
464 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 4, APRIL 2004

Local Unidirectional Bias for Cutsize-Delay Tradeoff
in Performance-Driven Bipartitioning

Andrew B. Kahng, Member, IEEE, and Xu Xu

Abstract—Traditional multilevel partitioning approaches have
shown good performance with respect to cutsize, but offer no
guarantees with respect to system performance. Timing-driven
partitioning methods based on iterated net reweighting, parti-
tioning, and timing analysis have been proposed (Ababei et al.,
2002), as well as methods that apply degrees of freedom such as
retiming (Cong et al., 2000), (Cong et al., 2002). In this paper,
we identify and validate a simple approach to timing-driven
partitioning based on the concept of “ -shaped nodes.” We
observe that the presence of -shaped nodes can badly impact
circuit performance, as measured by maximum hopcount across
the cutline or similar path delay criteria. We extend traditional
the Fiduccia–Mattheyses (FM) variant of the Kernighan–Lin
(Kernighan and Lin, 1970) algorithm approaches to directly
eliminate or minimize “distance- -shaped nodes” in the bipar-
titioning solution, achieving an attractive tradeoff between cutsize
and path delay. Experiments show that in comparison to MLPart
(Caldwell et al., 2000), our method can reduce the maximum
hopcount by 39% while only slightly increasing cutsize and
runtime. No previous method improves path delay in such a trans-
parent manner. The new partitioner is incorporated into a placer
(http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Placement/Capo/)
and circuit delay is evaluated by a commercial static timing ana-
lyzer (http://www.ece.uci.edu/eceware/cadence_docs/pearluser/).
The empirical results show that the delay is significantly reduced,
at the cost of very acceptable impacts on wirelength and runtime.

Index Terms—Fiduccia–Mattheyses (FM), hypergraph biparti-
tioning, timing, very large scale integration (VLSI).

I. INTRODUCTION

WITH increased system complexity, circuit hypergraph
partitioning, which is the “divide” step of the di-

vide-and-conquer paradigm, plays a crucial role in many
design tasks [8]. The problem is dividing the nodes of a graph
into several roughly equal parts; the traditional objective
is to minimize cutsize. Among many partitioning methods,
multilevel approaches (e.g., MLPart [3] or hMetis [15]) are
considered effective for cutsize minimization. Such methods
perform a sequence of netlist coarsening and uncoarsening
steps with FM-based partitioning refinement at each level of
the uncoarsening hierarchy. While these algorithms outperform

Manuscript received May 28, 2003; revised September 6, 2003. This research
was supported in part by the MARCO Gigascale Silicon Research Center. This
paper was recommended by Guest Editor C. J. Alpert.

A. B. Kahng is with the Department of Computer Science and Engineering,
and the Department of Electrical and Computer Engineering, University of Cal-
ifornia at San Diego, La Jolla, CA 92093-0114 USA (e-mail: abk@ucsd.edu).

X. Xu is with the Department of Computer Science and Engineering, Uni-
versity of California at San Diego, La Jolla, CA 92093-0114 USA (e-mail:
xuxu@cs.ucsd.edu).

Digital Object Identifier 10.1109/TCAD.2004.825847

other algorithms in cutsize, they cannot guarantee production
of small delay in general.

For performance-driven contexts, the hypergraph partitioner
must consider the impact of implied interconnects1 on perfor-
mance. The primary objective of a performance-driven par-
titioner is to minimize path delay on timing paths. Recently,
several performance-driven partitioning methods have been
proposed. Most of these methods do not consider cutsize,
and no attractive cutsize-delay tradeoff (let alone transparent
consideration of path delay within traditional cutsize-driven
approaches) has been discovered. In particular, existing per-
formance-driven partitioners either try to modify the input of
multilevel FM partitioners, by means such as reweighting [2],
or else apply novel approaches such as min-delay clustering
[9]. However, these approaches may be impractical because of
large cutsize [7] or large runtime [2]. Furthermore, improve-
ments in timing are often not obvious. The goal of our work
is to find a performance-driven partitioner that can provide a
more attractive, and hopefully tunable, cutsize/delay tradeoff.
Our contribution is summarized as follows.

1) We define the concept of a -shaped node in a parti-
tioning solution, as well as its generalization to distance-

-shaped nodes. We observe that even a few -shaped
or distance- -shaped nodes in the partitioning solution
may significantly increase path hopcounts across the cut-
line. This suggests improving performance by eliminating
such nodes.

2) We propose a new algorithm to eliminate, or at least re-
duce, -shaped nodes. Instead of modifying the input
of MLPart, we modify the MLPart algorithm itself by
changing the gain function. We use a “look-ahead” algo-
rithm reminiscent of CLIP [11] to eliminate distance-

-shaped nodes. We also propose to reweight the nets
whose fanout nodes are “ -nodes” to further reduce the
hopcount.

3) Our method is easily implementable within standard FM
with little cutsize and runtime penalty. We focus on the
flat bipartitioning engine context, but our result can be
applied within multilevel or any other framework that
invokes standard FM. Our approach also extends easily
to multiway implementations. Our experimental results
show that this method can achieve an average of 39% hop-
count reduction on industry testcases, with negligible im-
plementation effort and negligible impact on cutsize and
runtime.

1That is to say, any cut net will correspond to an interblock wire, or
a wire that has some expected length that depends on the size of the
given partitioning instance.

0278-0070/04$20.00 © 2004 IEEE

KAHNG AND XU: LOCAL UNIDIRECTIONAL BIAS FOR CUTSIZE-DELAY TRADEOFF 465

4) We incorporate the new partitioner into the CapoT placer
[19] and evaluate circuit delay using a commercial
static timing analyzer, Cadence Pearl v5.1 [21]. The
experimental results show that the delay is significantly
reduced, with very acceptable impacts on wirelength or
runtime.

II. NOTATION AND PROBLEM FORMULATION

Below, we use the following notation.

• denotes the circuit hypergraph.
• is the set of nodes representing

components (e.g., cells) of the circuit.
• is the set of signal nets, where each

net is a subset of nodes that are electrically connected by
a signal.

• is the subset of combinational nodes, and is the
subset of sequential nodes (or FF nodes);
and .

• A bipartition of divides into two dis-
joint subsets and , such that ; the two
subsets are also called Part 0 and Part 1.

• For a net , where is the fanout node
whose output signal is the input signal to ,
we say that is the input of , and that each

is an output of .
• If node is an input of node , then we say that there is

a directed edge from to .
• PI denotes the set of primary inputs, and PO denotes the

set of primary outputs. For purposes of path timing anal-
ysis we treat the nodes of PI, PO, and FF as the end points
of timing paths, i.e., the circuit delay is the longest combi-
national path delay from any FF or PI output to any FF or
PO input. We generically refer to timing paths as FF-FF
paths.

• is a directed path from to , if
there exists a directed edge from to , .
We say that the length of is .

• Let be a directed path from to .
If , , is a combinational directed
path.

• Let be a directed path from to .
If , and , , is a
FF-FF path.

• A combinational node is a distance- -shaped
node, or -node, if it satisfies: 1) , , such that
there is a directed edge from to and a combinational
directed path from to whose length is and 2) and

are both in the other partition with respect to . For the
special case of , is called a -shaped node.

• A combinational node is an -shaped node, or
-node, if it satisfies: 1) , and ,

and 2) there are directed edges from and to , and
from to and .

• the total area of all the nodes in .
the total area of all the nodes in .

• If , , such that and , then is a
cut net of the bipartition .

• The cutset of a bipartition is
is a cut net of . The cutsize of the bipartition

is .
• A directed edge from to is a hop, if is the input to

in a cut net.
• denotes the hopcount of an FF-FF path , i.e., the

number of hops in .
• the maximum value of over all FF-FF paths in

.
• A critical path is an FF-FF path whose hopcount is equal

to .
• Suppose a bipartition has a cut on , and let be

the fanout node whose output signal is the input to the rest
of the nodes in . If , the cut direction is indicated
as ; if , the cut direction is indicated as .

Performance-Driven Bipartition Problem (PDBP)
Given:

Hypergraph
Area balance tolerance , a given parameter

that constrains partition areas
, a given parameter which captures the

desired tradeoff between cutsize and path delay in the
objective function

Find:
A bipartition which satisfies

and minimizes

III. PREVIOUS PERFORMANCE DRIVEN METHODS

Most previous performance-driven partitioning approaches
alter the netlist using logic replication, retiming or buffer in-
sertion to meet delay constraints while minimizing the cutsize
[7]–[10], [16]. For example, Cong et al. [9] propose a global
clustering-based partitioning algorithm. The basic idea is as
follows.

• Construct a clustered circuit with the minimum clock
period, and perform retiming and node duplication as
possible.

• Perform cutsize-driven clustering on the clusters formed
in the previous step.

• Perform simultaneous cutsize and delay refinement during
cluster decomposition.

The method reduces delay by 16% while increasing cutsize by
17%—with retiming—compared with hMetis [9]. However,
such methods can require substantial gate replication, which
potentially increases die area. Some of these methods [7] tend
to produce noticeably worse cutsize compared to multilevel
FM partitioning.

Other approaches [2], [13] have been proposed which do not
change the netlist. Typically, a multilevel FM partitioner such
as hMetis [15] is used with some modified (weighted) input.
In the taxonomy of [2], these approaches can be divided into

466 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 4, APRIL 2004

Fig. 1. Example of V -shaped node b.

net-based and path-based categories. Net-based partitioning
approaches ([18], according to [2]) define a criticality value
for each net after timing analysis, while path-based approaches
consider the criticality of paths instead of single nets [2]. All of
these methods require timing analysis in order to find critical
nets or paths, and then reweight the critical nets or paths so as
to reduce the chances of cuts occurring. According to Ababei
et al. [2], their bipartitioning algorithm can reduce delay by
14% at the expense of an increase of 10% in cutsize and 139%
in runtime, compared with hMetis [2].

We observe that timing analysis can take a long time and
that it is necessarily based on an inaccurate delay model.
Delay models such as that of Cong et al. [9] (node delay ,
intrablock delay , and interblock delay) may identify
“critical paths” that incorrectly drive the timing analysis and,
hence, the partitioner. Since we may not have enough informa-
tion at the partitioning stage to make accurate delay estimates,
for some testcases, these algorithms can produce partitioning
solutions with worse delay than solutions found by generic
multilevel FM partitioning.2

Recently, some algorithms have been proposed which attempt
to incorporate timing analysis results somewhat more directly
into the FM partitioner [1]. For example, Ababei et al. [1] pro-
pose to perform timing analysis first in order to assign a “crit-
icality” value to each edge. Then, the gain function of the FM
partitioner is changed such that edges with higher criticality will
not be cut. Since criticality is a global variable, this means that
to obtain a reasonable value of criticality, global timing analysis
is needed. Moreover, since the change of one node in the parti-
tioning solution may affect the criticality values of many other
nodes, the complexity and convergence of the approach become
difficult, as witnessed by the level of improvements reported.

IV. SOLVING PDBP VIA ELIMINATION OF -NODES

In a bipartition , if all nets in the cutset have the same
cut direction, then we call a unidirectional bipartition.
A key intuition stems from the fact that in a unidirectional bipar-
tition, the hopcount of any FF-FF path is at most one. So, uni-
directional bipartitioning is in some sense an “idealized goal”
for performance-driven partitioning, and can be sought by, e.g.,
flow-based methods [17] and KAFM algorithm [5], [6]. Unfor-

2Of course, such models can be very relevant for, e.g., multifield pro-
grammable gate array partitioning applications that were prominently studied
during the early 1990s.

Fig. 2. Example of V -node.

Fig. 3. Procedure to calculate r (v).

tunately, a unidirectional bipartition tends to have much higher
cutsize than multilevel FM solutions [6], and for some testcases
no purely unidirectional solution exists. Therefore, we propose
to relax the unidirectional condition to “locally unidirectional.”
We call a bipartition without any -nodes (defined
in Section II above) as a distance- unidirectional bipartition.
Our intuition is that a tradeoff between cutsize and delay can be
achieved by elimination or reduction of -nodes in the parti-
tioning solution.

A. -Shaped Node Elimination

For any node , let be the set of nets to which is
connected that lie entirely in the current partition of , and let

be the set of nets that belong to the cutset and for which
is the only incident node in the partition of . The traditional

gain function in FM partitioning is for
all nodes . FM partitioning [12] starts with a random initial

KAHNG AND XU: LOCAL UNIDIRECTIONAL BIAS FOR CUTSIZE-DELAY TRADEOFF 467

Fig. 4. Bipartitioning algorithm.

partition and iteratively checks the node with maximum gain
to see whether moving it to the other part will violate the area
balance constraint. If not, the node is moved to the other part,
otherwise, the node with maximum gain in the other subset will
be moved. Every node is locked after moving, and the process
continues until all nodes are locked. Then, all prefix sums

are calculated, and is chosen such that is max-
imum (all node moves after the are undone). This process is
called a pass, and FM partitioning repeats passes until .

In general, the partitioning solutions returned by a multilevel
FM partitioner, such as MLPart [4], have good cutsize. However,
for some testcases, MLPart tends to produce solutions with high

values. We have analyzed critical paths and consistently found
that:

1) there are a few -shaped nodes in the partitioning
solutions;

2) every -shaped node is included in many critical paths;
3) almost every critical path contains one or more -shaped

node;
4) MLPart cannot eliminate these -shaped nodes due to the

traditional gain function.
Based on these observations, we propose to improve timing

by local biasing of FM to eliminate some (not necessarily all)
-shaped nodes. For example, in Fig. 1(a), node is a -shaped

node. Suppose that the area balance tolerance is 0.35. MLPart
cannot move node to Part 0 since there are directed edges
from nodes and to . The traditional gain values of nodes

– are 0, 0, 0, 1, 1, 2. Since the smallest cutsize is al-
ready achieved and no improvement is available, the FM par-
titioner will stop here. Of the directed paths passing through ,

will have two cut nets; and
will each have one cut net. However, if we

move node to Part 0, as shown in Fig. 1(b), although the cutsize
remains the same, the two cut nets on the path
are saved, while the numbers of cut nets on the other two paths
remain at one. We see that unlike timing-analysis based algo-
rithms, which may increase the hopcounts of near-critical paths
when the hopcounts of critical paths are reduced, elimination
of -shaped nodes can improve timing without any negative
effect.

We believe that this effect is increasingly important in re-
cent industry testcases: partitioning solutions have much worse
timing if they do not consider -shaped nodes. However, this
effect is not apparent for testcases in which most gates have
only two inputs. For example, in Fig. 1(a), if node is removed,

Fig. 5. Example of X-shaped node b.

TABLE I
BASIC PROPERTIES OF TESTCASES

the gain value of node will be 1, and the FM partitioner will
move node to Part 0. For such testcases, there will be very
few -shaped nodes in the MLPart partitioning solution. Our
method may, therefore, be more suited to the “true” underlying
netlist topology after synthesis, and in fact is not effective if the
netlist has been reduced to some sort of generic 2-input gate
variant.3

B. Elimination of Generalized -Shaped Nodes

For some testcases, eliminating -shaped nodes is not suffi-
cient since there are many -nodes and -nodes left in the
partition solutions after elimination of -shaped nodes. Moving
these nodes can make the solutions better. Ideally, we hope that
no two cut nets with different directions (one and one cut
net) are located too close to each other in a path.4 Therefore,
we want to eliminate -nodes, with as large as possible.
However, the number of -nodes will increase dramatically
with , which means that we likely need to change the pure

3Note that ISCAS sequential benchmarks have been broken down into 2-input
gates, and thus are not an interesting context for us.

4The intuition is as follows. For a FF-FF pathP of 50 nodes, the max possible
hopcount is 49. If we require that the distance between any two opposite-direc-
tion cuts is no smaller than 5, the max possible hopcount is 9. By making k large
enough, we can force the decrease of h((V ; V)) = 1 to its minimum value.

468 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 4, APRIL 2004

TABLE II
BIASING AGAINST V -SHAPED NODES VERSUS MLPART: DETAILED RESULTS OF TEN INDEPENDENT SINGLE-START TRIALS FOR THE TESTCASE

INDUSTRY1. THE PARAMETERS USED IN OUR ALGORITHM ARE �(0) = 1 AND �(1) = 10; AREA BALANCE TOLERANCE IS 10%.
change = (New cutsize�MLPart cutsize)=(MLPart cutsize); improve = (MLPart delay �New delay)=(MLPart delay)

mincut-driven solution more substantially with large . Another
problem associated with large is that movement of one node
may affect many other nodes, again leading to increased cutsize
and complexity.5 Currently, we do not believe that it is practical
to be concerned with .

To eliminate -nodes, we effectively need to move more
than one node. For example, in Fig. 2, we need to move nodes
, , in order to eliminate -node . If just node is moved,
will become a new -node. For any -node , we de-

note the set of nodes whose movement is required to elimi-
nate as and we require . In Fig. 2,

.6 Therefore, after moving one node , we
need to use a “look ahead” algorithm to, in effect, move the rest
of the nodes in . we achieve this by means similar to the
CLIP algorithm of Dutt et al. [11]. That is, we reset the gains
of all nodes to zero after initial gain calculation such that the
gain of a node after update only reflects its goodness for moving
with regard to the nodes currently being moved. For example,
in Fig. 2, after moving the node and gain update, the node
has the largest gain.

C. New Gain Function Calculation

To achieve what we call “distance- unidirectional
bias”, we change the gain function to: Gain

for each node
Here, is the traditional net-cut based gain function. The

user-defined coefficients weight the attention paid
to different -shapes (if only is positive, then we have
the original FM algorithm), and is the reduction in the
number of -nodes after moving . For any node ,
we denote the set of inputs of as . To simplify the
description, we assume that . The procedure to calculate

is shown in Fig. 3.
In Steps 1–3 of the procedure, if is a combinational node

and its input set is not empty, we find all the nodes within dis-
tance of using BFS. All sequential nodes and their descen-
dants will be removed from the BFS tree. Then, for every level

from 1 to , we check whether is a node in Steps 6–8.

5In fact, the experimental results for k = 3 and k = 4 show that the runtime
and cutsize become worse while the delay is not improved compared with results
of k = 2.

6We require v 2MS(v) in our approach. Other approaches such as moving
nodes a or d are not considered since nodes a and d may have neighbors and
we wish to avoid the complexity of checking all possible configurations.

Fig. 6. Scatter plot for the testcase industry1. Each round point represents the
(cutsize, delay) pair for one combination of �(0), �(1), and �(2), whose values
are chosen from {1, 3, 10, 30}.

If so, . In Steps 9–11, we check whether will be
a node if it is moved to the other part. The value of
can be 1, 0, 1, which represents the reduction of the number
of nodes in the hypergraph due to the move of .

To analyze the time complexity of the procedure, assume that
the maximum fanin is and the maximum fanout is . For
every node, checking the inputs will take at most time
and BFS will take at most time. Therefore, the total
time needed for calculating is .

Distance- Unidirectional Bipartitioning: Summary and
Time Complexity: Our algorithm to achieve distance- uni-
directional bias in the bipartitioning (reminiscent of CLIP
[11] in how it induces movement of clusters across the
cutline) is summarized in Fig. 4. Time complexity may
be analyzed as follows. We use the same gain bucket list
structure as proposed in [12]. The maximum possible gain
is Gain , where is the
maximum possible traditional gain. The time for calculating
initial gain is , where is the number of
nodes in the hypergraph. Gain time is needed to reset
the gains of all nodes to zero, since we only need to remove all
linked lists from buckets and concatenate them to the bucket

KAHNG AND XU: LOCAL UNIDIRECTIONAL BIAS FOR CUTSIZE-DELAY TRADEOFF 469

TABLE III
RESULTS OF MLPART [4] AND REWEIGHTING [2]: AVERAGE RESULTS OF TEN RANDOM STARTS. change = (New cutsize �MLPart cutsize)=

(MLPart cutsize); improve = (MLPart delay �New delay)=(MLPart delay)

TABLE IV
RESULTS OF BIASING AGAINST V -NODES (UP TO k = 2) AND BIASING AGAINST V -NODES PLUS X-NODES REWEIGHTING: AVERAGE RESULTS

OF TEN RANDOM STARTS. THE PARAMETERS USED IN OUR METHOD ARE �(0) = 1, �(1) = 30, �(2) = 3, AND � = 10. change =
(New cutsize �MLPart cutsize)=(MLPart cutsize); improve = (MLPart delay �New delay)=(MLPart delay)

TABLE V
TIMING-DRIVEN PLACEMENT RESULTS. THE MODIFIED CAPOT USES THE NEW PARTITIONER WITH V -NODES ELIMINATION AND X-NODES

REWEIGHTING. THE PARAMETERS USED IN THE PARTITIONER ARE �(0) = 1, �(1) = 30, �(2) = 3, AND � = 10

of zero gain. Moving gains also takes Gain time. Since
moving one node only affects the gains of the nodes within
distance , we need to update at most nodes
in every iteration. Because every node can be moved at most
once, the total time should be Gain .
Therefore, our algorithm takes linear time per pass, just as in
the original FM algorithm. The negligible impact on runtime is
confirmed in the next section.

D. -Nodes Reweighting

In our analysis of critical paths, we notice that there are a few
-nodes, as shown in Fig. 5. These are nets that “straddle a cut-

line” and which should be penalized. Since moving node from
Part 1 to Part 0 will increase the hopcount of the path
by two, the reduction of hopcount can not be obtained by simply
moving the node . One node can be identified as -node if
both Part 0 and Part 1 have at least one input and one output
of . In order to eliminate -nodes, we propose to increase
the weights of the nets whose fanout nodes are -nodes, such
as the net in Fig. 5 in order to constrain the cutsize
driven partitioner not to cut these nets.7 Performing -nodes
reweighting and -nodes elimination simultaneously is diffi-

7For example, if we reweight one net e as ten, the cutsize will increase by ten
instead of by one if e is a cut net.

cult since both of these operations will change the gain struc-
tures for the netlist.8 Thus, we perform -nodes reweighting
after -nodes elimination at the expense of the increase of run-
time. Initially, the weights of all nets are set as 1. We reset the
weight of each net whose fanout node is an -node to a given
constant . The new gain function is: Gain
for each node if belongs to one net whose fanout node
is an -node and moving can save the net from being cut;
Gain otherwise. Here, is the traditional gain
function of . We then use the algorithm specified in Fig. 4 to
obtain the final bipartitioning solution.

V. EXPERIMENTAL RESULTS

The MLPart code of [4] was downloaded from the MARCO
GSRC Bookshelf [20] and modified. The code is currently com-
piled and run on Solaris and Linux platforms. Total code modi-
fications amounted to less than 2000 lines.

We tested our algorithm on four industry testcases given to us
in LEF/DEF format. The testcase parameters are summarized
in Table I. All tests were run on code compiled with the GNU
gcc2.95.2 compiler running on a 600-MHz Intel Pentium-III
Xeon processor under the RedHat7.3 Linux operating system.
We use the model in [2] to calculate the delay.

8In fact, our attempts to do so did not yield strong results.

470 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 4, APRIL 2004

Table II shows the results of multiple single-start runs on the
testcase “industry1” when run with , . The
results show that around 30% improvement on hopcount and
23% improvement on delay is achieved while only slightly in-
creasing cutsize and runtime.9

We also tested our algorithm with different values of ,
, and for the testcase “industry1” in order to find the

best tuning of parameter values. In each test, we choose a dif-
ferent combination of values from the set {1, 3, 10, 30} for each
of the three parameters, and run the code with 10 independent
random starts. The (cutsize, delay) pairs across all 64 combi-
nations averaged over ten starts for each combination are given
as a scatter plot in Fig. 6. The best tradeoff point is achieved
with , , and . Empirically, we be-
lieve that good results are consistently achieved with ,

, and .
Table III gives the average results of MLPart [4] and

reweighting for all the six testcases with ten random starts,
comparing directly against the results of -nodes removal
and -nodes removal plus -nodes reweighting in Table IV.10

We set , , , and . The
results show that our algorithm is very efficient in reducing
hopcount as well as delay. Across all testcases, the increase
of cutsize (average of 5.1% after -nodes reweighting) and
runtime (average of 30.9%) is acceptable.

Finally, to address our original motivating application, we
have studied the impact of the new partitioner within the frame-
work of top-down, partitioning-based, timing driven placement.
We have incorporated the new partitioner into CapoT [19], a
timing driven placer used in [14]. Table V compares the results
of modified CapoT by using the new partitioner with the orig-
inal CapoT. Circuit delay is evaluated by a commercial static
timing analyzer, Cadence Pearl v5.1 [21]. The experimental re-
sults show that worst-case timing slack is increased with the new
partitioner, while the increase of wirelength (average of 0.1%)
and runtime (average of 15.9%) is quite moderate.

VI. CONCLUSION

In this paper, we have proposed a simple yet efficient timing-
driven partitioning algorithm which does not rely on any global
timing analysis. Since only local information is used in the algo-
rithm, we achieve an effective return of solution quality versus
runtime. By changing the gain function in the FM partitioner,
we bias toward movement of some -nodes in the FM parti-
tioning solution across the cutline. We have observed that these
“bad nodes,” that is, -nodes, contribute significantly to the
delay of the whole circuit. Thus, our biasing approach improves
timing by eliminating or minimizing such nodes. We also pro-
pose to reweight the nets whose fanout nodes are nodes to fur-
ther reduce the hopcount and path delay. Experimental results
show that our method significantly reduces path delay while

9When using the simpler delay model of [9], we obtain an average of 20%
improvement in delay over all testcases.

10Programs described in [9] and [2] were not available for comparison. The
reweighting code is obtained by modifying MLPart [20] according to the algo-
rithm proposed in [2].

keeping the cutsize and runtime almost the same as MLPart. To
verify the effectiveness of our new partitioner, it is incorporated
into a placer and results are evaluated by a commercial static
timing analyzer. We observe that the circuit delay is reduced
while the wirelength remains almost the same and the increase
of runtime is moderate.

REFERENCES

[1] C. Ababei and K. Bazargan, “Statistical timing driven partitioning for
VLSI circuits,” in Proc. Design Automation Test Eur., 2002, p. 1109.

[2] C. Ababei, S. Navaratnasothie, K. Bazargan, and G. Karypis, “Multi-ob-
jective circuit partitioning for cutsize and path-based delay minimiza-
tion,” in Proc. IEEE-ACM Int. Conf. Computer-Aided Design, 2002, pp.
181–185.

[3] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Hypergraph partitioning
for VLSI CAD: Method for heuristic development, experimentation and
reporting,” in Proc. ACM/IEEE Design Automation Conf., 1999, pp.
349–354.

[4] , “Improved algorithms for hypergraph bipartition,” in Proc. Asia
South Pacific Design Automation Conf., 2000, pp. 661–666.

[5] J. Cong, Z. Li, and R. Bagrodia, “Acyclic multi-way partitioning of
Boolean networks,” in Proc. ACM/IEEE Design Automation Conf.,
1994, pp. 670–675.

[6] J. Cong, W. Labio, and N. Shivakumar, “Multi-way VLSI circuit parti-
tioning based on dual netlist representations,” in Proc. IEEE-ACM Int.
Conf. Computer-Aided Design, 1994, pp. 56–62.

[7] J. Cong, H. Li, and C. Wu, “Simultaneous circuit partitioning/clustering
with retiming,” in Proc. ACM/IEEE Design Automation Conf., 1999, pp.
460–465.

[8] J. Cong, S. Lim, and C. Wu, “Performance driven multi-level and mul-
tiway partitioning with retiming,” in Proc. ACM/IEEE Design Automa-
tion Conf., 2000, pp. 274–279.

[9] J. Cong and C. Wu, “Global clustering-based performance driven circuit
partitioning,” in Proc. ACM/IEEE Int. Symp. Physical Design, 2002, pp.
149–154.

[10] W. E. Donath, R. J. Norman, B. K. Agrawal, S. E. Bello, S. Y. Han, J.
M. Kurtzberg, P. Lowy, and R. I. McMillan, “Timing driven placement
using complete path delays,” in Proc. ACM/IEEE Design Automation
Conf., 1990, pp. 84–89.

[11] S. Dutt and W. Deng, “VLSI circuit partitioning by cluster-removal
using iterative improvement techniques,” in Proc. ACM/IEEE Design
Automation Conf., 1996, pp. 194–200.

[12] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for im-
proving network partitions,” in Proc. 19th Design Automation Conf.,
1982, pp. 175–181.

[13] Y. C. Ju and R. A. Saleh, “Incremental techniques for the identification
of statically sensitizable critical paths,” in Proc. ACM/IEEE Design Au-
tomation Conf., 1991, pp. 541–546.

[14] A. B. Kahng, S. Mantik, and I. L. Markov, “Min-max placements for
large-scale timing optimization,” in Proc. ACM/IEEE Int. Symp. Phys-
ical Design, 2002, pp. 143–148.

[15] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hyper-
graph partitioning: Application in VLSI domain,” in Proc. ACM/IEEE
Design Automation Conf., 1997, pp. 526–529.

[16] L. Liu, M. Shih, N. Chou, C.-K. Cheng, and W. Ku, “Performance-driven
partitioning using a replication graph approach,” in Proc. ACM/IEEE
Design Automation Conf., 1995, pp. 206–210.

[17] H. Liu and D. F. Wong, “Network flow based circuit partitioning for
time-multiplexed FPGAs,” in Proc. IEEE-ACM Int. Conf. Computer-
Aided Design, 1998, pp. 497–504.

[18] S. L. Ou and M. Pedram, “Timing-driven partitioning using iterative
quadratic programming,” in Proc. ACM/IEEE Design Automation Conf.,
2000, pp. 472–476.

[19] Capo: A large-scale fixed-die placer Available: http://vlsicad.ucsd.edu/
GSRC/bookshelf/Slots/Placement/Capo/ [Online]

[20] MLPart: High-performance multilevel hypergraph bipartitioning code
Available: http://nexus6.cs.ucla.edu/GSRC/bookshelf/Slots/Parti-
tioning/MLPart/ [Online]

[21] Cadence Pearl Available: http://www.ece.uci.edu/eceware/ca-
dence_docs/pearluser/ [Online]

[22] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for parti-
tioning graphs,” Bell Syst. Tech. J., vol. 49, pp. 291–307, 1970.

KAHNG AND XU: LOCAL UNIDIRECTIONAL BIAS FOR CUTSIZE-DELAY TRADEOFF 471

Andrew B. Kahng (A’89–M’03) received the A.B.
degree in applied mathematics is from Harvard
College and the M.S. and Ph.D. degrees in computer
science are from University of California (UC), San
Diego.

From 1989 to 2000, he was a member of the
UC, Los Angeles computer science faculty. He is
a Professor of CSE and ECE at UC, San Diego. He
has published over 200 papers in the VLSI CAD
literature, receiving three Best Paper awards and
an NSF Young Investigator award. His research is

mainly in physical design and performance analysis of VLSI, as well as the
VLSI design-manufacturing interface. Other research interests include combi-
natorial and graph algorithms, and large-scale heuristic global optimization.
Since 1997, he has defined the physical design roadmap for the International
Technology Roadmap for Semiconductors (ITRS), and since 2001 has chaired
the U.S. and international working groups for Design technology for the ITRS.
He has been active in the MARCO Gigascale Silicon Research Center since
its inception. He was also the founding General Chair of the ACM/IEEE
International Symposium on Physical Design, and cofounded the ACM
Workshop on System-Level Interconnect Planning.

Xu Xu was born in Maanshan, China, in 1975. He re-
ceived the B.S. degree from the University of Science
and Technology of China, Hefei, in 1998. He is cur-
rently pursuing the Ph.D. degree in computer science
and engineering from the University of California at
San Diego, La Jolla.

He was with Ammocore Technology, Inc., Santa
Clara, CA, in 2002. His research includes VLSI
timing optimization, application of VLSI algorithms
on DNA arrays, and mask-manufacturing cost
minimization.

