) cuit (s) HPWL (%) HPWL (%)

ibm01 Capo 102 4.973 5.062 ibm10 Capo 740 59.89 61.48
+ AFB 130 4.925 0.96 4.990 1.43 + AFB 1125 58.18 2.85 58.92 4.15
+ FB 296 4.928 0.92 4.967 1.88 + FB 2309 58.06 3.05 58.64 4.61

FengShui 316 4.888 FengShui 2848 57.33

Dragon 1615 4.527 Dragon 10839 55.17

ibm02 Capo 189 15.39 15.53 ibm11 Capo 699 45.69 46.44
+ AFB 259 14.11 831 14.22 8.46 + AFB 1683 44.46 2.69 44.93 325
+ FB 588 13.94 9.41 14.18 8.67 + FB 2173 43.30 523 43.88 5.51

FengShui 650 14.06 FengShui 2612 43.82

Dragon 2192 13.29 Dragon 8910 40.40

ibmo03 Capo 189 13.74 13.91 ibm12 Capo 1011 82.70 83.77
+ AFB 425 13.70 0.33 13.80 0.74 + AFB 2063 75.62 8.56 77.34 7.67
+ FB 578 13.27 3.47 13.65 1.82 + FB 3133 76.36 7.67 77.08 7.99

FengShui 700 12.69 FengShui 3330 75.27

Dragon 1938 12.64 Dragon 13926 70.78

ibm04 Capo 238 17.96 18.17 ibm13 Capo 966 54.90 55.96
+ AFB 529 16.99 5.41 17.30 4.78 + AFB 2072 53.64 229 54.54 2.54
+ FB 699 17.07 4.97 17.20 535 + FB 3260 54.19 1.29 54.76 2.15

FengShui 961 16.43 FengShui 4228 53.43

Dragon 2763 16.02 Dragon 11293 50.49

ibmo05 Capo 405 43.52 44.26 ibm14 Capo 1642 129.6 131.8
+ AFB 648 3774 13.27 3831 13.45 + AFB 4155 122.6 5.44 124.6 5.45
+ FB 1214 37.63 13.52 38.19 13.73 + FB 6034 122.1 5.80 122.9 6.79

FengShui 831 37.51 FengShui 7020 121.3

Dragon 5593 36.82 Dragon 21641 117.9

ibm06 Capo 342 20.75 21.32 ibm15 Capo 1708 143.4 145.1
+ AFB 636 20.79 -0.17 21.23 0.43 + AFB 5568 137.2 433 138.8 4.39
+ FB 1135 20.85 -0.49 21.39 -0.32 + FB 5610 137.2 432 138.1 4.82

FengShui 1042 19.99 FengShui 8235 134.7

Dragon 4468 19.19 Dragon 21662 134.4

ibm07 Capo 483 3525 3594 ibm16 Capo 2050 1853 187.0
+ AFB 702 32.19 8.68 32.52 9.52 + AFB 6455 1733 533 175.8 5.65
+ FB 1493 3239 8.12 32.64 9.18 + FB 6735 173.7 6.31 175.1 6.37

FengShui 1581 30.78 FengShui 12796 179.0

Dragon 5030 30.75 Dragon 22657 176.4

ibm08 Capo 510 38.03 3821 ibm17 Capo 2791 2755 281.5
+ AFB 792 34.51 9.25 34.99 8.43 + AFB 7207 269.9 0.95 272.7 2.87
+ FB 1627 3477 8.57 35.44 7.24 + FB 8078 267.2 3.01 269.5 425

FengShui 2642 36.79 FengShui 9257 257.9

Dragon 7613 3232 Dragon 25856 248.4

ibm09 Capo 543 29.69 30.53 ibm18 Capo 2657 197.8 199.7
+ AFB 730 2823 4.93 28.74 5.84 + AFB 4552 191.5 1.30 193.7 1.81
+ FB 1624 28.39 4.37 28.66 6.11 + FB 7699 192.0 2.94 192.0 3.82

FengShui 2857 29.74 FengShui 11611 189.5

Dragon 6234 28.26 Dragon 23167 178.4




KAHNG AND REDA: WIRELENGTH MINIMIZATION FOR MIN-CUT PLACEMENTS VIA PLACEMENT FEEDBACK

1309

TABLE III
RESULTS FOR THE PEKO INSTANCES FOR SIX RANDOM SEEDS. MODE INDICATES WHETHER RESULTS ARE FOR ORIGINAL CAPO (VERSION 8.7), CAPO
WITH ACCELERATED (AFB) FEEDBACK, OR NORMAL (FB) FEEDBACK. FOR ALL INSTANCES, WE USE THE UNCONSTRAINED FEEDBACK
CONTROLLER WITH THREE FEEDBACK ITERATIONS. WE REPORT THE BEST AND AVERAGE HPWL RESULTS OF
S1x SEEDS. CPU(S) REPRESENTS THE TOTAL CPU TIME IN SECONDS

Circuit | Mode CPU Best | Improv | Average | Impr Circuit | Mode CPU Best | Impr | Average | Impr
(s) | HPWL (%) HPWL (%) (s) | HPWL (%) HPWL (%)

Peko01 | Capo 59 1.39 1.47 Pekol0 | Capo 462 8.47 8.66
+ FB 240 1.36 2.23 1.40 5.12 + FB 1716 7.79 8.02 8.00 7.59

Peko02 | Capo 100 2.19 2.24 Pekoll | Capo 453 8.32 8.89
+ FB 404 2.06 6.26 2.11 6.01 + FB 1754 8.12 2.43 8.61 3.22

Peko03 | Capo 118 2.65 2.74 Pekol2 | Capo 587 8.99 9.51
+ FB 514 2.49 6.27 2.61 4.88 + FB 2195 8.41 6.44 8.60 9.60

Peko04 | Capo 145 3.08 3.26 Pekol3 | Capo 683 11.04 11.04
+ FB 583 291 5.47 3.00 7.95 + FB 2611 9.85 5.12 10.38 5.94

Peko05 | Capo 165 3.25 333 Pekol4 | Capo 1169 16.49 17.41
+ FB 671 3.07 536 3.20 4.10 + FB 4278 15.48 6.10 16.00 8.06

Peko06 | Capo 187 3.57 3.72 Pekol5 | Capo 1465 21.17 22.26
+ FB 692 3.38 547 3.51 5.59 + FB 5531 20.21 4.50 20.59 7.51

Peko07 | Capo 246 5.09 5.30 Pekol6 | Capo 2051 22.77 2295
+ FB 975 4.89 4.26 5.02 536 + FB 7348 22.51 1.15 22.51 1.93

Peko08 | Capo 281 5.66 592 Pekol7 | Capo 2141 25.07 2525
+ FB 1059 5.57 1.64 5.76 2.81 + FB 7995 24.57 2.04 24.56 272

Peko09 | Capo 349 6.39 6.78 Pekol8 | Capo 1434 24.66 25.12
+ FB 1280 6.09 4.73 6.42 5.41 + FB 5063 23.47 4.82 24.29 332

2) Random traversal. Process the placement blocks in a
random order. One random ordering in Fig. 9 is 1, 4,
3, 2. The intuition behind this approach is to break any
adversarial-order dependence to which a fixed ordering
might be susceptible.

3) Alternating traversal. Process the ordering normally in
one feedback iteration, and then reverse the direction
of processing in the next iteration—hence the name,
alternate processing. For example, in Fig. 9, one feedback
iteration would process the blocks in the order 1, 2, 3,
4, while the next iteration would process the blocks in
the reverse order, 4, 3, 2, 1. The intuition behind this
approach is to consider all mutual dependencies, i.e., if
some block 7 partitioning results depend on some block
1 partitioning results, then this dependence will be taken
into account in one of the traversal directions.

We have implemented these ordering strategies, but we ob-
tained no better results than those attained by normal traversal.

IV. EXPERIMENTAL RESULTS

Our heuristic is easy to implement and only linearly increases
runtime by the number of feedback iterations executed. While
there are a number of academic top—down min-cut placers such
as Capo [5], Dragon [19], and FengShui [22], we choose to
implement our technique in Capo due to its code availability,
excellent scalability, fast runtimes, and modular code design.
We implement our technique in the latest official release of

Capo, version 8.7 (as of November 4, 2003).' Our implemen-
tation requires 130 lines of C++ code. We report experimental
results on four benchmark sets: IBM Version 1 (2% whitespace)
[12], Peko [7] (Suite 1), and IBM Version 2 [20] (easy and hard
instances). We run our experiments on a 2.4-GHz Xeon Linux
workstation with 2-GB memory.

In the first series of experiments, we evaluate our technique
on the IBM Version 1 benchmarks [12] (2% whitespace) and
give the results in Table II. We report results of original Capo
as indicated by Mode Capo, Capo with accelerated placement
feedback as indicated by Mode AFB, and normal feedback as
indicated by Mode FB. For all experiments, k£ = 3 iterations of
unconstrained feedback are used. All runtimes are reported in
seconds as indicated by the label CPU (s). We give the best
and average of six runs each with a different random seed,
and report the percentage improvement in HPWL for both the
best and average results.” We also report the results of Dragon
(version 3.01) [19] and FengShui (version 2.6) [22]. Since there
is no direct mechanism to control the random seed of those
placers, we report the placement results of only one run. From
the table, the average improvements for accelerated feedback
and normal feedback are 4.70% and 5.43%, respectively. We

'We found a bug that had disabled overlap removal; Capo’s authors pointed
out how to enable legalization and fix this problem with a trivial amount of
coding [16]. We have verified that all of our placement results are legal.

2We have enabled rowIroning in both regular and feedback flows. RowIron-
ing is a detailed placer within Capo that optimally replaces windows of seven
to eight cells.



1310

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

TABLE 1V
RESULTS FOR THE IBM VERSION 2 INSTANCES (EASY AND HARD). MODE INDICATES WHETHER THE RESULTS REPRESENTS ORIGINAL CAPO’S
RESULTS OR CAPO WITH ACCELERATED FEEDBACK (AFB). CPU(S) REPRESENTS THE TOTAL CPU TIME IN SECONDS. FOR ROUTABILITY
RESULTS, WE REPORT ROUTING CPU TIME IN SECONDS, NUMBER OF ROUTING VIOLATIONS, VIAS, AND ROUTED WIRELENGTH (WL).
IMPR INDICATES THE IMPROVEMENT PERCENTAGE IN WIRELENGTH FOR FEEDBACK OVER CAPO. ALL PLACEMENTS
WERE ROUTED USING THE LINUX VERSION OF CADENCE’S WARPROUTE 2.4

Circuit Mode Place Route
CPU(s) | HPWL | Impr | CPUG) | Viol | Vias | WL | Impr
ibmOle | Capo 57 | 5590 10800 | 1238 | 147426 | 928179
+ AFB 195 | 5291 | 597% 6051 0 | 140353 | 872629 | 6.39%
Dragon 1613 | 5739 1447 0 | 147467 | 902624
QPlace 173 | 5.930 840 0| 143513 | 944838
ibmOlh | Capo 77| 5514 10830 | 601 | 148416 | 909431
+ AFB 203 | 5298 | 3.91% 7964 | 103 | 146437 | 895000 | 1.54%
Dragon 1575 | 5537 1709 0| 134582 | 8359441
QPlace 178 | 5.637 1114 0 | 144539 | 890141
ibm02e | Capo 133 | 1576 1411 0 | 311617 | 2371683
+ AFB 355 | 1510 | 4.18% 951 0 | 298034 | 2228700 | 6.75%
Dragon 2273 | 1595 2160 0 | 311270 | 2234878
QPlace 390 | 1555 638 0 | 290097 | 2146602
ibm02h | Capo 149 | 1539 2138 0 | 308345 | 2240272
+ AFB 202 | 1485 | 3.50% 2365 0 | 309148 | 2222011 | 0.90%
Dragon 2417 | 1472 1482 0 | 302684 | 2215226
QPlace 391 | 1523 1365 0 | 304747 | 2211047
ibm07e | Capo 403 | 36.64 2734 0 | 583716 | 4953781
+ AFB 666 | 3496 | 533% 1919 0 | 565161 | 4617930 | 6.86%
Dragon 3899 | 36.60 2474 0 | 559697 | 4541095
QPlace 730 | 3721 1864 0 | 562852 | 4581759
ibm07h | Capo 459 | 3516 11501 | 450 | 611954 | 5124405
+ AFB 705 | 3495 | 0.59% 3160 0 | 575019 | 4657547 | 9.17%
Dragon 3947 | 3438 3201 0 | 582867 | 4697263
QPlace 712 | 3697 1850 0 | 600736 | 5043070
ibm08e | Capo 446 | 3882 1714 0 | 682384 | 5145286
+ AFB 966 | 37.04 | 4.58% 1215 0 | 660089 | 4770640 | 7.75%
Dragon 8586 | 36.10 997 0 | 662764 | 4514431
QPlace 994 | 39.46 914 0 | 703677 | 5267644
ibm08h | Capo 452 | 3848 7560 | 59 | 726584 | 5213489
+ AFB 984 | 3643 | 532% 1180 0 | 669970 | 4841286 | 7.10%
Dragon 8606 | 34.54 930 674494 | 4466114
QPlace 1012 | 3850 1414 0 | 724930 | 5338340

also observe that HPWL improvements peak at nearly 14% for
ibm05. Comparing runtimes, we find that accelerated feedback
increases runtime to 2.02x Capo, and that feedback increases
runtime to 3.13x Capo. We conclude that accelerated feedback
significantly improves runtime with a small impact on solution
quality as measured by HPWL.

In the second series of experiments, we evaluate our tech-
nique on the Peko benchmarks [7] and give the results in
Table III. The column descriptions are identical to those of
Table II. We notice that original Capo results as reported by
[7] are different from the ones we report due to the release of a
new version of Capo (version Capo 8.7 [1] rather than the old
version 8.0 used by [7]). We can see that our technique success-

fully obtains a further reduction in wirelength by up to 10%,
with an average improvement of 5.37%, versus the latest Capo
results.

Our third series of experiments evaluates the impact of our
heuristic on both routability and final routed wirelength of the
IBM version 2 [20] benchmarks by using Cadence’s WRoute
Version 2.4. We report the experimental results in Tables IV
and V for both IBM version 2 easy and hard instances. We
also report the results of both Dragon and Cadence’s QPlace*
for the sake of comparison. Placements of other tools, e.g.,

30nly QPlace placement runtimes are reported on a Solaris Ultra 10 machine.



KAHNG AND REDA: WIRELENGTH MINIMIZATION FOR MIN-CUT PLACEMENTS VIA PLACEMENT FEEDBACK

1311

TABLE V
RESULTS FOR THE IBM VERSION 2 INSTANCES (EASY AND HARD). MODE INDICATES WHETHER THE RESULTS REPRESENTS ORIGINAL CAPO’S RESULTS
OR CAPO WITH ACCELERATED FEEDBACK (AFB). CPU(S) REPRESENTS THE TOTAL CPU TIME IN SECONDS. FOR ROUTABILITY RESULTS,
WE REPORT ROUTING CPU TIME IN SECONDS, NUMBER OF ROUTING VIOLATIONS, VIAS, AND ROUTED WIRELENGTH (WL).
IMPR INDICATES THE IMPROVEMENT PERCENTAGE IN WIRELENGTH FOR FEEDBACK OVER CAPO. ALL PLACEMENTS
WERE ROUTED USING THE LINUX VERSION OF CADENCE’S WARPROUTE 2.4

Circuit Mode Place Route
CPU(s) | HPWL | Impr || CPU(s) | Viol | Vias | WL | Impr
ibm0% | Capo 295 | 3189810 2657 1| 532641 | 3413247
+ AFB 1029 | 3134550 | 1.88% 3632 0| 532894 | 3468914 | -1.61%
Dragon 9158 | 3011756 3235 0| 560756 | 3566572
QPlace 805 | 3388074 4535 0| 545424 | 3595004
ibm0%h | Capo 315 | 3253120 2943 0| 554942 | 3578004
+ AFB 922 | 3092060 | 4.94% 4520 0| 550386 | 3528053 | 1.40%
Dragon 8955 | 2907006 3057 0| 558848 | 3443702
QPlace 890 | 3501940 5554 0| 568012 | 3861120
ibml0e | Capo 458 | 6054520 5556 0| 852419 | 6831436
+ AFB 1617 | 5963430 | 1.50% 8218 0| 849532 | 6970985 | -2.03%
Dragon || 15276 | 5634591 5931 0| 888105 | 6855377
QPlace 1284 | 6329743 9886 0| 879532 | 7443258
ibm10h | Capo 483 | 6317760 15835 0| 941380 | 7771071
+ AFB 1636 | 6156330 | 2.5% || 11242 0| 896749 | 7266408 | 6.49%
Dragon || 10017 | 5529089 10407 0| 885641 | 6803801
QPlace 1246 | 6372542 12735 0| 921617 | 7628755
ibmlle | Capo 469 | 4699820 3894 0| 693248 | 5063947
+ AFB 2053 | 4664490 | 0.74% 5968 0| 683467 | 5016880 | 0.92%
Dragon || 10219 | 4346040 4672 0| 726319 | 5159810
QPlace 1005 | 5163175 5384 0| 733327 | 6143797
ibmllh | Capo 659 | 4693120 3973 0| 715120 | 5213806
+ AFB 2775 | 4581400 | 2.38% 6165 0| 704912 | 5178964 | 0.68%
Dragon 9448 | 4366608 4256 0| 719791 | 5100862
QPlace 1718 | 4991754 5057 0| 745577 | 5859200
ibm12e | Capo 488 | 8668280 33357 | 43 | 1107320 | 10408826
+ AFB 1918 | 8338480 | 3.81% || 17018 0 | 1055410 | 10020246 | 3.65%
Dragon || 18029 | 7402743 37785 | 487 | 1188983 | 10349721
QPlace 1442 | 9318313 18582 0 | 1103456 | 11360578
ibm12h | Capo 834 | 8343850 14541 1| 1117458 | 10475534
+ AFB 2418 | 8135740 | 2.49% || 17517 0 | 1077275 | 10086777 | 3.72%
Dragon 9390 | 7363033 32793 | 152 | 1160365 | 10314106
QPlace 2451 | 8894402 20797 0 | 1142057 | 11109699

FengShui [22], have been rendered routable by using a
postplacement-whitespace-distribution algorithm [15]; we refer
the interested reader to [15] for their wirelength results. From
the tables, our proposed heuristic improves the routability as
measured by the number of violations for all instances. For
example, WRoute smoothly routes the feedback placement of
the ibmO1 easy instance with zero violations. The routability
of ibm07 and ibmO8 is also dramatically enhanced. These im-
provements in routability are likely due to the total reductions
in wirelength. We also observe that the routing of the feed-
back placements takes much less time than Capo’s placements.
Total placement and routing runtime for Capo is 50864 s,
but this drops to 28901 s with feedback. Hence, the savings

in routing time offset any runtime increase in placement due
to feedback. For comparison, the total runtime for Dragon is
47316 s and 14576 s for QPlace. As for wirelength, we can
see that improvements reach up to 9% for ibm0O7h. The average
improvement for routed wirelength of all benchmarks is 5.81%
with the best results for the ibm01e and ibmO7h testcases. These
reductions in wirelength improve total congestion and power
consumption. Comparing the number of vias, we find that feed-
back produces the least number of vias in most cases. The total
number of vias for Capo is 3416 x 102, and 3362 x 10° vias
with feedback (3371 x 102 vias for Dragon and 3470 x 10 for
QPlace). These reductions in the number of vias, albeit slightly,
may improve both manufacturing yield and total delay.



1312

V. CONCLUSION

In this paper, we have studied the problem of ambiguous ter-
minal propagations that introduces indeterminism in the placer
performance. We have carefully reexamined the repartitioning
problem [13] to diminish this indeterminism. We abstractly
identified repartitioning as a form of placement feedback. In
feedback, future node locations control present terminal prop-
agation. This is realized by undoing a placement level after its
partitioning, and feeding back the resultant node locations to the
same placement level as input for partitioning. This feedback
scheme is iterated, where a number of variant controllers to
fine-tune the feedback response are proposed and compared.
Implementing our approach in Capo and applying it to standard
benchmarks yields up to 14% HPWL reductions (average 5.5%)
for the IBM general benchmarks (Version 1), up to 10% HPWL
reductions (average 5.37%) for the Peko (Suite 1) benchmarks,
and up to 9% routed wirelength reductions (average 5.8%) for
the IBM (Version 2) benchmarks. In addition, due to the reduc-
tion in wirelength, the proposed approach improves routability,
the routing runtime, and the number of vias. Our future work
will focus on further runtime improvements.

REFERENCES

[1] S. Adya, 1. Markov, and P. Villarrubia, “On whitespace and stability in
mixed-size placement,” in Proc. IEEE Int. Conf. Computer-Aided Design,
San Jose, CA, 2003, pp. 311-317.

[2] A.Agnihotri, M. Yildiz, A. Khatkhate, A. Mathur, S. Ono, and P. Madden,
“Fractional cut: Improved recursive bisection placement,” in Proc. [EEE
Int. Conf. Computer-Aided Design, San Jose, CA, 2003, pp. 307-310.

[3] C.J. Alpert, J. H. Huang, and A. B. Kahng, “Multilevel circuit partition-
ing,” in Proc. ACM/IEEE Design Automation Conf., Anaheim, CA, 1997,
pp. 530-533.

[4] A. Caldwell, A. Kahng, and 1. Markov, “End-case placers for standard-
cell layout,” in Proc. ACM/IEEE Int. Symp. Physical Design, Monterey,
CA, 1999, pp. 90-96.

[5] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Can recursive bisection
alone produce routable placements,” in Proc. ACM/IEEE Design Auto-
mation Conf., Los Angeles, CA, 2000, pp. 477-482.

, “Optimal partitioners and end-case placers for standard-cell lay-

out,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 19,
no. 11, pp. 1304-1313, Nov. 2000.

[7] C. Chang, J. Cong, and M. Xie, “Optimality and scalability study of
existing placement algorithms,” in Proc. IEEE Asia and South Pacific
Design Automation Conf., Kitakyushu, Japan, 2003, pp. 621-627.

[8] J. Cong, M. Romesis, and M. Xie, “Optimality and scalability study of
partitioning and placement algorithms,” in Proc. ACM/IEEE Int. Symp.
Physical Design, Monterey, CA, 2003, pp. 88-94.

[9] J. Cong, T. Kong, J. R. Shinnerl, M. Xie, and X. Yuan, “Large-scale circuit
placement: Gap and promise,” in Proc. IEEE Int. Conf. Computer-Aided
Design, San Jose, CA, 2003, pp. 883-890.

[10] R. Dort and R. Bishop, Modern Control Systems, 9th ed. Upper Saddle
River, NJ: Prentice-Hall, 2000.

[11] A. E. Dunlop and B. W. Kernighan, “A procedure for placement of
standard-cell VLSI circuits,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. CAD-4, no. 1, pp. 92-98, Jan. 1985.

[12] GSRC Bookshelf. [Online]. Available: http://vlsicad.ucsd.edu/GSRC/
bookshelf/Slots/Capo

[13] D.J.-H. Huang and A. B. Kahng, “Partitioning-based standard-cell global
placement with an exact objective,” in Proc. ACM/IEEE Int. Symp. Phys-
ical Design, Napa, CA, 1997, pp. 18-25.

[14] G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning,”
in Proc. ACM/IEEE Design Automation Conf., New Orleans, LA, 1999,
pp. 343-348.

[15] C. Li et al., “Routability-driven placement and white space allocation,”
in Proc. IEEE Int. Conf. Computer-Aided Design, San Jose, CA, 2004,
pp. 394-401.

[16] I. Markov, private communication, Nov. 2003.

[6]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

[17] P. R. Suaris and G. Kedem, “A quadrisection-based combined place
and route scheme for standard cells,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 8, no. 3, pp. 234-244, Mar. 1989.

[18] K. Takahashi, K. Nakajima, M. Terai, and K. Sato, “Min-cut place-
ment with global objective functions for large scale sea-of-gates arrays,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 14, no. 4,
pp. 434446, Apr. 1995.

[19] M. Wang, X. Yang, and M. Sarrafzadeh, “DRAGON2000: Standard-
cell placement tool for large industry circuits,” in Proc. IEEE Int. Conf.
Computer-Aided Design, San Jose, CA, 2001, pp. 260-263.

[20] X. Yang, B. Choi, and M. Sarrafzadeh, “Routabtility driven white space
allocation for fixed-die standard-cell placement,” in Proc. ACM/IEEE
Int. Symp. Physical Design, San Diego, CA, 2002, pp. 42-47.

[21] M. Yildiz and P. Madden, “Improved cut sequences for partitioning based
placement,” in Proc. ACM/IEEE Design Automation Conf., Las Vegas,
NV, 2001, pp. 776-779.

, “Global objectives for standard-cell placement,” in Proc. IEEE
Great Lakes Symp. VLSI, West Lafayette, IN, 2001, pp. 68-72.

[23] K. Zhong and S. Dutt, “Effective partition-driven placement with simul-
taneous level processing and global net views,” in Proc. IEEE Int. Conf.
Computer-Aided Design, San Jose, CA, 2000, pp. 171-176.

[22]

Andrew B. Kahng (A’89-M’03) received the A.B.
degree in applied mathematics from Harvard Col-
lege, Cambridge, MA, and the M.S. and Ph.D.
degrees in computer science from University of
California (UC) San Diego, La Jolla.

From 1989 to 2000, he was a member of the
UC Los Angeles (UCLA) Computer Science Fac-
ulty. Since 1997, he has defined the physical-design
roadmap for the International Technology Roadmap
for Semiconductors (ITRS), and since 2001, has
chaired the US and international working groups for
Design Technology for the ITRS. He has been active in the Microelectron-
ics Advanced Research Corporation (MARCO) Gigascale Silicon Research
Center since its inception. He is a Professor of Computer Science and
Engineering (CSE) and of Electronics and Communication Engineering (ECE)
at UC San Diego. His research is mainly on the physical design and perfor-
mance analysis of very-large-scale integration (VLSI), as well as the VLSI
design—manufacturing interface. Other research interests include combinatorial
and graph algorithms, and large-scale heuristic global optimization. He has
published over 200 papers in VLSI computer-aided-design (CAD) literature.

Dr. Kahng has received three Best Paper awards and a National Science
Foundation (NSF) Young Investigator Award. He was also the founding General
Chair of the Association of Computing Machinery (ACM)/IEEE International
Symposium on Physical Design, and cofounded the ACM Workshop on
System-Level Interconnect Planning.

Sherief Reda (S’01) received the B.Sc. and M.Sc.
degrees in electrical and computer engineering from
Ain Shams University, Cairo, Egypt, in 1998 and
2000, respectively. He is working toward the Ph.D.
degree at the University of California (UC) San
Diego, La Jolla.

He has over 20 refereed publications in the ar-
eas of physical design, very-large-scale-integration
(VLSI) test and diagnosis, combinatorial optimiza-
tion, and computer-aided design (CAD) for deoxyri-
bonucleic acid (DNA) chips.

Mr. Reda received a Best Paper Award at Design, Automation and Test in
Europe (DATE) 2002 and the First Place Award at the International Symposium
on Physical Design (ISPD) 2005 placement contest.



